Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
openanolis
dragonwell8_jdk
提交
273af63e
D
dragonwell8_jdk
项目概览
openanolis
/
dragonwell8_jdk
通知
4
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
dragonwell8_jdk
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
273af63e
编写于
11月 02, 2010
作者:
L
lana
浏览文件
操作
浏览文件
下载
差异文件
Merge
上级
7fbb2cf0
00041c30
变更
12
展开全部
隐藏空白更改
内联
并排
Showing
12 changed file
with
3202 addition
and
1152 deletion
+3202
-1152
src/share/classes/sun/java2d/pisces/Curve.java
src/share/classes/sun/java2d/pisces/Curve.java
+294
-0
src/share/classes/sun/java2d/pisces/Dasher.java
src/share/classes/sun/java2d/pisces/Dasher.java
+370
-78
src/share/classes/sun/java2d/pisces/Helpers.java
src/share/classes/sun/java2d/pisces/Helpers.java
+478
-0
src/share/classes/sun/java2d/pisces/LineSink.java
src/share/classes/sun/java2d/pisces/LineSink.java
+0
-93
src/share/classes/sun/java2d/pisces/PiscesCache.java
src/share/classes/sun/java2d/pisces/PiscesCache.java
+134
-94
src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java
...hare/classes/sun/java2d/pisces/PiscesRenderingEngine.java
+132
-76
src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java
src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java
+67
-82
src/share/classes/sun/java2d/pisces/Renderer.java
src/share/classes/sun/java2d/pisces/Renderer.java
+623
-263
src/share/classes/sun/java2d/pisces/Stroker.java
src/share/classes/sun/java2d/pisces/Stroker.java
+835
-438
src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java
...classes/sun/java2d/pisces/TransformingPathConsumer2D.java
+229
-0
src/share/native/sun/java2d/loops/ProcessPath.c
src/share/native/sun/java2d/loops/ProcessPath.c
+23
-26
src/windows/classes/sun/awt/windows/WWindowPeer.java
src/windows/classes/sun/awt/windows/WWindowPeer.java
+17
-2
未找到文件。
src/share/classes/sun/java2d/pisces/Curve.java
0 → 100644
浏览文件 @
273af63e
/*
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package
sun.java2d.pisces
;
import
java.util.Iterator
;
class
Curve
{
float
ax
,
ay
,
bx
,
by
,
cx
,
cy
,
dx
,
dy
;
float
dax
,
day
,
dbx
,
dby
;
Curve
()
{
}
void
set
(
float
[]
points
,
int
type
)
{
switch
(
type
)
{
case
8
:
set
(
points
[
0
],
points
[
1
],
points
[
2
],
points
[
3
],
points
[
4
],
points
[
5
],
points
[
6
],
points
[
7
]);
break
;
case
6
:
set
(
points
[
0
],
points
[
1
],
points
[
2
],
points
[
3
],
points
[
4
],
points
[
5
]);
break
;
default
:
throw
new
InternalError
(
"Curves can only be cubic or quadratic"
);
}
}
void
set
(
float
x1
,
float
y1
,
float
x2
,
float
y2
,
float
x3
,
float
y3
,
float
x4
,
float
y4
)
{
ax
=
3
*
(
x2
-
x3
)
+
x4
-
x1
;
ay
=
3
*
(
y2
-
y3
)
+
y4
-
y1
;
bx
=
3
*
(
x1
-
2
*
x2
+
x3
);
by
=
3
*
(
y1
-
2
*
y2
+
y3
);
cx
=
3
*
(
x2
-
x1
);
cy
=
3
*
(
y2
-
y1
);
dx
=
x1
;
dy
=
y1
;
dax
=
3
*
ax
;
day
=
3
*
ay
;
dbx
=
2
*
bx
;
dby
=
2
*
by
;
}
void
set
(
float
x1
,
float
y1
,
float
x2
,
float
y2
,
float
x3
,
float
y3
)
{
ax
=
ay
=
0
f
;
bx
=
x1
-
2
*
x2
+
x3
;
by
=
y1
-
2
*
y2
+
y3
;
cx
=
2
*
(
x2
-
x1
);
cy
=
2
*
(
y2
-
y1
);
dx
=
x1
;
dy
=
y1
;
dax
=
0
;
day
=
0
;
dbx
=
2
*
bx
;
dby
=
2
*
by
;
}
float
xat
(
float
t
)
{
return
t
*
(
t
*
(
t
*
ax
+
bx
)
+
cx
)
+
dx
;
}
float
yat
(
float
t
)
{
return
t
*
(
t
*
(
t
*
ay
+
by
)
+
cy
)
+
dy
;
}
float
dxat
(
float
t
)
{
return
t
*
(
t
*
dax
+
dbx
)
+
cx
;
}
float
dyat
(
float
t
)
{
return
t
*
(
t
*
day
+
dby
)
+
cy
;
}
private
float
ddxat
(
float
t
)
{
return
2
*
dax
*
t
+
dbx
;
}
private
float
ddyat
(
float
t
)
{
return
2
*
day
*
t
+
dby
;
}
int
dxRoots
(
float
[]
roots
,
int
off
)
{
return
Helpers
.
quadraticRoots
(
dax
,
dbx
,
cx
,
roots
,
off
);
}
int
dyRoots
(
float
[]
roots
,
int
off
)
{
return
Helpers
.
quadraticRoots
(
day
,
dby
,
cy
,
roots
,
off
);
}
int
infPoints
(
float
[]
pts
,
int
off
)
{
// inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
// Fortunately, this turns out to be quadratic, so there are at
// most 2 inflection points.
final
float
a
=
dax
*
dby
-
dbx
*
day
;
final
float
b
=
2
*
(
cy
*
dax
-
day
*
cx
);
final
float
c
=
cy
*
dbx
-
cx
*
dby
;
return
Helpers
.
quadraticRoots
(
a
,
b
,
c
,
pts
,
off
);
}
// finds points where the first and second derivative are
// perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
// * is a dot product). Unfortunately, we have to solve a cubic.
private
int
perpendiculardfddf
(
float
[]
pts
,
int
off
,
final
float
err
)
{
assert
pts
.
length
>=
off
+
4
;
// these are the coefficients of g(t):
final
float
a
=
2
*(
dax
*
dax
+
day
*
day
);
final
float
b
=
3
*(
dax
*
dbx
+
day
*
dby
);
final
float
c
=
2
*(
dax
*
cx
+
day
*
cy
)
+
dbx
*
dbx
+
dby
*
dby
;
final
float
d
=
dbx
*
cx
+
dby
*
cy
;
// TODO: We might want to divide the polynomial by a to make the
// coefficients smaller. This won't change the roots.
return
Helpers
.
cubicRootsInAB
(
a
,
b
,
c
,
d
,
pts
,
off
,
err
,
0
f
,
1
f
);
}
// Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
// a variant of the false position algorithm to find the roots. False
// position requires that 2 initial values x0,x1 be given, and that the
// function must have opposite signs at those values. To find such
// values, we need the local extrema of the ROC function, for which we
// need the roots of its derivative; however, it's harder to find the
// roots of the derivative in this case than it is to find the roots
// of the original function. So, we find all points where this curve's
// first and second derivative are perpendicular, and we pretend these
// are our local extrema. There are at most 3 of these, so we will check
// at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
// points, so roc-w can have at least 6 roots. This shouldn't be a
// problem for what we're trying to do (draw a nice looking curve).
int
rootsOfROCMinusW
(
float
[]
roots
,
int
off
,
final
float
w
,
final
float
err
)
{
// no OOB exception, because by now off<=6, and roots.length >= 10
assert
off
<=
6
&&
roots
.
length
>=
10
;
int
ret
=
off
;
int
numPerpdfddf
=
perpendiculardfddf
(
roots
,
off
,
err
);
float
t0
=
0
,
ft0
=
ROCsq
(
t0
)
-
w
*
w
;
roots
[
off
+
numPerpdfddf
]
=
1
f
;
// always check interval end points
numPerpdfddf
++;
for
(
int
i
=
off
;
i
<
off
+
numPerpdfddf
;
i
++)
{
float
t1
=
roots
[
i
],
ft1
=
ROCsq
(
t1
)
-
w
*
w
;
if
(
ft0
==
0
f
)
{
roots
[
ret
++]
=
t0
;
}
else
if
(
ft1
*
ft0
<
0
f
)
{
// have opposite signs
// (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
// ROC(t) >= 0 for all t.
roots
[
ret
++]
=
falsePositionROCsqMinusX
(
t0
,
t1
,
w
*
w
,
err
);
}
t0
=
t1
;
ft0
=
ft1
;
}
return
ret
-
off
;
}
private
static
float
eliminateInf
(
float
x
)
{
return
(
x
==
Float
.
POSITIVE_INFINITY
?
Float
.
MAX_VALUE
:
(
x
==
Float
.
NEGATIVE_INFINITY
?
Float
.
MIN_VALUE
:
x
));
}
// A slight modification of the false position algorithm on wikipedia.
// This only works for the ROCsq-x functions. It might be nice to have
// the function as an argument, but that would be awkward in java6.
// It is something to consider for java7, depending on how closures
// and function objects turn out. Same goes for the newton's method
// algorithm in Helpers.java
private
float
falsePositionROCsqMinusX
(
float
x0
,
float
x1
,
final
float
x
,
final
float
err
)
{
final
int
iterLimit
=
100
;
int
side
=
0
;
float
t
=
x1
,
ft
=
eliminateInf
(
ROCsq
(
t
)
-
x
);
float
s
=
x0
,
fs
=
eliminateInf
(
ROCsq
(
s
)
-
x
);
float
r
=
s
,
fr
;
for
(
int
i
=
0
;
i
<
iterLimit
&&
Math
.
abs
(
t
-
s
)
>
err
*
Math
.
abs
(
t
+
s
);
i
++)
{
r
=
(
fs
*
t
-
ft
*
s
)
/
(
fs
-
ft
);
fr
=
ROCsq
(
r
)
-
x
;
if
(
fr
*
ft
>
0
)
{
// have the same sign
ft
=
fr
;
t
=
r
;
if
(
side
<
0
)
{
fs
/=
(
1
<<
(-
side
));
side
--;
}
else
{
side
=
-
1
;
}
}
else
if
(
fr
*
fs
>
0
)
{
fs
=
fr
;
s
=
r
;
if
(
side
>
0
)
{
ft
/=
(
1
<<
side
);
side
++;
}
else
{
side
=
1
;
}
}
else
{
break
;
}
}
return
r
;
}
// returns the radius of curvature squared at t of this curve
// see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
private
float
ROCsq
(
final
float
t
)
{
final
float
dx
=
dxat
(
t
);
final
float
dy
=
dyat
(
t
);
final
float
ddx
=
ddxat
(
t
);
final
float
ddy
=
ddyat
(
t
);
final
float
dx2dy2
=
dx
*
dx
+
dy
*
dy
;
final
float
ddx2ddy2
=
ddx
*
ddx
+
ddy
*
ddy
;
final
float
ddxdxddydy
=
ddx
*
dx
+
ddy
*
dy
;
float
ret
=
((
dx2dy2
*
dx2dy2
)
/
(
dx2dy2
*
ddx2ddy2
-
ddxdxddydy
*
ddxdxddydy
))*
dx2dy2
;
return
ret
;
}
// curve to be broken should be in pts[0]
// this will change the contents of both pts and Ts
// TODO: There's no reason for Ts to be an array. All we need is a sequence
// of t values at which to subdivide. An array statisfies this condition,
// but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.
// Doing this will also make dashing easier, since we could easily make
// LengthIterator an Iterator<Float> and feed it to this function to simplify
// the loop in Dasher.somethingTo.
static
Iterator
<
float
[]>
breakPtsAtTs
(
final
float
[][]
pts
,
final
int
type
,
final
float
[]
Ts
,
final
int
numTs
)
{
assert
pts
.
length
>=
2
&&
pts
[
0
].
length
>=
8
&&
numTs
<=
Ts
.
length
;
return
new
Iterator
<
float
[]>()
{
int
nextIdx
=
0
;
int
nextCurveIdx
=
0
;
float
prevT
=
0
;
@Override
public
boolean
hasNext
()
{
return
nextCurveIdx
<
numTs
+
1
;
}
@Override
public
float
[]
next
()
{
float
[]
ret
;
if
(
nextCurveIdx
<
numTs
)
{
float
curT
=
Ts
[
nextCurveIdx
];
float
splitT
=
(
curT
-
prevT
)
/
(
1
-
prevT
);
Helpers
.
subdivideAt
(
splitT
,
pts
[
nextIdx
],
0
,
pts
[
nextIdx
],
0
,
pts
[
1
-
nextIdx
],
0
,
type
);
updateTs
(
Ts
,
Ts
[
nextCurveIdx
],
nextCurveIdx
+
1
,
numTs
-
nextCurveIdx
-
1
);
ret
=
pts
[
nextIdx
];
nextIdx
=
1
-
nextIdx
;
}
else
{
ret
=
pts
[
nextIdx
];
}
nextCurveIdx
++;
return
ret
;
}
@Override
public
void
remove
()
{}
};
}
// precondition: ts[off]...ts[off+len-1] must all be greater than t.
private
static
void
updateTs
(
float
[]
ts
,
final
float
t
,
final
int
off
,
final
int
len
)
{
for
(
int
i
=
off
;
i
<
off
+
len
;
i
++)
{
ts
[
i
]
=
(
ts
[
i
]
-
t
)
/
(
1
-
t
);
}
}
}
src/share/classes/sun/java2d/pisces/Dasher.java
浏览文件 @
273af63e
...
...
@@ -25,6 +25,8 @@
package
sun.java2d.pisces
;
import
sun.awt.geom.PathConsumer2D
;
/**
* The <code>Dasher</code> class takes a series of linear commands
* (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
...
...
@@ -36,18 +38,16 @@ package sun.java2d.pisces;
* semantics are unclear.
*
*/
public
class
Dasher
implements
LineSink
{
private
final
LineSink
output
;
public
class
Dasher
implements
sun
.
awt
.
geom
.
PathConsumer2D
{
private
final
PathConsumer2D
out
;
private
final
float
[]
dash
;
private
final
float
startPhase
;
private
final
boolean
startDashOn
;
private
final
int
startIdx
;
private
final
float
m00
,
m10
,
m01
,
m11
;
private
final
float
det
;
private
boolean
firstDashOn
;
private
boolean
starting
;
private
boolean
needsMoveTo
;
private
int
idx
;
private
boolean
dashOn
;
...
...
@@ -55,28 +55,23 @@ public class Dasher implements LineSink {
private
float
sx
,
sy
;
private
float
x0
,
y0
;
private
float
sx1
,
sy1
;
// temporary storage for the current curve
private
float
[]
curCurvepts
;
/**
* Constructs a <code>Dasher</code>.
*
* @param output an output <code>LineSink</code>.
* @param dash an array of <code>int</code>s containing the dash pattern
* @param phase an <code>int</code> containing the dash phase
* @param transform a <code>Transform4</code> object indicating
* the transform that has been previously applied to all incoming
* coordinates. This is required in order to compute dash lengths
* properly.
* @param out an output <code>PathConsumer2D</code>.
* @param dash an array of <code>float</code>s containing the dash pattern
* @param phase a <code>float</code> containing the dash phase
*/
public
Dasher
(
LineSink
output
,
float
[]
dash
,
float
phase
,
float
a00
,
float
a01
,
float
a10
,
float
a11
)
{
public
Dasher
(
PathConsumer2D
out
,
float
[]
dash
,
float
phase
)
{
if
(
phase
<
0
)
{
throw
new
IllegalArgumentException
(
"phase < 0 !"
);
}
this
.
out
put
=
outp
ut
;
this
.
out
=
o
ut
;
// Normalize so 0 <= phase < dash[0]
int
idx
=
0
;
...
...
@@ -92,16 +87,19 @@ public class Dasher implements LineSink {
this
.
startPhase
=
this
.
phase
=
phase
;
this
.
startDashOn
=
dashOn
;
this
.
startIdx
=
idx
;
this
.
starting
=
true
;
m00
=
a00
;
m01
=
a01
;
m10
=
a10
;
m11
=
a11
;
det
=
m00
*
m11
-
m01
*
m10
;
// we need curCurvepts to be able to contain 2 curves because when
// dashing curves, we need to subdivide it
curCurvepts
=
new
float
[
8
*
2
];
}
public
void
moveTo
(
float
x0
,
float
y0
)
{
output
.
moveTo
(
x0
,
y0
);
if
(
firstSegidx
>
0
)
{
out
.
moveTo
(
sx
,
sy
);
emitFirstSegments
();
}
needsMoveTo
=
true
;
this
.
idx
=
startIdx
;
this
.
dashOn
=
this
.
startDashOn
;
this
.
phase
=
this
.
startPhase
;
...
...
@@ -110,104 +108,398 @@ public class Dasher implements LineSink {
this
.
starting
=
true
;
}
public
void
lineJoin
()
{
output
.
lineJoin
();
private
void
emitSeg
(
float
[]
buf
,
int
off
,
int
type
)
{
switch
(
type
)
{
case
8
:
out
.
curveTo
(
buf
[
off
+
0
],
buf
[
off
+
1
],
buf
[
off
+
2
],
buf
[
off
+
3
],
buf
[
off
+
4
],
buf
[
off
+
5
]);
break
;
case
6
:
out
.
quadTo
(
buf
[
off
+
0
],
buf
[
off
+
1
],
buf
[
off
+
2
],
buf
[
off
+
3
]);
break
;
case
4
:
out
.
lineTo
(
buf
[
off
],
buf
[
off
+
1
]);
}
}
private
void
emitFirstSegments
()
{
for
(
int
i
=
0
;
i
<
firstSegidx
;
)
{
emitSeg
(
firstSegmentsBuffer
,
i
+
1
,
(
int
)
firstSegmentsBuffer
[
i
]);
i
+=
(((
int
)
firstSegmentsBuffer
[
i
])
-
1
);
}
firstSegidx
=
0
;
}
private
void
goTo
(
float
x1
,
float
y1
)
{
// We don't emit the first dash right away. If we did, caps would be
// drawn on it, but we need joins to be drawn if there's a closePath()
// So, we store the path elements that make up the first dash in the
// buffer below.
private
float
[]
firstSegmentsBuffer
=
new
float
[
7
];
private
int
firstSegidx
=
0
;
// precondition: pts must be in relative coordinates (relative to x0,y0)
// fullCurve is true iff the curve in pts has not been split.
private
void
goTo
(
float
[]
pts
,
int
off
,
final
int
type
)
{
float
x
=
pts
[
off
+
type
-
4
];
float
y
=
pts
[
off
+
type
-
3
];
if
(
dashOn
)
{
if
(
starting
)
{
this
.
sx1
=
x1
;
this
.
sy1
=
y1
;
firstDashOn
=
true
;
starting
=
false
;
firstSegmentsBuffer
=
Helpers
.
widenArray
(
firstSegmentsBuffer
,
firstSegidx
,
type
-
2
);
firstSegmentsBuffer
[
firstSegidx
++]
=
type
;
System
.
arraycopy
(
pts
,
off
,
firstSegmentsBuffer
,
firstSegidx
,
type
-
2
);
firstSegidx
+=
type
-
2
;
}
else
{
if
(
needsMoveTo
)
{
out
.
moveTo
(
x0
,
y0
);
needsMoveTo
=
false
;
}
emitSeg
(
pts
,
off
,
type
);
}
output
.
lineTo
(
x1
,
y1
);
}
else
{
if
(
starting
)
{
firstDashOn
=
false
;
starting
=
false
;
}
output
.
moveTo
(
x1
,
y1
);
starting
=
false
;
needsMoveTo
=
true
;
}
this
.
x0
=
x
1
;
this
.
y0
=
y
1
;
this
.
x0
=
x
;
this
.
y0
=
y
;
}
public
void
lineTo
(
float
x1
,
float
y1
)
{
// The widened line is squished to a 0 width one, so no drawing is done
if
(
det
==
0
)
{
goTo
(
x1
,
y1
);
return
;
}
float
dx
=
x1
-
x0
;
float
dy
=
y1
-
y0
;
float
len
=
(
float
)
Math
.
hypot
(
dx
,
dy
);
// Compute segment length in the untransformed
// coordinate system
float
la
=
(
dy
*
m00
-
dx
*
m10
)/
det
;
float
lb
=
(
dy
*
m01
-
dx
*
m11
)/
det
;
float
origLen
=
(
float
)
Math
.
hypot
(
la
,
lb
);
if
(
origLen
==
0
)
{
// Let the output LineSink deal with cases where dx, dy are 0.
goTo
(
x1
,
y1
);
if
(
len
==
0
)
{
return
;
}
// The scaling factors needed to get the dx and dy of the
// transformed dash segments.
float
cx
=
dx
/
origL
en
;
float
cy
=
dy
/
origL
en
;
float
cx
=
dx
/
l
en
;
float
cy
=
dy
/
l
en
;
while
(
true
)
{
float
leftInThisDashSegment
=
dash
[
idx
]
-
phase
;
if
(
origLen
<
leftInThisDashSegment
)
{
goTo
(
x1
,
y1
);
if
(
len
<=
leftInThisDashSegment
)
{
curCurvepts
[
0
]
=
x1
;
curCurvepts
[
1
]
=
y1
;
goTo
(
curCurvepts
,
0
,
4
);
// Advance phase within current dash segment
phase
+=
origLen
;
return
;
}
else
if
(
origLen
==
leftInThisDashSegment
)
{
goTo
(
x1
,
y1
);
phase
=
0
f
;
idx
=
(
idx
+
1
)
%
dash
.
length
;
dashOn
=
!
dashOn
;
phase
+=
len
;
if
(
len
==
leftInThisDashSegment
)
{
phase
=
0
f
;
idx
=
(
idx
+
1
)
%
dash
.
length
;
dashOn
=
!
dashOn
;
}
return
;
}
float
dashx
,
dashy
;
float
dashdx
=
dash
[
idx
]
*
cx
;
float
dashdy
=
dash
[
idx
]
*
cy
;
if
(
phase
==
0
)
{
dashx
=
x0
+
dashdx
;
dashy
=
y0
+
dashdy
;
curCurvepts
[
0
]
=
x0
+
dashdx
;
curCurvepts
[
1
]
=
y0
+
dashdy
;
}
else
{
float
p
=
(
leftInThisDashSegment
)
/
dash
[
idx
];
dashx
=
x0
+
p
*
dashdx
;
dashy
=
y0
+
p
*
dashdy
;
float
p
=
leftInThisDashSegment
/
dash
[
idx
];
curCurvepts
[
0
]
=
x0
+
p
*
dashdx
;
curCurvepts
[
1
]
=
y0
+
p
*
dashdy
;
}
goTo
(
dashx
,
dashy
);
goTo
(
curCurvepts
,
0
,
4
);
len
-=
leftInThisDashSegment
;
// Advance to next dash segment
idx
=
(
idx
+
1
)
%
dash
.
length
;
dashOn
=
!
dashOn
;
phase
=
0
;
}
}
private
LengthIterator
li
=
null
;
// preconditions: curCurvepts must be an array of length at least 2 * type,
// that contains the curve we want to dash in the first type elements
private
void
somethingTo
(
int
type
)
{
if
(
pointCurve
(
curCurvepts
,
type
))
{
return
;
}
if
(
li
==
null
)
{
li
=
new
LengthIterator
(
4
,
0.0001f
);
}
li
.
initializeIterationOnCurve
(
curCurvepts
,
type
);
origLen
-=
(
dash
[
idx
]
-
phase
);
int
curCurveoff
=
0
;
// initially the current curve is at curCurvepts[0...type]
float
lastSplitT
=
0
;
float
t
=
0
;
float
leftInThisDashSegment
=
dash
[
idx
]
-
phase
;
while
((
t
=
li
.
next
(
leftInThisDashSegment
))
<
1
)
{
if
(
t
!=
0
)
{
Helpers
.
subdivideAt
((
t
-
lastSplitT
)
/
(
1
-
lastSplitT
),
curCurvepts
,
curCurveoff
,
curCurvepts
,
0
,
curCurvepts
,
type
,
type
);
lastSplitT
=
t
;
goTo
(
curCurvepts
,
2
,
type
);
curCurveoff
=
type
;
}
// Advance to next dash segment
idx
=
(
idx
+
1
)
%
dash
.
length
;
dashOn
=
!
dashOn
;
phase
=
0
;
leftInThisDashSegment
=
dash
[
idx
];
}
goTo
(
curCurvepts
,
curCurveoff
+
2
,
type
);
phase
+=
li
.
lastSegLen
();
if
(
phase
>=
dash
[
idx
])
{
phase
=
0
f
;
idx
=
(
idx
+
1
)
%
dash
.
length
;
dashOn
=
!
dashOn
;
}
}
private
static
boolean
pointCurve
(
float
[]
curve
,
int
type
)
{
for
(
int
i
=
2
;
i
<
type
;
i
++)
{
if
(
curve
[
i
]
!=
curve
[
i
-
2
])
{
return
false
;
}
}
return
true
;
}
// Objects of this class are used to iterate through curves. They return
// t values where the left side of the curve has a specified length.
// It does this by subdividing the input curve until a certain error
// condition has been met. A recursive subdivision procedure would
// return as many as 1<<limit curves, but this is an iterator and we
// don't need all the curves all at once, so what we carry out a
// lazy inorder traversal of the recursion tree (meaning we only move
// through the tree when we need the next subdivided curve). This saves
// us a lot of memory because at any one time we only need to store
// limit+1 curves - one for each level of the tree + 1.
// NOTE: the way we do things here is not enough to traverse a general
// tree; however, the trees we are interested in have the property that
// every non leaf node has exactly 2 children
private
static
class
LengthIterator
{
private
enum
Side
{
LEFT
,
RIGHT
};
// Holds the curves at various levels of the recursion. The root
// (i.e. the original curve) is at recCurveStack[0] (but then it
// gets subdivided, the left half is put at 1, so most of the time
// only the right half of the original curve is at 0)
private
float
[][]
recCurveStack
;
// sides[i] indicates whether the node at level i+1 in the path from
// the root to the current leaf is a left or right child of its parent.
private
Side
[]
sides
;
private
int
curveType
;
private
final
int
limit
;
private
final
float
ERR
;
private
final
float
minTincrement
;
// lastT and nextT delimit the current leaf.
private
float
nextT
;
private
float
lenAtNextT
;
private
float
lastT
;
private
float
lenAtLastT
;
private
float
lenAtLastSplit
;
private
float
lastSegLen
;
// the current level in the recursion tree. 0 is the root. limit
// is the deepest possible leaf.
private
int
recLevel
;
private
boolean
done
;
public
LengthIterator
(
int
reclimit
,
float
err
)
{
this
.
limit
=
reclimit
;
this
.
minTincrement
=
1
f
/
(
1
<<
limit
);
this
.
ERR
=
err
;
this
.
recCurveStack
=
new
float
[
reclimit
+
1
][
8
];
this
.
sides
=
new
Side
[
reclimit
];
// if any methods are called without first initializing this object on
// a curve, we want it to fail ASAP.
this
.
nextT
=
Float
.
MAX_VALUE
;
this
.
lenAtNextT
=
Float
.
MAX_VALUE
;
this
.
lenAtLastSplit
=
Float
.
MIN_VALUE
;
this
.
recLevel
=
Integer
.
MIN_VALUE
;
this
.
lastSegLen
=
Float
.
MAX_VALUE
;
this
.
done
=
true
;
}
public
void
initializeIterationOnCurve
(
float
[]
pts
,
int
type
)
{
System
.
arraycopy
(
pts
,
0
,
recCurveStack
[
0
],
0
,
type
);
this
.
curveType
=
type
;
this
.
recLevel
=
0
;
this
.
lastT
=
0
;
this
.
lenAtLastT
=
0
;
this
.
nextT
=
0
;
this
.
lenAtNextT
=
0
;
goLeft
();
// initializes nextT and lenAtNextT properly
this
.
lenAtLastSplit
=
0
;
if
(
recLevel
>
0
)
{
this
.
sides
[
0
]
=
Side
.
LEFT
;
this
.
done
=
false
;
}
else
{
// the root of the tree is a leaf so we're done.
this
.
sides
[
0
]
=
Side
.
RIGHT
;
this
.
done
=
true
;
}
this
.
lastSegLen
=
0
;
}
// returns the t value where the remaining curve should be split in
// order for the left subdivided curve to have length len. If len
// is >= than the length of the uniterated curve, it returns 1.
public
float
next
(
float
len
)
{
float
targetLength
=
lenAtLastSplit
+
len
;
while
(
lenAtNextT
<
targetLength
)
{
if
(
done
)
{
lastSegLen
=
lenAtNextT
-
lenAtLastSplit
;
return
1
;
}
goToNextLeaf
();
}
lenAtLastSplit
=
targetLength
;
float
t
=
binSearchForLen
(
lenAtLastSplit
-
lenAtLastT
,
recCurveStack
[
recLevel
],
curveType
,
lenAtNextT
-
lenAtLastT
,
ERR
);
// t is relative to the current leaf, so we must make it a valid parameter
// of the original curve.
t
=
t
*
(
nextT
-
lastT
)
+
lastT
;
if
(
t
>=
1
)
{
t
=
1
;
done
=
true
;
}
// even if done = true, if we're here, that means targetLength
// is equal to, or very, very close to the total length of the
// curve, so lastSegLen won't be too high. In cases where len
// overshoots the curve, this method will exit in the while
// loop, and lastSegLen will still be set to the right value.
lastSegLen
=
len
;
return
t
;
}
public
float
lastSegLen
()
{
return
lastSegLen
;
}
// Returns t such that if leaf is subdivided at t the left
// curve will have length len. leafLen must be the length of leaf.
private
static
Curve
bsc
=
new
Curve
();
private
static
float
binSearchForLen
(
float
len
,
float
[]
leaf
,
int
type
,
float
leafLen
,
float
err
)
{
assert
len
<=
leafLen
;
bsc
.
set
(
leaf
,
type
);
float
errBound
=
err
*
len
;
float
left
=
0
,
right
=
1
;
while
(
left
<
right
)
{
float
m
=
(
left
+
right
)
/
2
;
if
(
m
==
left
||
m
==
right
)
{
return
m
;
}
float
x
=
bsc
.
xat
(
m
);
float
y
=
bsc
.
yat
(
m
);
float
leftLen
=
Helpers
.
linelen
(
leaf
[
0
],
leaf
[
1
],
x
,
y
);
if
(
Math
.
abs
(
leftLen
-
len
)
<
errBound
)
{
return
m
;
}
if
(
leftLen
<
len
)
{
left
=
m
;
}
else
{
right
=
m
;
}
}
return
left
;
}
// go to the next leaf (in an inorder traversal) in the recursion tree
// preconditions: must be on a leaf, and that leaf must not be the root.
private
void
goToNextLeaf
()
{
// We must go to the first ancestor node that has an unvisited
// right child.
recLevel
--;
while
(
sides
[
recLevel
]
==
Side
.
RIGHT
)
{
if
(
recLevel
==
0
)
{
done
=
true
;
return
;
}
recLevel
--;
}
sides
[
recLevel
]
=
Side
.
RIGHT
;
System
.
arraycopy
(
recCurveStack
[
recLevel
],
0
,
recCurveStack
[
recLevel
+
1
],
0
,
curveType
);
recLevel
++;
goLeft
();
}
// go to the leftmost node from the current node. Return its length.
private
void
goLeft
()
{
float
len
=
onLeaf
();
if
(
len
>=
0
)
{
lastT
=
nextT
;
lenAtLastT
=
lenAtNextT
;
nextT
+=
(
1
<<
(
limit
-
recLevel
))
*
minTincrement
;
lenAtNextT
+=
len
;
}
else
{
Helpers
.
subdivide
(
recCurveStack
[
recLevel
],
0
,
recCurveStack
[
recLevel
+
1
],
0
,
recCurveStack
[
recLevel
],
0
,
curveType
);
sides
[
recLevel
]
=
Side
.
LEFT
;
recLevel
++;
goLeft
();
}
}
// this is a bit of a hack. It returns -1 if we're not on a leaf, and
// the length of the leaf if we are on a leaf.
private
float
onLeaf
()
{
float
polylen
=
Helpers
.
polyLineLength
(
recCurveStack
[
recLevel
],
0
,
curveType
);
float
linelen
=
Helpers
.
linelen
(
recCurveStack
[
recLevel
][
0
],
recCurveStack
[
recLevel
][
1
],
recCurveStack
[
recLevel
][
curveType
-
2
],
recCurveStack
[
recLevel
][
curveType
-
1
]);
return
(
polylen
-
linelen
<
ERR
||
recLevel
==
limit
)
?
(
polylen
+
linelen
)/
2
:
-
1
;
}
}
@Override
public
void
curveTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
,
float
x3
,
float
y3
)
{
curCurvepts
[
0
]
=
x0
;
curCurvepts
[
1
]
=
y0
;
curCurvepts
[
2
]
=
x1
;
curCurvepts
[
3
]
=
y1
;
curCurvepts
[
4
]
=
x2
;
curCurvepts
[
5
]
=
y2
;
curCurvepts
[
6
]
=
x3
;
curCurvepts
[
7
]
=
y3
;
somethingTo
(
8
);
}
public
void
close
()
{
@Override
public
void
quadTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
)
{
curCurvepts
[
0
]
=
x0
;
curCurvepts
[
1
]
=
y0
;
curCurvepts
[
2
]
=
x1
;
curCurvepts
[
3
]
=
y1
;
curCurvepts
[
4
]
=
x2
;
curCurvepts
[
5
]
=
y2
;
somethingTo
(
6
);
}
public
void
closePath
()
{
lineTo
(
sx
,
sy
);
if
(
firstDashOn
)
{
output
.
lineTo
(
sx1
,
sy1
);
if
(
firstSegidx
>
0
)
{
if
(!
dashOn
||
needsMoveTo
)
{
out
.
moveTo
(
sx
,
sy
);
}
emitFirstSegments
();
}
moveTo
(
sx
,
sy
);
}
public
void
end
()
{
output
.
end
();
public
void
pathDone
()
{
if
(
firstSegidx
>
0
)
{
out
.
moveTo
(
sx
,
sy
);
emitFirstSegments
();
}
out
.
pathDone
();
}
@Override
public
long
getNativeConsumer
()
{
throw
new
InternalError
(
"Dasher does not use a native consumer"
);
}
}
src/share/classes/sun/java2d/pisces/Helpers.java
0 → 100644
浏览文件 @
273af63e
/*
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package
sun.java2d.pisces
;
import
java.util.Arrays
;
final
class
Helpers
{
private
Helpers
()
{
throw
new
Error
(
"This is a non instantiable class"
);
}
static
boolean
within
(
final
float
x
,
final
float
y
,
final
float
err
)
{
final
float
d
=
y
-
x
;
return
(
d
<=
err
&&
d
>=
-
err
);
}
static
boolean
within
(
final
double
x
,
final
double
y
,
final
double
err
)
{
final
double
d
=
y
-
x
;
return
(
d
<=
err
&&
d
>=
-
err
);
}
static
int
quadraticRoots
(
final
float
a
,
final
float
b
,
final
float
c
,
float
[]
zeroes
,
final
int
off
)
{
int
ret
=
off
;
float
t
;
if
(
a
!=
0
f
)
{
final
float
dis
=
b
*
b
-
4
*
a
*
c
;
if
(
dis
>
0
)
{
final
float
sqrtDis
=
(
float
)
Math
.
sqrt
(
dis
);
// depending on the sign of b we use a slightly different
// algorithm than the traditional one to find one of the roots
// so we can avoid adding numbers of different signs (which
// might result in loss of precision).
if
(
b
>=
0
)
{
zeroes
[
ret
++]
=
(
2
*
c
)
/
(-
b
-
sqrtDis
);
zeroes
[
ret
++]
=
(-
b
-
sqrtDis
)
/
(
2
*
a
);
}
else
{
zeroes
[
ret
++]
=
(-
b
+
sqrtDis
)
/
(
2
*
a
);
zeroes
[
ret
++]
=
(
2
*
c
)
/
(-
b
+
sqrtDis
);
}
}
else
if
(
dis
==
0
f
)
{
t
=
(-
b
)
/
(
2
*
a
);
zeroes
[
ret
++]
=
t
;
}
}
else
{
if
(
b
!=
0
f
)
{
t
=
(-
c
)
/
b
;
zeroes
[
ret
++]
=
t
;
}
}
return
ret
-
off
;
}
// find the roots of g(t) = a*t^3 + b*t^2 + c*t + d in [A,B)
// We will not use Cardano's method, since it is complicated and
// involves too many square and cubic roots. We will use Newton's method.
// TODO: this should probably return ALL roots. Then the user can do
// his own filtering of roots outside [A,B).
static
int
cubicRootsInAB
(
final
float
a
,
final
float
b
,
final
float
c
,
final
float
d
,
float
[]
pts
,
final
int
off
,
final
float
E
,
final
float
A
,
final
float
B
)
{
if
(
a
==
0
)
{
return
quadraticRoots
(
b
,
c
,
d
,
pts
,
off
);
}
// the coefficients of g'(t). no dc variable because dc=c
// we use these to get the critical points of g(t), which
// we then use to chose starting points for Newton's method. These
// should be very close to the actual roots.
final
float
da
=
3
*
a
;
final
float
db
=
2
*
b
;
int
numCritPts
=
quadraticRoots
(
da
,
db
,
c
,
pts
,
off
+
1
);
numCritPts
=
filterOutNotInAB
(
pts
,
off
+
1
,
numCritPts
,
A
,
B
)
-
off
-
1
;
// need them sorted.
if
(
numCritPts
==
2
&&
pts
[
off
+
1
]
>
pts
[
off
+
2
])
{
float
tmp
=
pts
[
off
+
1
];
pts
[
off
+
1
]
=
pts
[
off
+
2
];
pts
[
off
+
2
]
=
tmp
;
}
int
ret
=
off
;
// we don't actually care much about the extrema themselves. We
// only use them to ensure that g(t) is monotonic in each
// interval [pts[i],pts[i+1] (for i in off...off+numCritPts+1).
// This will allow us to determine intervals containing exactly
// one root.
// The end points of the interval are always local extrema.
pts
[
off
]
=
A
;
pts
[
off
+
numCritPts
+
1
]
=
B
;
numCritPts
+=
2
;
float
x0
=
pts
[
off
],
fx0
=
evalCubic
(
a
,
b
,
c
,
d
,
x0
);
for
(
int
i
=
off
;
i
<
off
+
numCritPts
-
1
;
i
++)
{
float
x1
=
pts
[
i
+
1
],
fx1
=
evalCubic
(
a
,
b
,
c
,
d
,
x1
);
if
(
fx0
==
0
f
)
{
pts
[
ret
++]
=
x0
;
}
else
if
(
fx1
*
fx0
<
0
f
)
{
// have opposite signs
pts
[
ret
++]
=
CubicNewton
(
a
,
b
,
c
,
d
,
x0
+
fx0
*
(
x1
-
x0
)
/
(
fx0
-
fx1
),
E
);
}
x0
=
x1
;
fx0
=
fx1
;
}
return
ret
-
off
;
}
// precondition: the polynomial to be evaluated must not be 0 at x0.
static
float
CubicNewton
(
final
float
a
,
final
float
b
,
final
float
c
,
final
float
d
,
float
x0
,
final
float
err
)
{
// considering how this function is used, 10 should be more than enough
final
int
itlimit
=
10
;
float
fx0
=
evalCubic
(
a
,
b
,
c
,
d
,
x0
);
float
x1
;
int
count
=
0
;
while
(
true
)
{
x1
=
x0
-
(
fx0
/
evalCubic
(
0
,
3
*
a
,
2
*
b
,
c
,
x0
));
if
(
Math
.
abs
(
x1
-
x0
)
<
err
*
Math
.
abs
(
x1
+
x0
)
||
count
==
itlimit
)
{
break
;
}
x0
=
x1
;
fx0
=
evalCubic
(
a
,
b
,
c
,
d
,
x0
);
count
++;
}
return
x1
;
}
// fills the input array with numbers 0, INC, 2*INC, ...
static
void
fillWithIdxes
(
final
float
[]
data
,
final
int
[]
idxes
)
{
if
(
idxes
.
length
>
0
)
{
idxes
[
0
]
=
0
;
for
(
int
i
=
1
;
i
<
idxes
.
length
;
i
++)
{
idxes
[
i
]
=
idxes
[
i
-
1
]
+
(
int
)
data
[
idxes
[
i
-
1
]];
}
}
}
static
void
fillWithIdxes
(
final
int
[]
idxes
,
final
int
inc
)
{
if
(
idxes
.
length
>
0
)
{
idxes
[
0
]
=
0
;
for
(
int
i
=
1
;
i
<
idxes
.
length
;
i
++)
{
idxes
[
i
]
=
idxes
[
i
-
1
]
+
inc
;
}
}
}
// These use a hardcoded factor of 2 for increasing sizes. Perhaps this
// should be provided as an argument.
static
float
[]
widenArray
(
float
[]
in
,
final
int
cursize
,
final
int
numToAdd
)
{
if
(
in
==
null
)
{
return
new
float
[
5
*
numToAdd
];
}
if
(
in
.
length
>=
cursize
+
numToAdd
)
{
return
in
;
}
return
Arrays
.
copyOf
(
in
,
2
*
(
cursize
+
numToAdd
));
}
static
int
[]
widenArray
(
int
[]
in
,
final
int
cursize
,
final
int
numToAdd
)
{
if
(
in
.
length
>=
cursize
+
numToAdd
)
{
return
in
;
}
return
Arrays
.
copyOf
(
in
,
2
*
(
cursize
+
numToAdd
));
}
static
float
evalCubic
(
final
float
a
,
final
float
b
,
final
float
c
,
final
float
d
,
final
float
t
)
{
return
t
*
(
t
*
(
t
*
a
+
b
)
+
c
)
+
d
;
}
static
float
evalQuad
(
final
float
a
,
final
float
b
,
final
float
c
,
final
float
t
)
{
return
t
*
(
t
*
a
+
b
)
+
c
;
}
// returns the index 1 past the last valid element remaining after filtering
static
int
filterOutNotInAB
(
float
[]
nums
,
final
int
off
,
final
int
len
,
final
float
a
,
final
float
b
)
{
int
ret
=
off
;
for
(
int
i
=
off
;
i
<
off
+
len
;
i
++)
{
if
(
nums
[
i
]
>
a
&&
nums
[
i
]
<
b
)
{
nums
[
ret
++]
=
nums
[
i
];
}
}
return
ret
;
}
static
float
polyLineLength
(
float
[]
poly
,
final
int
off
,
final
int
nCoords
)
{
assert
nCoords
%
2
==
0
&&
poly
.
length
>=
off
+
nCoords
:
""
;
float
acc
=
0
;
for
(
int
i
=
off
+
2
;
i
<
off
+
nCoords
;
i
+=
2
)
{
acc
+=
linelen
(
poly
[
i
],
poly
[
i
+
1
],
poly
[
i
-
2
],
poly
[
i
-
1
]);
}
return
acc
;
}
static
float
linelen
(
float
x1
,
float
y1
,
float
x2
,
float
y2
)
{
return
(
float
)
Math
.
hypot
(
x2
-
x1
,
y2
-
y1
);
}
static
void
subdivide
(
float
[]
src
,
int
srcoff
,
float
[]
left
,
int
leftoff
,
float
[]
right
,
int
rightoff
,
int
type
)
{
switch
(
type
)
{
case
6
:
Helpers
.
subdivideQuad
(
src
,
srcoff
,
left
,
leftoff
,
right
,
rightoff
);
break
;
case
8
:
Helpers
.
subdivideCubic
(
src
,
srcoff
,
left
,
leftoff
,
right
,
rightoff
);
break
;
default
:
throw
new
InternalError
(
"Unsupported curve type"
);
}
}
static
void
isort
(
float
[]
a
,
int
off
,
int
len
)
{
for
(
int
i
=
off
+
1
;
i
<
off
+
len
;
i
++)
{
float
ai
=
a
[
i
];
int
j
=
i
-
1
;
for
(;
j
>=
off
&&
a
[
j
]
>
ai
;
j
--)
{
a
[
j
+
1
]
=
a
[
j
];
}
a
[
j
+
1
]
=
ai
;
}
}
// Most of these are copied from classes in java.awt.geom because we need
// float versions of these functions, and Line2D, CubicCurve2D,
// QuadCurve2D don't provide them.
/**
* Subdivides the cubic curve specified by the coordinates
* stored in the <code>src</code> array at indices <code>srcoff</code>
* through (<code>srcoff</code> + 7) and stores the
* resulting two subdivided curves into the two result arrays at the
* corresponding indices.
* Either or both of the <code>left</code> and <code>right</code>
* arrays may be <code>null</code> or a reference to the same array
* as the <code>src</code> array.
* Note that the last point in the first subdivided curve is the
* same as the first point in the second subdivided curve. Thus,
* it is possible to pass the same array for <code>left</code>
* and <code>right</code> and to use offsets, such as <code>rightoff</code>
* equals (<code>leftoff</code> + 6), in order
* to avoid allocating extra storage for this common point.
* @param src the array holding the coordinates for the source curve
* @param srcoff the offset into the array of the beginning of the
* the 6 source coordinates
* @param left the array for storing the coordinates for the first
* half of the subdivided curve
* @param leftoff the offset into the array of the beginning of the
* the 6 left coordinates
* @param right the array for storing the coordinates for the second
* half of the subdivided curve
* @param rightoff the offset into the array of the beginning of the
* the 6 right coordinates
* @since 1.7
*/
static
void
subdivideCubic
(
float
src
[],
int
srcoff
,
float
left
[],
int
leftoff
,
float
right
[],
int
rightoff
)
{
float
x1
=
src
[
srcoff
+
0
];
float
y1
=
src
[
srcoff
+
1
];
float
ctrlx1
=
src
[
srcoff
+
2
];
float
ctrly1
=
src
[
srcoff
+
3
];
float
ctrlx2
=
src
[
srcoff
+
4
];
float
ctrly2
=
src
[
srcoff
+
5
];
float
x2
=
src
[
srcoff
+
6
];
float
y2
=
src
[
srcoff
+
7
];
if
(
left
!=
null
)
{
left
[
leftoff
+
0
]
=
x1
;
left
[
leftoff
+
1
]
=
y1
;
}
if
(
right
!=
null
)
{
right
[
rightoff
+
6
]
=
x2
;
right
[
rightoff
+
7
]
=
y2
;
}
x1
=
(
x1
+
ctrlx1
)
/
2.0f
;
y1
=
(
y1
+
ctrly1
)
/
2.0f
;
x2
=
(
x2
+
ctrlx2
)
/
2.0f
;
y2
=
(
y2
+
ctrly2
)
/
2.0f
;
float
centerx
=
(
ctrlx1
+
ctrlx2
)
/
2.0f
;
float
centery
=
(
ctrly1
+
ctrly2
)
/
2.0f
;
ctrlx1
=
(
x1
+
centerx
)
/
2.0f
;
ctrly1
=
(
y1
+
centery
)
/
2.0f
;
ctrlx2
=
(
x2
+
centerx
)
/
2.0f
;
ctrly2
=
(
y2
+
centery
)
/
2.0f
;
centerx
=
(
ctrlx1
+
ctrlx2
)
/
2.0f
;
centery
=
(
ctrly1
+
ctrly2
)
/
2.0f
;
if
(
left
!=
null
)
{
left
[
leftoff
+
2
]
=
x1
;
left
[
leftoff
+
3
]
=
y1
;
left
[
leftoff
+
4
]
=
ctrlx1
;
left
[
leftoff
+
5
]
=
ctrly1
;
left
[
leftoff
+
6
]
=
centerx
;
left
[
leftoff
+
7
]
=
centery
;
}
if
(
right
!=
null
)
{
right
[
rightoff
+
0
]
=
centerx
;
right
[
rightoff
+
1
]
=
centery
;
right
[
rightoff
+
2
]
=
ctrlx2
;
right
[
rightoff
+
3
]
=
ctrly2
;
right
[
rightoff
+
4
]
=
x2
;
right
[
rightoff
+
5
]
=
y2
;
}
}
static
void
subdivideCubicAt
(
float
t
,
float
src
[],
int
srcoff
,
float
left
[],
int
leftoff
,
float
right
[],
int
rightoff
)
{
float
x1
=
src
[
srcoff
+
0
];
float
y1
=
src
[
srcoff
+
1
];
float
ctrlx1
=
src
[
srcoff
+
2
];
float
ctrly1
=
src
[
srcoff
+
3
];
float
ctrlx2
=
src
[
srcoff
+
4
];
float
ctrly2
=
src
[
srcoff
+
5
];
float
x2
=
src
[
srcoff
+
6
];
float
y2
=
src
[
srcoff
+
7
];
if
(
left
!=
null
)
{
left
[
leftoff
+
0
]
=
x1
;
left
[
leftoff
+
1
]
=
y1
;
}
if
(
right
!=
null
)
{
right
[
rightoff
+
6
]
=
x2
;
right
[
rightoff
+
7
]
=
y2
;
}
x1
=
x1
+
t
*
(
ctrlx1
-
x1
);
y1
=
y1
+
t
*
(
ctrly1
-
y1
);
x2
=
ctrlx2
+
t
*
(
x2
-
ctrlx2
);
y2
=
ctrly2
+
t
*
(
y2
-
ctrly2
);
float
centerx
=
ctrlx1
+
t
*
(
ctrlx2
-
ctrlx1
);
float
centery
=
ctrly1
+
t
*
(
ctrly2
-
ctrly1
);
ctrlx1
=
x1
+
t
*
(
centerx
-
x1
);
ctrly1
=
y1
+
t
*
(
centery
-
y1
);
ctrlx2
=
centerx
+
t
*
(
x2
-
centerx
);
ctrly2
=
centery
+
t
*
(
y2
-
centery
);
centerx
=
ctrlx1
+
t
*
(
ctrlx2
-
ctrlx1
);
centery
=
ctrly1
+
t
*
(
ctrly2
-
ctrly1
);
if
(
left
!=
null
)
{
left
[
leftoff
+
2
]
=
x1
;
left
[
leftoff
+
3
]
=
y1
;
left
[
leftoff
+
4
]
=
ctrlx1
;
left
[
leftoff
+
5
]
=
ctrly1
;
left
[
leftoff
+
6
]
=
centerx
;
left
[
leftoff
+
7
]
=
centery
;
}
if
(
right
!=
null
)
{
right
[
rightoff
+
0
]
=
centerx
;
right
[
rightoff
+
1
]
=
centery
;
right
[
rightoff
+
2
]
=
ctrlx2
;
right
[
rightoff
+
3
]
=
ctrly2
;
right
[
rightoff
+
4
]
=
x2
;
right
[
rightoff
+
5
]
=
y2
;
}
}
static
void
subdivideQuad
(
float
src
[],
int
srcoff
,
float
left
[],
int
leftoff
,
float
right
[],
int
rightoff
)
{
float
x1
=
src
[
srcoff
+
0
];
float
y1
=
src
[
srcoff
+
1
];
float
ctrlx
=
src
[
srcoff
+
2
];
float
ctrly
=
src
[
srcoff
+
3
];
float
x2
=
src
[
srcoff
+
4
];
float
y2
=
src
[
srcoff
+
5
];
if
(
left
!=
null
)
{
left
[
leftoff
+
0
]
=
x1
;
left
[
leftoff
+
1
]
=
y1
;
}
if
(
right
!=
null
)
{
right
[
rightoff
+
4
]
=
x2
;
right
[
rightoff
+
5
]
=
y2
;
}
x1
=
(
x1
+
ctrlx
)
/
2.0f
;
y1
=
(
y1
+
ctrly
)
/
2.0f
;
x2
=
(
x2
+
ctrlx
)
/
2.0f
;
y2
=
(
y2
+
ctrly
)
/
2.0f
;
ctrlx
=
(
x1
+
x2
)
/
2.0f
;
ctrly
=
(
y1
+
y2
)
/
2.0f
;
if
(
left
!=
null
)
{
left
[
leftoff
+
2
]
=
x1
;
left
[
leftoff
+
3
]
=
y1
;
left
[
leftoff
+
4
]
=
ctrlx
;
left
[
leftoff
+
5
]
=
ctrly
;
}
if
(
right
!=
null
)
{
right
[
rightoff
+
0
]
=
ctrlx
;
right
[
rightoff
+
1
]
=
ctrly
;
right
[
rightoff
+
2
]
=
x2
;
right
[
rightoff
+
3
]
=
y2
;
}
}
static
void
subdivideQuadAt
(
float
t
,
float
src
[],
int
srcoff
,
float
left
[],
int
leftoff
,
float
right
[],
int
rightoff
)
{
float
x1
=
src
[
srcoff
+
0
];
float
y1
=
src
[
srcoff
+
1
];
float
ctrlx
=
src
[
srcoff
+
2
];
float
ctrly
=
src
[
srcoff
+
3
];
float
x2
=
src
[
srcoff
+
4
];
float
y2
=
src
[
srcoff
+
5
];
if
(
left
!=
null
)
{
left
[
leftoff
+
0
]
=
x1
;
left
[
leftoff
+
1
]
=
y1
;
}
if
(
right
!=
null
)
{
right
[
rightoff
+
4
]
=
x2
;
right
[
rightoff
+
5
]
=
y2
;
}
x1
=
x1
+
t
*
(
ctrlx
-
x1
);
y1
=
y1
+
t
*
(
ctrly
-
y1
);
x2
=
ctrlx
+
t
*
(
x2
-
ctrlx
);
y2
=
ctrly
+
t
*
(
y2
-
ctrly
);
ctrlx
=
x1
+
t
*
(
x2
-
x1
);
ctrly
=
y1
+
t
*
(
y2
-
y1
);
if
(
left
!=
null
)
{
left
[
leftoff
+
2
]
=
x1
;
left
[
leftoff
+
3
]
=
y1
;
left
[
leftoff
+
4
]
=
ctrlx
;
left
[
leftoff
+
5
]
=
ctrly
;
}
if
(
right
!=
null
)
{
right
[
rightoff
+
0
]
=
ctrlx
;
right
[
rightoff
+
1
]
=
ctrly
;
right
[
rightoff
+
2
]
=
x2
;
right
[
rightoff
+
3
]
=
y2
;
}
}
static
void
subdivideAt
(
float
t
,
float
src
[],
int
srcoff
,
float
left
[],
int
leftoff
,
float
right
[],
int
rightoff
,
int
size
)
{
switch
(
size
)
{
case
8
:
subdivideCubicAt
(
t
,
src
,
srcoff
,
left
,
leftoff
,
right
,
rightoff
);
break
;
case
6
:
subdivideQuadAt
(
t
,
src
,
srcoff
,
left
,
leftoff
,
right
,
rightoff
);
break
;
}
}
}
src/share/classes/sun/java2d/pisces/LineSink.java
已删除
100644 → 0
浏览文件 @
7fbb2cf0
/*
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package
sun.java2d.pisces
;
/**
* The <code>LineSink</code> interface accepts a series of line
* drawing commands: <code>moveTo</code>, <code>lineTo</code>,
* <code>close</code> (equivalent to a <code>lineTo</code> command
* with an argument equal to the argument of the last
* <code>moveTo</code> command), and <code>end</code>.
*
* <p> A <code>Flattener</code> may be used to connect a general path
* source to a <code>LineSink</code>.
*
* <p> The <code>Renderer</code> class implements the
* <code>LineSink</code> interface.
*
*/
public
interface
LineSink
{
/**
* Moves the current drawing position to the point <code>(x0,
* y0)</code>.
*
* @param x0 the X coordinate
* @param y0 the Y coordinate
*/
public
void
moveTo
(
float
x0
,
float
y0
);
/**
* Provides a hint that the current segment should be joined to
* the following segment using an explicit miter or round join if
* required.
*
* <p> An application-generated path will generally have no need
* to contain calls to this method; they are typically introduced
* by a <code>Flattener</code> to mark segment divisions that
* appear in its input, and consumed by a <code>Stroker</code>
* that is responsible for emitting the miter or round join
* segments.
*
* <p> Other <code>LineSink</code> classes should simply pass this
* hint to their output sink as needed.
*/
public
void
lineJoin
();
/**
* Draws a line from the current drawing position to the point
* <code>(x1, y1)</code> and sets the current drawing position to
* <code>(x1, y1)</code>.
*
* @param x1 the X coordinate
* @param y1 the Y coordinate
*/
public
void
lineTo
(
float
x1
,
float
y1
);
/**
* Closes the current path by drawing a line from the current
* drawing position to the point specified by the moset recent
* <code>moveTo</code> command.
*/
public
void
close
();
/**
* Ends the current path. It may be necessary to end a path in
* order to allow end caps to be drawn.
*/
public
void
end
();
}
src/share/classes/sun/java2d/pisces/PiscesCache.java
浏览文件 @
273af63e
...
...
@@ -25,6 +25,8 @@
package
sun.java2d.pisces
;
import
java.util.Arrays
;
/**
* An object used to cache pre-rendered complex paths.
*
...
...
@@ -32,115 +34,153 @@ package sun.java2d.pisces;
*/
public
final
class
PiscesCache
{
int
bboxX0
,
bboxY0
,
bboxX1
,
bboxY1
;
final
int
bboxX0
,
bboxY0
,
bboxX1
,
bboxY1
;
// rowAARLE[i] holds the encoding of the pixel row with y = bboxY0+i.
// The format of each of the inner arrays is: rowAARLE[i][0,1] = (x0, n)
// where x0 is the first x in row i with nonzero alpha, and n is the
// number of RLE entries in this row. rowAARLE[i][j,j+1] for j>1 is
// (val,runlen)
final
int
[][]
rowAARLE
;
// RLE encodings are added in increasing y rows and then in increasing
// x inside those rows. Therefore, at any one time there is a well
// defined position (x,y) where a run length is about to be added (or
// the row terminated). x0,y0 is this (x,y)-(bboxX0,bboxY0). They
// are used to get indices into the current tile.
private
int
x0
=
Integer
.
MIN_VALUE
,
y0
=
Integer
.
MIN_VALUE
;
// touchedTile[i][j] is the sum of all the alphas in the tile with
// y=i*TILE_SIZE+bboxY0 and x=j*TILE_SIZE+bboxX0.
private
final
int
[][]
touchedTile
;
static
final
int
TILE_SIZE_LG
=
5
;
static
final
int
TILE_SIZE
=
1
<<
TILE_SIZE_LG
;
// 32
private
static
final
int
INIT_ROW_SIZE
=
8
;
// enough for 3 run lengths
PiscesCache
(
int
minx
,
int
miny
,
int
maxx
,
int
maxy
)
{
assert
maxy
>=
miny
&&
maxx
>=
minx
;
bboxX0
=
minx
;
bboxY0
=
miny
;
bboxX1
=
maxx
+
1
;
bboxY1
=
maxy
+
1
;
// we could just leave the inner arrays as null and allocate them
// lazily (which would be beneficial for shapes with gaps), but we
// assume there won't be too many of those so we allocate everything
// up front (which is better for other cases)
rowAARLE
=
new
int
[
bboxY1
-
bboxY0
+
1
][
INIT_ROW_SIZE
];
x0
=
0
;
y0
=
-
1
;
// -1 makes the first assert in startRow succeed
// the ceiling of (maxy - miny + 1) / TILE_SIZE;
int
nyTiles
=
(
maxy
-
miny
+
TILE_SIZE
)
>>
TILE_SIZE_LG
;
int
nxTiles
=
(
maxx
-
minx
+
TILE_SIZE
)
>>
TILE_SIZE_LG
;
touchedTile
=
new
int
[
nyTiles
][
nxTiles
];
}
byte
[]
rowAARLE
;
int
alphaRLELength
;
void
addRLERun
(
int
val
,
int
runLen
)
{
if
(
runLen
>
0
)
{
addTupleToRow
(
y0
,
val
,
runLen
);
if
(
val
!=
0
)
{
// the x and y of the current row, minus bboxX0, bboxY0
int
tx
=
x0
>>
TILE_SIZE_LG
;
int
ty
=
y0
>>
TILE_SIZE_LG
;
int
tx1
=
(
x0
+
runLen
-
1
)
>>
TILE_SIZE_LG
;
// while we forbid rows from starting before bboxx0, our users
// can still store rows that go beyond bboxx1 (although this
// shouldn't happen), so it's a good idea to check that i
// is not going out of bounds in touchedTile[ty]
if
(
tx1
>=
touchedTile
[
ty
].
length
)
{
tx1
=
touchedTile
[
ty
].
length
-
1
;
}
if
(
tx
<=
tx1
)
{
int
nextTileXCoord
=
(
tx
+
1
)
<<
TILE_SIZE_LG
;
if
(
nextTileXCoord
>
x0
+
runLen
)
{
touchedTile
[
ty
][
tx
]
+=
val
*
runLen
;
}
else
{
touchedTile
[
ty
][
tx
]
+=
val
*
(
nextTileXCoord
-
x0
);
}
tx
++;
}
// don't go all the way to tx1 - we need to handle the last
// tile as a special case (just like we did with the first
for
(;
tx
<
tx1
;
tx
++)
{
// try {
touchedTile
[
ty
][
tx
]
+=
(
val
<<
TILE_SIZE_LG
);
// } catch (RuntimeException e) {
// System.out.println("x0, y0: " + x0 + ", " + y0);
// System.out.printf("tx, ty, tx1: %d, %d, %d %n", tx, ty, tx1);
// System.out.printf("bboxX/Y0/1: %d, %d, %d, %d %n",
// bboxX0, bboxY0, bboxX1, bboxY1);
// throw e;
// }
}
// they will be equal unless x0>>TILE_SIZE_LG == tx1
if
(
tx
==
tx1
)
{
int
lastXCoord
=
Math
.
min
(
x0
+
runLen
,
(
tx
+
1
)
<<
TILE_SIZE_LG
);
int
txXCoord
=
tx
<<
TILE_SIZE_LG
;
touchedTile
[
ty
][
tx
]
+=
val
*
(
lastXCoord
-
txXCoord
);
}
}
x0
+=
runLen
;
}
}
int
[]
rowOffsetsRLE
;
int
[]
minTouched
;
int
alphaRows
;
void
startRow
(
int
y
,
int
x
)
{
// rows are supposed to be added by increasing y.
assert
y
-
bboxY0
>
y0
;
assert
y
<=
bboxY1
;
// perhaps this should be < instead of <=
private
PiscesCache
()
{}
y0
=
y
-
bboxY0
;
// this should be a new, uninitialized row.
assert
rowAARLE
[
y0
][
1
]
==
0
;
public
static
PiscesCache
createInstance
()
{
return
new
PiscesCache
();
}
x0
=
x
-
bboxX0
;
assert
x0
>=
0
:
"Input must not be to the left of bbox bounds"
;
private
static
final
float
ROWAA_RLE_FACTOR
=
1.5f
;
private
static
final
float
TOUCHED_FACTOR
=
1.5f
;
private
static
final
int
MIN_TOUCHED_LEN
=
64
;
private
void
reallocRowAARLE
(
int
newLength
)
{
if
(
rowAARLE
==
null
)
{
rowAARLE
=
new
byte
[
newLength
];
}
else
if
(
rowAARLE
.
length
<
newLength
)
{
int
len
=
Math
.
max
(
newLength
,
(
int
)(
rowAARLE
.
length
*
ROWAA_RLE_FACTOR
));
byte
[]
newRowAARLE
=
new
byte
[
len
];
System
.
arraycopy
(
rowAARLE
,
0
,
newRowAARLE
,
0
,
rowAARLE
.
length
);
rowAARLE
=
newRowAARLE
;
}
// the way addTupleToRow is implemented it would work for this but it's
// not a good idea to use it because it is meant for adding
// RLE tuples, not the first tuple (which is special).
rowAARLE
[
y0
][
0
]
=
x
;
rowAARLE
[
y0
][
1
]
=
2
;
}
private
void
reallocRowInfo
(
int
newHeight
)
{
if
(
minTouched
==
null
)
{
int
len
=
Math
.
max
(
newHeight
,
MIN_TOUCHED_LEN
);
minTouched
=
new
int
[
len
];
rowOffsetsRLE
=
new
int
[
len
];
}
else
if
(
minTouched
.
length
<
newHeight
)
{
int
len
=
Math
.
max
(
newHeight
,
(
int
)(
minTouched
.
length
*
TOUCHED_FACTOR
));
int
[]
newMinTouched
=
new
int
[
len
];
int
[]
newRowOffsetsRLE
=
new
int
[
len
];
System
.
arraycopy
(
minTouched
,
0
,
newMinTouched
,
0
,
alphaRows
);
System
.
arraycopy
(
rowOffsetsRLE
,
0
,
newRowOffsetsRLE
,
0
,
alphaRows
);
minTouched
=
newMinTouched
;
rowOffsetsRLE
=
newRowOffsetsRLE
;
}
int
alphaSumInTile
(
int
x
,
int
y
)
{
x
-=
bboxX0
;
y
-=
bboxY0
;
return
touchedTile
[
y
>>
TILE_SIZE_LG
][
x
>>
TILE_SIZE_LG
];
}
void
addRLERun
(
byte
val
,
int
runLen
)
{
reallocRowAARLE
(
alphaRLELength
+
2
);
rowAARLE
[
alphaRLELength
++]
=
val
;
rowAARLE
[
alphaRLELength
++]
=
(
byte
)
runLen
;
int
minTouched
(
int
rowidx
)
{
return
rowAARLE
[
rowidx
][
0
];
}
void
startRow
(
int
y
,
int
x0
,
int
x1
)
{
if
(
alphaRows
==
0
)
{
bboxY0
=
y
;
bboxY1
=
y
+
1
;
bboxX0
=
x0
;
bboxX1
=
x1
+
1
;
}
else
{
if
(
bboxX0
>
x0
)
bboxX0
=
x0
;
if
(
bboxX1
<
x1
+
1
)
bboxX1
=
x1
+
1
;
while
(
bboxY1
++
<
y
)
{
reallocRowInfo
(
alphaRows
+
1
);
minTouched
[
alphaRows
]
=
0
;
// Assuming last 2 entries in rowAARLE are 0,0
rowOffsetsRLE
[
alphaRows
]
=
alphaRLELength
-
2
;
alphaRows
++;
}
}
reallocRowInfo
(
alphaRows
+
1
);
minTouched
[
alphaRows
]
=
x0
;
rowOffsetsRLE
[
alphaRows
]
=
alphaRLELength
;
alphaRows
++;
int
rowLength
(
int
rowidx
)
{
return
rowAARLE
[
rowidx
][
1
];
}
public
synchronized
void
dispose
()
{
rowAARLE
=
null
;
alphaRLELength
=
0
;
minTouched
=
null
;
rowOffsetsRLE
=
null
;
alphaRows
=
0
;
bboxX0
=
bboxY0
=
bboxX1
=
bboxY1
=
0
;
private
void
addTupleToRow
(
int
row
,
int
a
,
int
b
)
{
int
end
=
rowAARLE
[
row
][
1
];
rowAARLE
[
row
]
=
Helpers
.
widenArray
(
rowAARLE
[
row
],
end
,
2
);
rowAARLE
[
row
][
end
++]
=
a
;
rowAARLE
[
row
][
end
++]
=
b
;
rowAARLE
[
row
][
1
]
=
end
;
}
public
void
print
(
java
.
io
.
PrintStream
out
)
{
synchronized
(
out
)
{
out
.
println
(
"bbox = ["
+
bboxX0
+
", "
+
bboxY0
+
" => "
+
bboxX1
+
", "
+
bboxY1
+
"]"
);
out
.
println
(
"alphRLELength = "
+
alphaRLELength
);
for
(
int
y
=
bboxY0
;
y
<
bboxY1
;
y
++)
{
int
i
=
y
-
bboxY0
;
out
.
println
(
"row["
+
i
+
"] == {"
+
"minX = "
+
minTouched
[
i
]+
", off = "
+
rowOffsetsRLE
[
i
]+
"}"
);
}
for
(
int
i
=
0
;
i
<
alphaRLELength
;
i
+=
2
)
{
out
.
println
(
"rle["
+
i
+
"] = "
+
(
rowAARLE
[
i
+
1
]&
0xff
)+
" of "
+(
rowAARLE
[
i
]&
0xff
));
@Override
public
String
toString
()
{
String
ret
=
"bbox = ["
+
bboxX0
+
", "
+
bboxY0
+
" => "
+
bboxX1
+
", "
+
bboxY1
+
"]\n"
;
for
(
int
[]
row
:
rowAARLE
)
{
if
(
row
!=
null
)
{
ret
+=
(
"minTouchedX="
+
row
[
0
]
+
"\tRLE Entries: "
+
Arrays
.
toString
(
Arrays
.
copyOfRange
(
row
,
2
,
row
[
1
]))
+
"\n"
);
}
else
{
ret
+=
"[]\n"
;
}
}
}
return
ret
;
}
}
src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java
浏览文件 @
273af63e
...
...
@@ -27,7 +27,7 @@ package sun.java2d.pisces;
import
java.awt.Shape
;
import
java.awt.BasicStroke
;
import
java.awt.geom.
FlatteningPathIterator
;
import
java.awt.geom.
NoninvertibleTransformException
;
import
java.awt.geom.Path2D
;
import
java.awt.geom.AffineTransform
;
import
java.awt.geom.PathIterator
;
...
...
@@ -38,8 +38,6 @@ import sun.java2d.pipe.RenderingEngine;
import
sun.java2d.pipe.AATileGenerator
;
public
class
PiscesRenderingEngine
extends
RenderingEngine
{
public
static
double
defaultFlat
=
0.1
;
private
static
enum
NormMode
{
OFF
,
ON_NO_AA
,
ON_WITH_AA
}
/**
...
...
@@ -78,20 +76,29 @@ public class PiscesRenderingEngine extends RenderingEngine {
miterlimit
,
dashes
,
dashphase
,
new
LineSink
()
{
new
PathConsumer2D
()
{
public
void
moveTo
(
float
x0
,
float
y0
)
{
p2d
.
moveTo
(
x0
,
y0
);
}
public
void
lineJoin
()
{}
public
void
lineTo
(
float
x1
,
float
y1
)
{
p2d
.
lineTo
(
x1
,
y1
);
}
public
void
close
()
{
public
void
close
Path
()
{
p2d
.
closePath
();
}
public
void
end
()
{}
public
void
pathDone
()
{}
public
void
curveTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
,
float
x3
,
float
y3
)
{
p2d
.
curveTo
(
x1
,
y1
,
x2
,
y2
,
x3
,
y3
);
}
public
void
quadTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
)
{
p2d
.
quadTo
(
x1
,
y1
,
x2
,
y2
);
}
public
long
getNativeConsumer
()
{
throw
new
InternalError
(
"Not using a native peer"
);
}
});
return
p2d
;
}
...
...
@@ -133,22 +140,7 @@ public class PiscesRenderingEngine extends RenderingEngine {
NormMode
norm
=
(
normalize
)
?
((
antialias
)
?
NormMode
.
ON_WITH_AA
:
NormMode
.
ON_NO_AA
)
:
NormMode
.
OFF
;
strokeTo
(
src
,
at
,
bs
,
thin
,
norm
,
antialias
,
new
LineSink
()
{
public
void
moveTo
(
float
x0
,
float
y0
)
{
consumer
.
moveTo
(
x0
,
y0
);
}
public
void
lineJoin
()
{}
public
void
lineTo
(
float
x1
,
float
y1
)
{
consumer
.
lineTo
(
x1
,
y1
);
}
public
void
close
()
{
consumer
.
closePath
();
}
public
void
end
()
{
consumer
.
pathDone
();
}
});
strokeTo
(
src
,
at
,
bs
,
thin
,
norm
,
antialias
,
consumer
);
}
void
strokeTo
(
Shape
src
,
...
...
@@ -157,7 +149,7 @@ public class PiscesRenderingEngine extends RenderingEngine {
boolean
thin
,
NormMode
normalize
,
boolean
antialias
,
LineSink
lsink
)
PathConsumer2D
pc2d
)
{
float
lw
;
if
(
thin
)
{
...
...
@@ -178,7 +170,7 @@ public class PiscesRenderingEngine extends RenderingEngine {
bs
.
getMiterLimit
(),
bs
.
getDashArray
(),
bs
.
getDashPhase
(),
lsink
);
pc2d
);
}
private
float
userSpaceLineWidth
(
AffineTransform
at
,
float
lw
)
{
...
...
@@ -256,28 +248,113 @@ public class PiscesRenderingEngine extends RenderingEngine {
float
miterlimit
,
float
dashes
[],
float
dashphase
,
LineSink
lsink
)
PathConsumer2D
pc2d
)
{
float
a00
=
1
f
,
a01
=
0
f
,
a10
=
0
f
,
a11
=
1
f
;
// We use inat and outat so that in Stroker and Dasher we can work only
// with the pre-transformation coordinates. This will repeat a lot of
// computations done in the path iterator, but the alternative is to
// work with transformed paths and compute untransformed coordinates
// as needed. This would be faster but I do not think the complexity
// of working with both untransformed and transformed coordinates in
// the same code is worth it.
// However, if a path's width is constant after a transformation,
// we can skip all this untransforming.
// If normalization is off we save some transformations by not
// transforming the input to pisces. Instead, we apply the
// transformation after the path processing has been done.
// We can't do this if normalization is on, because it isn't a good
// idea to normalize before the transformation is applied.
AffineTransform
inat
=
null
;
AffineTransform
outat
=
null
;
PathIterator
pi
=
null
;
if
(
at
!=
null
&&
!
at
.
isIdentity
())
{
a00
=
(
float
)
at
.
getScaleX
();
a01
=
(
float
)
at
.
getShearX
();
a10
=
(
float
)
at
.
getShearY
();
a11
=
(
float
)
at
.
getScaleY
();
final
double
a
=
at
.
getScaleX
();
final
double
b
=
at
.
getShearX
();
final
double
c
=
at
.
getShearY
();
final
double
d
=
at
.
getScaleY
();
final
double
det
=
a
*
d
-
c
*
b
;
if
(
Math
.
abs
(
det
)
<=
2
*
Float
.
MIN_VALUE
)
{
// this rendering engine takes one dimensional curves and turns
// them into 2D shapes by giving them width.
// However, if everything is to be passed through a singular
// transformation, these 2D shapes will be squashed down to 1D
// again so, nothing can be drawn.
// Every path needs an initial moveTo and a pathDone. If these
// aren't there this causes a SIGSEV in libawt.so (at the time
// of writing of this comment (September 16, 2010)). Actually,
// I'm not sure if the moveTo is necessary to avoid the SIGSEV
// but the pathDone is definitely needed.
pc2d
.
moveTo
(
0
,
0
);
pc2d
.
pathDone
();
return
;
}
// If the transform is a constant multiple of an orthogonal transformation
// then every length is just multiplied by a constant, so we just
// need to transform input paths to stroker and tell stroker
// the scaled width. This condition is satisfied if
// a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we
// leave a bit of room for error.
if
(
nearZero
(
a
*
b
+
c
*
d
,
2
)
&&
nearZero
(
a
*
a
+
c
*
c
-
(
b
*
b
+
d
*
d
),
2
))
{
double
scale
=
Math
.
sqrt
(
a
*
a
+
c
*
c
);
if
(
dashes
!=
null
)
{
dashes
=
java
.
util
.
Arrays
.
copyOf
(
dashes
,
dashes
.
length
);
for
(
int
i
=
0
;
i
<
dashes
.
length
;
i
++)
{
dashes
[
i
]
=
(
float
)(
scale
*
dashes
[
i
]);
}
dashphase
=
(
float
)(
scale
*
dashphase
);
}
width
=
(
float
)(
scale
*
width
);
pi
=
src
.
getPathIterator
(
at
);
if
(
normalize
!=
NormMode
.
OFF
)
{
pi
=
new
NormalizingPathIterator
(
pi
,
normalize
);
}
// leave inat and outat null.
}
else
{
// We only need the inverse if normalization is on. Otherwise
// we just don't transform the input paths, do all the stroking
// and then transform out output (instead of making PathIterator
// apply the transformation, us applying the inverse, and then
// us applying the transform again to our output).
outat
=
at
;
if
(
normalize
!=
NormMode
.
OFF
)
{
try
{
inat
=
outat
.
createInverse
();
}
catch
(
NoninvertibleTransformException
e
)
{
// we made sure this can't happen
e
.
printStackTrace
();
}
pi
=
src
.
getPathIterator
(
at
);
pi
=
new
NormalizingPathIterator
(
pi
,
normalize
);
}
else
{
pi
=
src
.
getPathIterator
(
null
);
}
}
}
else
{
// either at is null or it's the identity. In either case
// we don't transform the path.
pi
=
src
.
getPathIterator
(
null
);
if
(
normalize
!=
NormMode
.
OFF
)
{
pi
=
new
NormalizingPathIterator
(
pi
,
normalize
);
}
}
lsink
=
new
Stroker
(
lsink
,
width
,
caps
,
join
,
miterlimit
,
a00
,
a01
,
a10
,
a11
);
pc2d
=
TransformingPathConsumer2D
.
transformConsumer
(
pc2d
,
outat
);
pc2d
=
new
Stroker
(
pc2d
,
width
,
caps
,
join
,
miterlimit
);
if
(
dashes
!=
null
)
{
lsink
=
new
Dasher
(
lsink
,
dashes
,
dashphase
,
a00
,
a01
,
a10
,
a11
);
}
PathIterator
pi
;
if
(
normalize
!=
NormMode
.
OFF
)
{
pi
=
new
FlatteningPathIterator
(
new
NormalizingPathIterator
(
src
.
getPathIterator
(
at
),
normalize
),
defaultFlat
);
}
else
{
pi
=
src
.
getPathIterator
(
at
,
defaultFlat
);
pc2d
=
new
Dasher
(
pc2d
,
dashes
,
dashphase
);
}
pathTo
(
pi
,
lsink
);
pc2d
=
TransformingPathConsumer2D
.
transformConsumer
(
pc2d
,
inat
);
pathTo
(
pi
,
pc2d
);
}
private
static
boolean
nearZero
(
double
num
,
int
nulps
)
{
return
Math
.
abs
(
num
)
<
nulps
*
Math
.
ulp
(
num
);
}
private
static
class
NormalizingPathIterator
implements
PathIterator
{
...
...
@@ -337,10 +414,10 @@ public class PiscesRenderingEngine extends RenderingEngine {
}
// normalize endpoint
float
x_adjust
=
(
float
)
Math
.
floor
(
coords
[
lastCoord
]
+
lval
)
+
rval
-
coords
[
lastCoord
];
float
y_adjust
=
(
float
)
Math
.
floor
(
coords
[
lastCoord
+
1
]
+
lval
)
+
rval
-
coords
[
lastCoord
+
1
];
float
x_adjust
=
(
float
)
Math
.
floor
(
coords
[
lastCoord
]
+
lval
)
+
rval
-
coords
[
lastCoord
];
float
y_adjust
=
(
float
)
Math
.
floor
(
coords
[
lastCoord
+
1
]
+
lval
)
+
rval
-
coords
[
lastCoord
+
1
];
coords
[
lastCoord
]
+=
x_adjust
;
coords
[
lastCoord
+
1
]
+=
y_adjust
;
...
...
@@ -393,27 +470,9 @@ public class PiscesRenderingEngine extends RenderingEngine {
}
}
void
pathTo
(
PathIterator
pi
,
LineSink
lsink
)
{
float
coords
[]
=
new
float
[
2
];
while
(!
pi
.
isDone
())
{
switch
(
pi
.
currentSegment
(
coords
))
{
case
PathIterator
.
SEG_MOVETO
:
lsink
.
moveTo
(
coords
[
0
],
coords
[
1
]);
break
;
case
PathIterator
.
SEG_LINETO
:
lsink
.
lineJoin
();
lsink
.
lineTo
(
coords
[
0
],
coords
[
1
]);
break
;
case
PathIterator
.
SEG_CLOSE
:
lsink
.
lineJoin
();
lsink
.
close
();
break
;
default
:
throw
new
InternalError
(
"unknown flattened segment type"
);
}
pi
.
next
();
}
lsink
.
end
();
static
void
pathTo
(
PathIterator
pi
,
PathConsumer2D
pc2d
)
{
RenderingEngine
.
feedConsumer
(
pi
,
pc2d
);
pc2d
.
pathDone
();
}
/**
...
...
@@ -471,32 +530,29 @@ public class PiscesRenderingEngine extends RenderingEngine {
boolean
normalize
,
int
bbox
[])
{
PiscesCache
pc
=
PiscesCache
.
createInstance
();
Renderer
r
;
NormMode
norm
=
(
normalize
)
?
NormMode
.
ON_WITH_AA
:
NormMode
.
OFF
;
if
(
bs
==
null
)
{
PathIterator
pi
;
if
(
normalize
)
{
pi
=
new
FlatteningPathIterator
(
new
NormalizingPathIterator
(
s
.
getPathIterator
(
at
),
norm
),
defaultFlat
);
pi
=
new
NormalizingPathIterator
(
s
.
getPathIterator
(
at
),
norm
);
}
else
{
pi
=
s
.
getPathIterator
(
at
,
defaultFlat
);
pi
=
s
.
getPathIterator
(
at
);
}
r
=
new
Renderer
(
3
,
3
,
clip
.
getLoX
(),
clip
.
getLoY
(),
clip
.
getWidth
(),
clip
.
getHeight
(),
pi
.
getWindingRule
()
,
pc
);
pi
.
getWindingRule
());
pathTo
(
pi
,
r
);
}
else
{
r
=
new
Renderer
(
3
,
3
,
clip
.
getLoX
(),
clip
.
getLoY
(),
clip
.
getWidth
(),
clip
.
getHeight
(),
PathIterator
.
WIND_NON_ZERO
,
pc
);
PathIterator
.
WIND_NON_ZERO
);
strokeTo
(
s
,
at
,
bs
,
thin
,
norm
,
true
,
r
);
}
r
.
endRendering
();
PiscesTileGenerator
ptg
=
new
PiscesTileGenerator
(
pc
,
r
.
MAX_AA_ALPHA
);
PiscesTileGenerator
ptg
=
new
PiscesTileGenerator
(
r
,
r
.
MAX_AA_ALPHA
);
ptg
.
getBbox
(
bbox
);
return
ptg
;
}
...
...
src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java
浏览文件 @
273af63e
...
...
@@ -25,40 +25,54 @@
package
sun.java2d.pisces
;
import
java.util.Map
;
import
java.util.concurrent.ConcurrentHashMap
;
import
sun.java2d.pipe.AATileGenerator
;
public
class
PiscesTileGenerator
implements
AATileGenerator
{
public
static
final
int
TILE_SIZE
=
32
;
public
final
class
PiscesTileGenerator
implements
AATileGenerator
{
public
static
final
int
TILE_SIZE
=
PiscesCache
.
TILE_SIZE
;
// perhaps we should be using weak references here, but right now
// that's not necessary. The way the renderer is, this map will
// never contain more than one element - the one with key 64, since
// we only do 8x8 supersampling.
private
static
final
Map
<
Integer
,
byte
[]>
alphaMapsCache
=
new
ConcurrentHashMap
<
Integer
,
byte
[]>();
PiscesCache
cache
;
int
x
,
y
;
int
maxalpha
;
final
int
maxalpha
;
private
final
int
maxTileAlphaSum
;
// The alpha map used by this object (taken out of our map cache) to convert
// pixel coverage counts gotten from PiscesCache (which are in the range
// [0, maxalpha]) into alpha values, which are in [0,256).
byte
alphaMap
[];
public
PiscesTileGenerator
(
PiscesCache
cache
,
int
maxalpha
)
{
this
.
cache
=
cache
;
public
PiscesTileGenerator
(
Renderer
r
,
int
maxalpha
)
{
this
.
cache
=
r
.
getCache
()
;
this
.
x
=
cache
.
bboxX0
;
this
.
y
=
cache
.
bboxY0
;
this
.
alphaMap
=
getAlphaMap
(
maxalpha
);
this
.
maxalpha
=
maxalpha
;
this
.
maxTileAlphaSum
=
TILE_SIZE
*
TILE_SIZE
*
maxalpha
;
}
static
int
prevMaxAlpha
;
static
byte
prevAlphaMap
[];
private
static
byte
[]
buildAlphaMap
(
int
maxalpha
)
{
byte
[]
alMap
=
new
byte
[
maxalpha
+
1
];
int
halfmaxalpha
=
maxalpha
>>
2
;
for
(
int
i
=
0
;
i
<=
maxalpha
;
i
++)
{
alMap
[
i
]
=
(
byte
)
((
i
*
255
+
halfmaxalpha
)
/
maxalpha
);
}
return
alMap
;
}
public
synchronized
static
byte
[]
getAlphaMap
(
int
maxalpha
)
{
if
(
maxalpha
!=
prevMaxAlpha
)
{
prevAlphaMap
=
new
byte
[
maxalpha
+
300
];
int
halfmaxalpha
=
maxalpha
>>
2
;
for
(
int
i
=
0
;
i
<=
maxalpha
;
i
++)
{
prevAlphaMap
[
i
]
=
(
byte
)
((
i
*
255
+
halfmaxalpha
)
/
maxalpha
);
}
for
(
int
i
=
maxalpha
;
i
<
prevAlphaMap
.
length
;
i
++)
{
prevAlphaMap
[
i
]
=
(
byte
)
255
;
}
prevMaxAlpha
=
maxalpha
;
public
static
byte
[]
getAlphaMap
(
int
maxalpha
)
{
if
(!
alphaMapsCache
.
containsKey
(
maxalpha
))
{
alphaMapsCache
.
put
(
maxalpha
,
buildAlphaMap
(
maxalpha
));
}
return
prevAlphaMap
;
return
alphaMapsCache
.
get
(
maxalpha
)
;
}
public
void
getBbox
(
int
bbox
[])
{
...
...
@@ -96,53 +110,24 @@ public class PiscesTileGenerator implements AATileGenerator {
* value for partial coverage of the tile
*/
public
int
getTypicalAlpha
()
{
if
(
true
)
return
0x80
;
// Decode run-length encoded alpha mask data
// The data for row j begins at cache.rowOffsetsRLE[j]
// and is encoded as a set of 2-byte pairs (val, runLen)
// terminated by a (0, 0) pair.
int
x0
=
this
.
x
;
int
x1
=
x0
+
TILE_SIZE
;
int
y0
=
this
.
y
;
int
y1
=
y0
+
TILE_SIZE
;
if
(
x1
>
cache
.
bboxX1
)
x1
=
cache
.
bboxX1
;
if
(
y1
>
cache
.
bboxY1
)
y1
=
cache
.
bboxY1
;
y0
-=
cache
.
bboxY0
;
y1
-=
cache
.
bboxY0
;
int
ret
=
-
1
;
for
(
int
cy
=
y0
;
cy
<
y1
;
cy
++)
{
int
pos
=
cache
.
rowOffsetsRLE
[
cy
];
int
cx
=
cache
.
minTouched
[
cy
];
if
(
cx
>
x0
)
{
if
(
ret
>
0
)
return
0x80
;
ret
=
0x00
;
}
while
(
cx
<
x1
)
{
int
runLen
=
cache
.
rowAARLE
[
pos
+
1
]
&
0xff
;
if
(
runLen
==
0
)
{
if
(
ret
>
0
)
return
0x80
;
ret
=
0x00
;
break
;
}
cx
+=
runLen
;
if
(
cx
>
x0
)
{
int
val
=
cache
.
rowAARLE
[
pos
]
&
0xff
;
if
(
ret
!=
val
)
{
if
(
ret
<
0
)
{
if
(
val
!=
0x00
&&
val
!=
maxalpha
)
return
0x80
;
ret
=
val
;
}
else
{
return
0x80
;
}
}
}
pos
+=
2
;
}
}
return
ret
;
int
al
=
cache
.
alphaSumInTile
(
x
,
y
);
// Note: if we have a filled rectangle that doesn't end on a tile
// border, we could still return 0xff, even though al!=maxTileAlphaSum
// This is because if we return 0xff, our users will fill a rectangle
// starting at x,y that has width = Math.min(TILE_SIZE, bboxX1-x),
// and height min(TILE_SIZE,bboxY1-y), which is what should happen.
// However, to support this, we would have to use 2 Math.min's
// and 2 multiplications per tile, instead of just 2 multiplications
// to compute maxTileAlphaSum. The savings offered would probably
// not be worth it, considering how rare this case is.
// Note: I have not tested this, so in the future if it is determined
// that it is worth it, it should be implemented. Perhaps this method's
// interface should be changed to take arguments the width and height
// of the current tile. This would eliminate the 2 Math.min calls that
// would be needed here, since our caller needs to compute these 2
// values anyway.
return
(
al
==
0x00
?
0x00
:
(
al
==
maxTileAlphaSum
?
0xff
:
0x80
));
}
/**
...
...
@@ -179,22 +164,24 @@ public class PiscesTileGenerator implements AATileGenerator {
int
idx
=
offset
;
for
(
int
cy
=
y0
;
cy
<
y1
;
cy
++)
{
int
pos
=
cache
.
rowOffsetsRLE
[
cy
];
int
cx
=
cache
.
minTouched
[
cy
];
int
[]
row
=
cache
.
rowAARLE
[
cy
];
assert
row
!=
null
;
int
cx
=
cache
.
minTouched
(
cy
);
if
(
cx
>
x1
)
cx
=
x1
;
if
(
cx
>
x0
)
{
//System.out.println("L["+(cx-x0)+"]");
for
(
int
i
=
x0
;
i
<
cx
;
i
++)
{
tile
[
idx
++]
=
0x00
;
}
for
(
int
i
=
x0
;
i
<
cx
;
i
++)
{
tile
[
idx
++]
=
0x00
;
}
while
(
cx
<
x1
)
{
int
pos
=
2
;
while
(
cx
<
x1
&&
pos
<
row
[
1
])
{
byte
val
;
int
runLen
=
0
;
assert
row
[
1
]
>
2
;
try
{
val
=
alphaMap
[
cache
.
rowAARLE
[
pos
]
&
0xff
];
runLen
=
cache
.
rowAARLE
[
pos
+
1
]
&
0xff
;
val
=
alphaMap
[
row
[
pos
]];
runLen
=
row
[
pos
+
1
];
assert
runLen
>
0
;
}
catch
(
RuntimeException
e0
)
{
System
.
out
.
println
(
"maxalpha = "
+
maxalpha
);
System
.
out
.
println
(
"tile["
+
x0
+
", "
+
y0
+
...
...
@@ -202,14 +189,12 @@ public class PiscesTileGenerator implements AATileGenerator {
System
.
out
.
println
(
"cx = "
+
cx
+
", cy = "
+
cy
);
System
.
out
.
println
(
"idx = "
+
idx
+
", pos = "
+
pos
);
System
.
out
.
println
(
"len = "
+
runLen
);
cache
.
print
(
System
.
out
);
System
.
out
.
print
(
cache
.
toString
()
);
e0
.
printStackTrace
();
System
.
exit
(
1
);
return
;
}
if
(
runLen
==
0
)
{
break
;
}
int
rx0
=
cx
;
cx
+=
runLen
;
int
rx1
=
cx
;
...
...
@@ -228,7 +213,7 @@ public class PiscesTileGenerator implements AATileGenerator {
System
.
out
.
println
(
"idx = "
+
idx
+
", pos = "
+
pos
);
System
.
out
.
println
(
"rx0 = "
+
rx0
+
", rx1 = "
+
rx1
);
System
.
out
.
println
(
"len = "
+
runLen
);
cache
.
print
(
System
.
out
);
System
.
out
.
print
(
cache
.
toString
()
);
e
.
printStackTrace
();
System
.
exit
(
1
);
return
;
...
...
@@ -265,4 +250,4 @@ public class PiscesTileGenerator implements AATileGenerator {
* No further calls will be made on this instance.
*/
public
void
dispose
()
{}
}
}
\ No newline at end of file
src/share/classes/sun/java2d/pisces/Renderer.java
浏览文件 @
273af63e
此差异已折叠。
点击以展开。
src/share/classes/sun/java2d/pisces/Stroker.java
浏览文件 @
273af63e
此差异已折叠。
点击以展开。
src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java
0 → 100644
浏览文件 @
273af63e
/*
* Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package
sun.java2d.pisces
;
import
sun.awt.geom.PathConsumer2D
;
import
java.awt.geom.AffineTransform
;
public
class
TransformingPathConsumer2D
{
public
static
PathConsumer2D
transformConsumer
(
PathConsumer2D
out
,
AffineTransform
at
)
{
if
(
at
==
null
)
{
return
out
;
}
float
Mxx
=
(
float
)
at
.
getScaleX
();
float
Mxy
=
(
float
)
at
.
getShearX
();
float
Mxt
=
(
float
)
at
.
getTranslateX
();
float
Myx
=
(
float
)
at
.
getShearY
();
float
Myy
=
(
float
)
at
.
getScaleY
();
float
Myt
=
(
float
)
at
.
getTranslateY
();
if
(
Mxy
==
0
f
&&
Myx
==
0
f
)
{
if
(
Mxx
==
1
f
&&
Myy
==
1
f
)
{
if
(
Mxt
==
0
f
&&
Myt
==
0
f
)
{
return
out
;
}
else
{
return
new
TranslateFilter
(
out
,
Mxt
,
Myt
);
}
}
else
{
return
new
ScaleFilter
(
out
,
Mxx
,
Myy
,
Mxt
,
Myt
);
}
}
else
{
return
new
TransformFilter
(
out
,
Mxx
,
Mxy
,
Mxt
,
Myx
,
Myy
,
Myt
);
}
}
static
class
TranslateFilter
implements
PathConsumer2D
{
PathConsumer2D
out
;
float
tx
;
float
ty
;
TranslateFilter
(
PathConsumer2D
out
,
float
tx
,
float
ty
)
{
this
.
out
=
out
;
this
.
tx
=
tx
;
this
.
ty
=
ty
;
}
public
void
moveTo
(
float
x0
,
float
y0
)
{
out
.
moveTo
(
x0
+
tx
,
y0
+
ty
);
}
public
void
lineTo
(
float
x1
,
float
y1
)
{
out
.
lineTo
(
x1
+
tx
,
y1
+
ty
);
}
public
void
quadTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
)
{
out
.
quadTo
(
x1
+
tx
,
y1
+
ty
,
x2
+
tx
,
y2
+
ty
);
}
public
void
curveTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
,
float
x3
,
float
y3
)
{
out
.
curveTo
(
x1
+
tx
,
y1
+
ty
,
x2
+
tx
,
y2
+
ty
,
x3
+
tx
,
y3
+
ty
);
}
public
void
closePath
()
{
out
.
closePath
();
}
public
void
pathDone
()
{
out
.
pathDone
();
}
public
long
getNativeConsumer
()
{
return
0
;
}
}
static
class
ScaleFilter
implements
PathConsumer2D
{
PathConsumer2D
out
;
float
sx
;
float
sy
;
float
tx
;
float
ty
;
ScaleFilter
(
PathConsumer2D
out
,
float
sx
,
float
sy
,
float
tx
,
float
ty
)
{
this
.
out
=
out
;
this
.
sx
=
sx
;
this
.
sy
=
sy
;
this
.
tx
=
tx
;
this
.
ty
=
ty
;
}
public
void
moveTo
(
float
x0
,
float
y0
)
{
out
.
moveTo
(
x0
*
sx
+
tx
,
y0
*
sy
+
ty
);
}
public
void
lineTo
(
float
x1
,
float
y1
)
{
out
.
lineTo
(
x1
*
sx
+
tx
,
y1
*
sy
+
ty
);
}
public
void
quadTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
)
{
out
.
quadTo
(
x1
*
sx
+
tx
,
y1
*
sy
+
ty
,
x2
*
sx
+
tx
,
y2
*
sy
+
ty
);
}
public
void
curveTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
,
float
x3
,
float
y3
)
{
out
.
curveTo
(
x1
*
sx
+
tx
,
y1
*
sy
+
ty
,
x2
*
sx
+
tx
,
y2
*
sy
+
ty
,
x3
*
sx
+
tx
,
y3
*
sy
+
ty
);
}
public
void
closePath
()
{
out
.
closePath
();
}
public
void
pathDone
()
{
out
.
pathDone
();
}
public
long
getNativeConsumer
()
{
return
0
;
}
}
static
class
TransformFilter
implements
PathConsumer2D
{
PathConsumer2D
out
;
float
Mxx
;
float
Mxy
;
float
Mxt
;
float
Myx
;
float
Myy
;
float
Myt
;
TransformFilter
(
PathConsumer2D
out
,
float
Mxx
,
float
Mxy
,
float
Mxt
,
float
Myx
,
float
Myy
,
float
Myt
)
{
this
.
out
=
out
;
this
.
Mxx
=
Mxx
;
this
.
Mxy
=
Mxy
;
this
.
Mxt
=
Mxt
;
this
.
Myx
=
Myx
;
this
.
Myy
=
Myy
;
this
.
Myt
=
Myt
;
}
public
void
moveTo
(
float
x0
,
float
y0
)
{
out
.
moveTo
(
x0
*
Mxx
+
y0
*
Mxy
+
Mxt
,
x0
*
Myx
+
y0
*
Myy
+
Myt
);
}
public
void
lineTo
(
float
x1
,
float
y1
)
{
out
.
lineTo
(
x1
*
Mxx
+
y1
*
Mxy
+
Mxt
,
x1
*
Myx
+
y1
*
Myy
+
Myt
);
}
public
void
quadTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
)
{
out
.
quadTo
(
x1
*
Mxx
+
y1
*
Mxy
+
Mxt
,
x1
*
Myx
+
y1
*
Myy
+
Myt
,
x2
*
Mxx
+
y2
*
Mxy
+
Mxt
,
x2
*
Myx
+
y2
*
Myy
+
Myt
);
}
public
void
curveTo
(
float
x1
,
float
y1
,
float
x2
,
float
y2
,
float
x3
,
float
y3
)
{
out
.
curveTo
(
x1
*
Mxx
+
y1
*
Mxy
+
Mxt
,
x1
*
Myx
+
y1
*
Myy
+
Myt
,
x2
*
Mxx
+
y2
*
Mxy
+
Mxt
,
x2
*
Myx
+
y2
*
Myy
+
Myt
,
x3
*
Mxx
+
y3
*
Mxy
+
Mxt
,
x3
*
Myx
+
y3
*
Myy
+
Myt
);
}
public
void
closePath
()
{
out
.
closePath
();
}
public
void
pathDone
()
{
out
.
pathDone
();
}
public
long
getNativeConsumer
()
{
return
0
;
}
}
}
src/share/native/sun/java2d/loops/ProcessPath.c
浏览文件 @
273af63e
...
...
@@ -116,14 +116,26 @@
jint Y0 = (fY0) >> MDP_PREC; \
jint X1 = (fX1) >> MDP_PREC; \
jint Y1 = (fY1) >> MDP_PREC; \
/* Handling lines having just one pixel */
\
if (((X0^X1) | (Y0^Y1)) == 0) { \
if (checkBounds && \
(hnd->dhnd->yMin > Y0 || \
hnd->dhnd->yMax <= Y0 || \
hnd->dhnd->xMin > X0 || \
hnd->dhnd->xMax <= X0)) break; \
jint res; \
\
/* Checking bounds and clipping if necessary */
\
if (checkBounds) { \
TESTANDCLIP(hnd->dhnd->yMin, hnd->dhnd->yMax, Y0, X0, Y1, X1, \
jint, res); \
if (res == CRES_INVISIBLE) break; \
TESTANDCLIP(hnd->dhnd->yMin, hnd->dhnd->yMax, Y1, X1, Y0, X0, \
jint, res); \
if (res == CRES_INVISIBLE) break; \
TESTANDCLIP(hnd->dhnd->xMin, hnd->dhnd->xMax, X0, Y0, X1, Y1, \
jint, res); \
if (res == CRES_INVISIBLE) break; \
TESTANDCLIP(hnd->dhnd->xMin, hnd->dhnd->xMax, X1, Y1, X0, Y0, \
jint, res); \
if (res == CRES_INVISIBLE) break; \
} \
\
/* Handling lines having just one pixel */
\
if (((X0^X1) | (Y0^Y1)) == 0) { \
if (pixelInfo[0] == 0) { \
pixelInfo[0] = 1; \
pixelInfo[1] = X0; \
...
...
@@ -140,18 +152,11 @@
break; \
} \
\
if (!checkBounds || \
(hnd->dhnd->yMin <= Y0 && \
hnd->dhnd->yMax > Y0 && \
hnd->dhnd->xMin <= X0 && \
hnd->dhnd->xMax > X0)) \
if (pixelInfo[0] && \
((pixelInfo[1] == X0 && pixelInfo[2] == Y0) || \
(pixelInfo[3] == X0 && pixelInfo[4] == Y0))) \
{ \
if (pixelInfo[0] && \
((pixelInfo[1] == X0 && pixelInfo[2] == Y0) || \
(pixelInfo[3] == X0 && pixelInfo[4] == Y0))) \
{ \
hnd->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); \
} \
hnd->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); \
} \
\
hnd->dhnd->pDrawLine(hnd->dhnd, X0, Y0, X1, Y1); \
...
...
@@ -170,14 +175,6 @@
if ((pixelInfo[1] == X1 && pixelInfo[2] == Y1) || \
(pixelInfo[3] == X1 && pixelInfo[4] == Y1)) \
{ \
if (checkBounds && \
(hnd->dhnd->yMin > Y1 || \
hnd->dhnd->yMax <= Y1 || \
hnd->dhnd->xMin > X1 || \
hnd->dhnd->xMax <= X1)) { \
break; \
} \
\
hnd->dhnd->pDrawPixel(hnd->dhnd, X1, Y1); \
} \
pixelInfo[3] = X1; \
...
...
src/windows/classes/sun/awt/windows/WWindowPeer.java
浏览文件 @
273af63e
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录