提交 1a979c7a 编写于 作者: D dlila

7036754: NaNs in stroked quadratics.

Summary: Check for them and remove them.
Reviewed-by: flar
上级 e4e8ddb4
......@@ -27,6 +27,8 @@ package sun.java2d.pisces;
import java.util.Arrays;
import java.util.Iterator;
import static java.lang.Math.ulp;
import static java.lang.Math.sqrt;
import sun.awt.geom.PathConsumer2D;
......@@ -130,7 +132,7 @@ final class Stroker implements PathConsumer2D {
private static void computeOffset(final float lx, final float ly,
final float w, final float[] m)
{
final float len = (float)Math.sqrt(lx*lx + ly*ly);
final float len = (float) sqrt(lx*lx + ly*ly);
if (len == 0) {
m[0] = m[1] = 0;
} else {
......@@ -217,7 +219,7 @@ final class Stroker implements PathConsumer2D {
// this normal's length is at least 0.5 and at most sqrt(2)/2 (because
// we know the angle of the arc is > 90 degrees).
float nx = my - omy, ny = omx - mx;
float nlen = (float)Math.sqrt(nx*nx + ny*ny);
float nlen = (float) sqrt(nx*nx + ny*ny);
float scale = lineWidth2/nlen;
float mmx = nx * scale, mmy = ny * scale;
......@@ -246,8 +248,8 @@ final class Stroker implements PathConsumer2D {
// define the bezier curve we're computing.
// It is computed using the constraints that P1-P0 and P3-P2 are parallel
// to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
float cv = (float)((4.0 / 3.0) * Math.sqrt(0.5-cosext2) /
(1.0 + Math.sqrt(cosext2+0.5)));
float cv = (float) ((4.0 / 3.0) * sqrt(0.5-cosext2) /
(1.0 + sqrt(cosext2+0.5)));
// if clockwise, we need to negate cv.
if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
cv = -cv;
......@@ -284,9 +286,10 @@ final class Stroker implements PathConsumer2D {
false);
}
// Return the intersection point of the lines (x0, y0) -> (x1, y1)
// and (x0p, y0p) -> (x1p, y1p) in m[0] and m[1]
private void computeMiter(final float x0, final float y0,
// Put the intersection point of the lines (x0, y0) -> (x1, y1)
// and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1].
// If the lines are parallel, it will put a non finite number in m.
private void computeIntersection(final float x0, final float y0,
final float x1, final float y1,
final float x0p, final float y0p,
final float x1p, final float y1p,
......@@ -297,15 +300,6 @@ final class Stroker implements PathConsumer2D {
float x10p = x1p - x0p;
float y10p = y1p - y0p;
// if this is 0, the lines are parallel. If they go in the
// same direction, there is no intersection so m[off] and
// m[off+1] will contain infinity, so no miter will be drawn.
// If they go in the same direction that means that the start of the
// current segment and the end of the previous segment have the same
// tangent, in which case this method won't even be involved in
// miter drawing because it won't be called by drawMiter (because
// (mx == omx && my == omy) will be true, and drawMiter will return
// immediately).
float den = x10*y10p - x10p*y10;
float t = x10p*(y0-y0p) - y10p*(x0-x0p);
t /= den;
......@@ -321,7 +315,8 @@ final class Stroker implements PathConsumer2D {
{
if ((mx == omx && my == omy) ||
(pdx == 0 && pdy == 0) ||
(dx == 0 && dy == 0)) {
(dx == 0 && dy == 0))
{
return;
}
......@@ -332,12 +327,17 @@ final class Stroker implements PathConsumer2D {
my = -my;
}
computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
(dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
miter, 0);
float lenSq = (miter[0]-x0)*(miter[0]-x0) + (miter[1]-y0)*(miter[1]-y0);
// If the lines are parallel, lenSq will be either NaN or +inf
// (actually, I'm not sure if the latter is possible. The important
// thing is that -inf is not possible, because lenSq is a square).
// For both of those values, the comparison below will fail and
// no miter will be drawn, which is correct.
if (lenSq < miterLimitSq) {
emitLineTo(miter[0], miter[1], rev);
}
......@@ -566,8 +566,8 @@ final class Stroker implements PathConsumer2D {
// if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
// in which case ignore if p1 == p2
final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2));
final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * Math.ulp(y4));
final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * ulp(y2));
final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * ulp(y4));
if (p1eqp2 && p3eqp4) {
getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
return 4;
......@@ -583,7 +583,7 @@ final class Stroker implements PathConsumer2D {
float dotsq = (dx1 * dx4 + dy1 * dy4);
dotsq = dotsq * dotsq;
float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
if (Helpers.within(dotsq, l1sq * l4sq, 4 * Math.ulp(dotsq))) {
if (Helpers.within(dotsq, l1sq * l4sq, 4 * ulp(dotsq))) {
getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
return 4;
}
......@@ -693,8 +693,6 @@ final class Stroker implements PathConsumer2D {
return 8;
}
// compute offset curves using bezier spline through t=0.5 (i.e.
// ComputedCurve(0.5) == IdealParallelCurve(0.5))
// return the kind of curve in the right and left arrays.
private int computeOffsetQuad(float[] pts, final int off,
float[] leftOff, float[] rightOff)
......@@ -703,58 +701,69 @@ final class Stroker implements PathConsumer2D {
final float x2 = pts[off + 2], y2 = pts[off + 3];
final float x3 = pts[off + 4], y3 = pts[off + 5];
float dx3 = x3 - x2;
float dy3 = y3 - y2;
float dx1 = x2 - x1;
float dy1 = y2 - y1;
final float dx3 = x3 - x2;
final float dy3 = y3 - y2;
final float dx1 = x2 - x1;
final float dy1 = y2 - y1;
// if p1=p2 or p3=p4 it means that the derivative at the endpoint
// vanishes, which creates problems with computeOffset. Usually
// this happens when this stroker object is trying to winden
// a curve with a cusp. What happens is that curveTo splits
// the input curve at the cusp, and passes it to this function.
// because of inaccuracies in the splitting, we consider points
// equal if they're very close to each other.
// this computes the offsets at t = 0, 1
computeOffset(dx1, dy1, lineWidth2, offset[0]);
computeOffset(dx3, dy3, lineWidth2, offset[1]);
// if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
// in which case ignore.
final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2));
final boolean p2eqp3 = within(x2,y2,x3,y3, 6 * Math.ulp(y3));
if (p1eqp2 || p2eqp3) {
leftOff[0] = x1 + offset[0][0]; leftOff[1] = y1 + offset[0][1];
leftOff[4] = x3 + offset[1][0]; leftOff[5] = y3 + offset[1][1];
rightOff[0] = x1 - offset[0][0]; rightOff[1] = y1 - offset[0][1];
rightOff[4] = x3 - offset[1][0]; rightOff[5] = y3 - offset[1][1];
float x1p = leftOff[0]; // start
float y1p = leftOff[1]; // point
float x3p = leftOff[4]; // end
float y3p = leftOff[5]; // point
// Corner cases:
// 1. If the two control vectors are parallel, we'll end up with NaN's
// in leftOff (and rightOff in the body of the if below), so we'll
// do getLineOffsets, which is right.
// 2. If the first or second two points are equal, then (dx1,dy1)==(0,0)
// or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1)
// or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that
// computeIntersection will put NaN's in leftOff and right off, and
// we will do getLineOffsets, which is right.
computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
float cx = leftOff[2];
float cy = leftOff[3];
if (!(isFinite(cx) && isFinite(cy))) {
// maybe the right path is not degenerate.
x1p = rightOff[0];
y1p = rightOff[1];
x3p = rightOff[4];
y3p = rightOff[5];
computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
cx = rightOff[2];
cy = rightOff[3];
if (!(isFinite(cx) && isFinite(cy))) {
// both are degenerate. This curve is a line.
getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
return 4;
}
// if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
float dotsq = (dx1 * dx3 + dy1 * dy3);
dotsq = dotsq * dotsq;
float l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3;
if (Helpers.within(dotsq, l1sq * l3sq, 4 * Math.ulp(dotsq))) {
getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
return 4;
// {left,right}Off[0,1,4,5] are already set to the correct values.
leftOff[2] = 2*x2 - cx;
leftOff[3] = 2*y2 - cy;
return 6;
}
// this computes the offsets at t=0, 0.5, 1, using the property that
// for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
// the (dx/dt, dy/dt) vectors at the endpoints.
computeOffset(dx1, dy1, lineWidth2, offset[0]);
computeOffset(dx3, dy3, lineWidth2, offset[1]);
float x1p = x1 + offset[0][0]; // start
float y1p = y1 + offset[0][1]; // point
float x3p = x3 + offset[1][0]; // end
float y3p = y3 + offset[1][1]; // point
computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
leftOff[0] = x1p; leftOff[1] = y1p;
leftOff[4] = x3p; leftOff[5] = y3p;
x1p = x1 - offset[0][0]; y1p = y1 - offset[0][1];
x3p = x3 - offset[1][0]; y3p = y3 - offset[1][1];
computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
rightOff[0] = x1p; rightOff[1] = y1p;
rightOff[4] = x3p; rightOff[5] = y3p;
// rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2))
// == 2*(x2, y2) - (left_x2, left_y2)
rightOff[2] = 2*x2 - cx;
rightOff[3] = 2*y2 - cy;
return 6;
}
private static boolean isFinite(float x) {
return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY);
}
// This is where the curve to be processed is put. We give it
// enough room to store 2 curves: one for the current subdivision, the
// other for the rest of the curve.
......@@ -812,12 +821,12 @@ final class Stroker implements PathConsumer2D {
// if these vectors are too small, normalize them, to avoid future
// precision problems.
if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
float len = (float)Math.sqrt(dxs*dxs + dys*dys);
float len = (float) sqrt(dxs*dxs + dys*dys);
dxs /= len;
dys /= len;
}
if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
float len = (float) sqrt(dxf*dxf + dyf*dyf);
dxf /= len;
dyf /= len;
}
......@@ -834,7 +843,6 @@ final class Stroker implements PathConsumer2D {
while(it.hasNext()) {
int curCurveOff = it.next();
kind = 0;
switch (type) {
case 8:
kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
......@@ -843,7 +851,6 @@ final class Stroker implements PathConsumer2D {
kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
break;
}
if (kind != 0) {
emitLineTo(lp[0], lp[1]);
switch(kind) {
case 8:
......@@ -861,7 +868,6 @@ final class Stroker implements PathConsumer2D {
}
emitLineTo(rp[kind - 2], rp[kind - 1], true);
}
}
this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;
......@@ -887,7 +893,7 @@ final class Stroker implements PathConsumer2D {
// we rotate it so that the first vector in the control polygon is
// parallel to the x-axis. This will ensure that rotated quarter
// circles won't be subdivided.
final float hypot = (float)Math.sqrt(x12 * x12 + y12 * y12);
final float hypot = (float) sqrt(x12 * x12 + y12 * y12);
final float cos = x12 / hypot;
final float sin = y12 / hypot;
final float x1 = cos * pts[0] + sin * pts[1];
......@@ -976,12 +982,12 @@ final class Stroker implements PathConsumer2D {
// if these vectors are too small, normalize them, to avoid future
// precision problems.
if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
float len = (float)Math.sqrt(dxs*dxs + dys*dys);
float len = (float) sqrt(dxs*dxs + dys*dys);
dxs /= len;
dys /= len;
}
if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
float len = (float) sqrt(dxf*dxf + dyf*dyf);
dxf /= len;
dyf /= len;
}
......@@ -999,7 +1005,6 @@ final class Stroker implements PathConsumer2D {
int curCurveOff = it.next();
kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
if (kind != 0) {
emitLineTo(lp[0], lp[1]);
switch(kind) {
case 8:
......@@ -1013,7 +1018,6 @@ final class Stroker implements PathConsumer2D {
}
emitLineTo(rp[kind - 2], rp[kind - 1], true);
}
}
this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;
......@@ -1050,12 +1054,12 @@ final class Stroker implements PathConsumer2D {
// if these vectors are too small, normalize them, to avoid future
// precision problems.
if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
float len = (float)Math.sqrt(dxs*dxs + dys*dys);
float len = (float) sqrt(dxs*dxs + dys*dys);
dxs /= len;
dys /= len;
}
if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
float len = (float) sqrt(dxf*dxf + dyf*dyf);
dxf /= len;
dyf /= len;
}
......@@ -1073,7 +1077,6 @@ final class Stroker implements PathConsumer2D {
int curCurveOff = it.next();
kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
if (kind != 0) {
emitLineTo(lp[0], lp[1]);
switch(kind) {
case 6:
......@@ -1087,7 +1090,6 @@ final class Stroker implements PathConsumer2D {
}
emitLineTo(rp[kind - 2], rp[kind - 1], true);
}
}
this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;
......
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 7036754
*
* @summary Verifies that there are no non-finite numbers when stroking
* certain quadratic curves.
*
* @author Jim Graham
* @run main Test7036754
*/
import java.awt.*;
import java.awt.geom.*;
public class Test7036754 {
public static void main(String argv[]) {
Shape s = new QuadCurve2D.Float(839.24677f, 508.97888f,
839.2953f, 508.97122f,
839.3438f, 508.96353f);
s = new BasicStroke(10f).createStrokedShape(s);
float nsegs[] = {2, 2, 4, 6, 0};
float coords[] = new float[6];
PathIterator pi = s.getPathIterator(null);
while (!pi.isDone()) {
int type = pi.currentSegment(coords);
for (int i = 0; i < nsegs[type]; i++) {
float c = coords[i];
if (Float.isNaN(c) || Float.isInfinite(c)) {
throw new RuntimeException("bad value in stroke");
}
}
pi.next();
}
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册