提交 bbc04244 编写于 作者: B bpb

4641897: Faster string conversion of large integers

Summary: Accelerate conversion to string by means of Schoenhage recursive base conversion.
Reviewed-by: bpb, alanb
Contributed-by: NAlan Eliasen <eliasen@mindspring.com>
上级 09dd4f63
...@@ -33,6 +33,7 @@ import java.io.IOException; ...@@ -33,6 +33,7 @@ import java.io.IOException;
import java.io.ObjectInputStream; import java.io.ObjectInputStream;
import java.io.ObjectOutputStream; import java.io.ObjectOutputStream;
import java.io.ObjectStreamField; import java.io.ObjectStreamField;
import java.util.ArrayList;
import java.util.Arrays; import java.util.Arrays;
import java.util.Random; import java.util.Random;
import sun.misc.DoubleConsts; import sun.misc.DoubleConsts;
...@@ -213,6 +214,16 @@ public class BigInteger extends Number implements Comparable<BigInteger> { ...@@ -213,6 +214,16 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
*/ */
private static final int TOOM_COOK_SQUARE_THRESHOLD = 140; private static final int TOOM_COOK_SQUARE_THRESHOLD = 140;
/**
* The threshold value for using Schoenhage recursive base conversion. If
* the number of ints in the number are larger than this value,
* the Schoenhage algorithm will be used. In practice, it appears that the
* Schoenhage routine is faster for any threshold down to 2, and is
* relatively flat for thresholds between 2-25, so this choice may be
* varied within this range for very small effect.
*/
private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 8;
//Constructors //Constructors
/** /**
...@@ -1026,6 +1037,19 @@ public class BigInteger extends Number implements Comparable<BigInteger> { ...@@ -1026,6 +1037,19 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1]; private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1]; private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
/**
* The cache of powers of each radix. This allows us to not have to
* recalculate powers of radix^(2^n) more than once. This speeds
* Schoenhage recursive base conversion significantly.
*/
private static ArrayList<BigInteger>[] powerCache;
/** The cache of logarithms of radices for base conversion. */
private static final double[] logCache;
/** The natural log of 2. This is used in computing cache indices. */
private static final double LOG_TWO = Math.log(2.0);
static { static {
for (int i = 1; i <= MAX_CONSTANT; i++) { for (int i = 1; i <= MAX_CONSTANT; i++) {
int[] magnitude = new int[1]; int[] magnitude = new int[1];
...@@ -1033,6 +1057,22 @@ public class BigInteger extends Number implements Comparable<BigInteger> { ...@@ -1033,6 +1057,22 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
posConst[i] = new BigInteger(magnitude, 1); posConst[i] = new BigInteger(magnitude, 1);
negConst[i] = new BigInteger(magnitude, -1); negConst[i] = new BigInteger(magnitude, -1);
} }
/*
* Initialize the cache of radix^(2^x) values used for base conversion
* with just the very first value. Additional values will be created
* on demand.
*/
powerCache = (ArrayList<BigInteger>[])
new ArrayList[Character.MAX_RADIX+1];
logCache = new double[Character.MAX_RADIX+1];
for (int i=Character.MIN_RADIX; i<=Character.MAX_RADIX; i++)
{
powerCache[i] = new ArrayList<BigInteger>(1);
powerCache[i].add(BigInteger.valueOf(i));
logCache[i] = Math.log(i);
}
} }
/** /**
...@@ -1357,7 +1397,7 @@ public class BigInteger extends Number implements Comparable<BigInteger> { ...@@ -1357,7 +1397,7 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD))
return multiplyKaratsuba(this, val); return multiplyKaratsuba(this, val);
else else
return multiplyToomCook3(this, val); return multiplyToomCook3(this, val);
} }
private static BigInteger multiplyByInt(int[] x, int y, int sign) { private static BigInteger multiplyByInt(int[] x, int y, int sign) {
...@@ -3299,6 +3339,28 @@ public class BigInteger extends Number implements Comparable<BigInteger> { ...@@ -3299,6 +3339,28 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
radix = 10; radix = 10;
// If it's small enough, use smallToString.
if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD)
return smallToString(radix);
// Otherwise use recursive toString, which requires positive arguments.
// The results will be concatenated into this StringBuilder
StringBuilder sb = new StringBuilder();
if (signum < 0) {
toString(this.negate(), sb, radix, 0);
sb.insert(0, '-');
}
else
toString(this, sb, radix, 0);
return sb.toString();
}
/** This method is used to perform toString when arguments are small. */
private String smallToString(int radix) {
if (signum == 0)
return "0";
// Compute upper bound on number of digit groups and allocate space // Compute upper bound on number of digit groups and allocate space
int maxNumDigitGroups = (4*mag.length + 6)/7; int maxNumDigitGroups = (4*mag.length + 6)/7;
String digitGroup[] = new String[maxNumDigitGroups]; String digitGroup[] = new String[maxNumDigitGroups];
...@@ -3337,6 +3399,78 @@ public class BigInteger extends Number implements Comparable<BigInteger> { ...@@ -3337,6 +3399,78 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
return buf.toString(); return buf.toString();
} }
/**
* Converts the specified BigInteger to a string and appends to
* <code>sb</code>. This implements the recursive Schoenhage algorithm
* for base conversions.
* <p/>
* See Knuth, Donald, _The Art of Computer Programming_, Vol. 2,
* Answers to Exercises (4.4) Question 14.
*
* @param u The number to convert to a string.
* @param sb The StringBuilder that will be appended to in place.
* @param radix The base to convert to.
* @param digits The minimum number of digits to pad to.
*/
private static void toString(BigInteger u, StringBuilder sb, int radix,
int digits) {
/* If we're smaller than a certain threshold, use the smallToString
method, padding with leading zeroes when necessary. */
if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) {
String s = u.smallToString(radix);
// Pad with internal zeros if necessary.
// Don't pad if we're at the beginning of the string.
if ((s.length() < digits) && (sb.length() > 0))
for (int i=s.length(); i<digits; i++) // May be a faster way to
sb.append('0'); // do this?
sb.append(s);
return;
}
int b, n;
b = u.bitLength();
// Calculate a value for n in the equation radix^(2^n) = u
// and subtract 1 from that value. This is used to find the
// cache index that contains the best value to divide u.
n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) / LOG_TWO - 1.0);
BigInteger v = getRadixConversionCache(radix, n);
BigInteger[] results;
results = u.divideAndRemainder(v);
int expectedDigits = 1 << n;
// Now recursively build the two halves of each number.
toString(results[0], sb, radix, digits-expectedDigits);
toString(results[1], sb, radix, expectedDigits);
}
/**
* Returns the value radix^(2^exponent) from the cache.
* If this value doesn't already exist in the cache, it is added.
* <p/>
* This could be changed to a more complicated caching method using
* <code>Future</code>.
*/
private static synchronized BigInteger getRadixConversionCache(int radix,
int exponent) {
BigInteger retVal = null;
ArrayList<BigInteger> cacheLine = powerCache[radix];
int oldSize = cacheLine.size();
if (exponent >= oldSize) {
cacheLine.ensureCapacity(exponent+1);
for (int i=oldSize; i<=exponent; i++) {
retVal = cacheLine.get(i-1).square();
cacheLine.add(i, retVal);
}
}
else
retVal = cacheLine.get(exponent);
return retVal;
}
/* zero[i] is a string of i consecutive zeros. */ /* zero[i] is a string of i consecutive zeros. */
private static String zeros[] = new String[64]; private static String zeros[] = new String[64];
......
...@@ -61,10 +61,13 @@ public class BigIntegerTest { ...@@ -61,10 +61,13 @@ public class BigIntegerTest {
// KARATSUBA_SQUARE_THRESHOLD = 90 ints = 2880 bits // KARATSUBA_SQUARE_THRESHOLD = 90 ints = 2880 bits
// TOOM_COOK_SQUARE_THRESHOLD = 140 ints = 4480 bits // TOOM_COOK_SQUARE_THRESHOLD = 140 ints = 4480 bits
// //
// SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 8 ints = 256 bits
//
static final int BITS_KARATSUBA = 1600; static final int BITS_KARATSUBA = 1600;
static final int BITS_TOOM_COOK = 2400; static final int BITS_TOOM_COOK = 2400;
static final int BITS_KARATSUBA_SQUARE = 2880; static final int BITS_KARATSUBA_SQUARE = 2880;
static final int BITS_TOOM_COOK_SQUARE = 4480; static final int BITS_TOOM_COOK_SQUARE = 4480;
static final int BITS_SCHOENHAGE_BASE = 256;
static final int ORDER_SMALL = 60; static final int ORDER_SMALL = 60;
static final int ORDER_MEDIUM = 100; static final int ORDER_MEDIUM = 100;
...@@ -467,12 +470,13 @@ public class BigIntegerTest { ...@@ -467,12 +470,13 @@ public class BigIntegerTest {
public static void stringConv() { public static void stringConv() {
int failCount = 0; int failCount = 0;
// Generic string conversion.
for (int i=0; i<100; i++) { for (int i=0; i<100; i++) {
byte xBytes[] = new byte[Math.abs(rnd.nextInt())%100+1]; byte xBytes[] = new byte[Math.abs(rnd.nextInt())%100+1];
rnd.nextBytes(xBytes); rnd.nextBytes(xBytes);
BigInteger x = new BigInteger(xBytes); BigInteger x = new BigInteger(xBytes);
for (int radix=2; radix < 37; radix++) { for (int radix=Character.MIN_RADIX; radix < Character.MAX_RADIX; radix++) {
String result = x.toString(radix); String result = x.toString(radix);
BigInteger test = new BigInteger(result, radix); BigInteger test = new BigInteger(result, radix);
if (!test.equals(x)) { if (!test.equals(x)) {
...@@ -483,6 +487,32 @@ public class BigIntegerTest { ...@@ -483,6 +487,32 @@ public class BigIntegerTest {
} }
} }
} }
// String conversion straddling the Schoenhage algorithm crossover
// threshold, and at twice and four times the threshold.
for (int k = 0; k <= 2; k++) {
int factor = 1 << k;
int upper = factor * BITS_SCHOENHAGE_BASE + 33;
int lower = upper - 35;
for (int bits = upper; bits >= lower; bits--) {
for (int i = 0; i < 50; i++) {
BigInteger x = BigInteger.ONE.shiftLeft(bits - 1).or(new BigInteger(bits - 2, rnd));
for (int radix = Character.MIN_RADIX; radix < Character.MAX_RADIX; radix++) {
String result = x.toString(radix);
BigInteger test = new BigInteger(result, radix);
if (!test.equals(x)) {
failCount++;
System.err.println("BigInteger toString: " + x);
System.err.println("Test: " + test);
System.err.println(radix);
}
}
}
}
}
report("String Conversion", failCount); report("String Conversion", failCount);
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册