diff --git a/src/share/classes/sun/java2d/pisces/Stroker.java b/src/share/classes/sun/java2d/pisces/Stroker.java index dc270c194c87cc6153996682335c661a0f51f4ac..6d4a4c75ac54d34a7627b2e9257e6e142edbb45f 100644 --- a/src/share/classes/sun/java2d/pisces/Stroker.java +++ b/src/share/classes/sun/java2d/pisces/Stroker.java @@ -27,6 +27,8 @@ package sun.java2d.pisces; import java.util.Arrays; import java.util.Iterator; +import static java.lang.Math.ulp; +import static java.lang.Math.sqrt; import sun.awt.geom.PathConsumer2D; @@ -130,7 +132,7 @@ final class Stroker implements PathConsumer2D { private static void computeOffset(final float lx, final float ly, final float w, final float[] m) { - final float len = (float)Math.sqrt(lx*lx + ly*ly); + final float len = (float) sqrt(lx*lx + ly*ly); if (len == 0) { m[0] = m[1] = 0; } else { @@ -217,7 +219,7 @@ final class Stroker implements PathConsumer2D { // this normal's length is at least 0.5 and at most sqrt(2)/2 (because // we know the angle of the arc is > 90 degrees). float nx = my - omy, ny = omx - mx; - float nlen = (float)Math.sqrt(nx*nx + ny*ny); + float nlen = (float) sqrt(nx*nx + ny*ny); float scale = lineWidth2/nlen; float mmx = nx * scale, mmy = ny * scale; @@ -246,8 +248,8 @@ final class Stroker implements PathConsumer2D { // define the bezier curve we're computing. // It is computed using the constraints that P1-P0 and P3-P2 are parallel // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|. - float cv = (float)((4.0 / 3.0) * Math.sqrt(0.5-cosext2) / - (1.0 + Math.sqrt(cosext2+0.5))); + float cv = (float) ((4.0 / 3.0) * sqrt(0.5-cosext2) / + (1.0 + sqrt(cosext2+0.5))); // if clockwise, we need to negate cv. if (rev) { // rev is equivalent to isCW(omx, omy, mx, my) cv = -cv; @@ -284,28 +286,20 @@ final class Stroker implements PathConsumer2D { false); } - // Return the intersection point of the lines (x0, y0) -> (x1, y1) - // and (x0p, y0p) -> (x1p, y1p) in m[0] and m[1] - private void computeMiter(final float x0, final float y0, - final float x1, final float y1, - final float x0p, final float y0p, - final float x1p, final float y1p, - final float[] m, int off) + // Put the intersection point of the lines (x0, y0) -> (x1, y1) + // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1]. + // If the lines are parallel, it will put a non finite number in m. + private void computeIntersection(final float x0, final float y0, + final float x1, final float y1, + final float x0p, final float y0p, + final float x1p, final float y1p, + final float[] m, int off) { float x10 = x1 - x0; float y10 = y1 - y0; float x10p = x1p - x0p; float y10p = y1p - y0p; - // if this is 0, the lines are parallel. If they go in the - // same direction, there is no intersection so m[off] and - // m[off+1] will contain infinity, so no miter will be drawn. - // If they go in the same direction that means that the start of the - // current segment and the end of the previous segment have the same - // tangent, in which case this method won't even be involved in - // miter drawing because it won't be called by drawMiter (because - // (mx == omx && my == omy) will be true, and drawMiter will return - // immediately). float den = x10*y10p - x10p*y10; float t = x10p*(y0-y0p) - y10p*(x0-x0p); t /= den; @@ -321,7 +315,8 @@ final class Stroker implements PathConsumer2D { { if ((mx == omx && my == omy) || (pdx == 0 && pdy == 0) || - (dx == 0 && dy == 0)) { + (dx == 0 && dy == 0)) + { return; } @@ -332,12 +327,17 @@ final class Stroker implements PathConsumer2D { my = -my; } - computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy, - (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my, - miter, 0); + computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy, + (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my, + miter, 0); float lenSq = (miter[0]-x0)*(miter[0]-x0) + (miter[1]-y0)*(miter[1]-y0); + // If the lines are parallel, lenSq will be either NaN or +inf + // (actually, I'm not sure if the latter is possible. The important + // thing is that -inf is not possible, because lenSq is a square). + // For both of those values, the comparison below will fail and + // no miter will be drawn, which is correct. if (lenSq < miterLimitSq) { emitLineTo(miter[0], miter[1], rev); } @@ -566,8 +566,8 @@ final class Stroker implements PathConsumer2D { // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, // in which case ignore if p1 == p2 - final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2)); - final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * Math.ulp(y4)); + final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * ulp(y2)); + final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * ulp(y4)); if (p1eqp2 && p3eqp4) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; @@ -583,7 +583,7 @@ final class Stroker implements PathConsumer2D { float dotsq = (dx1 * dx4 + dy1 * dy4); dotsq = dotsq * dotsq; float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4; - if (Helpers.within(dotsq, l1sq * l4sq, 4 * Math.ulp(dotsq))) { + if (Helpers.within(dotsq, l1sq * l4sq, 4 * ulp(dotsq))) { getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); return 4; } @@ -693,8 +693,6 @@ final class Stroker implements PathConsumer2D { return 8; } - // compute offset curves using bezier spline through t=0.5 (i.e. - // ComputedCurve(0.5) == IdealParallelCurve(0.5)) // return the kind of curve in the right and left arrays. private int computeOffsetQuad(float[] pts, final int off, float[] leftOff, float[] rightOff) @@ -703,58 +701,69 @@ final class Stroker implements PathConsumer2D { final float x2 = pts[off + 2], y2 = pts[off + 3]; final float x3 = pts[off + 4], y3 = pts[off + 5]; - float dx3 = x3 - x2; - float dy3 = y3 - y2; - float dx1 = x2 - x1; - float dy1 = y2 - y1; + final float dx3 = x3 - x2; + final float dy3 = y3 - y2; + final float dx1 = x2 - x1; + final float dy1 = y2 - y1; - // if p1=p2 or p3=p4 it means that the derivative at the endpoint - // vanishes, which creates problems with computeOffset. Usually - // this happens when this stroker object is trying to winden - // a curve with a cusp. What happens is that curveTo splits - // the input curve at the cusp, and passes it to this function. - // because of inaccuracies in the splitting, we consider points - // equal if they're very close to each other. - - // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, - // in which case ignore. - final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2)); - final boolean p2eqp3 = within(x2,y2,x3,y3, 6 * Math.ulp(y3)); - if (p1eqp2 || p2eqp3) { - getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); - return 4; - } - - // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line - float dotsq = (dx1 * dx3 + dy1 * dy3); - dotsq = dotsq * dotsq; - float l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3; - if (Helpers.within(dotsq, l1sq * l3sq, 4 * Math.ulp(dotsq))) { - getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); - return 4; - } - - // this computes the offsets at t=0, 0.5, 1, using the property that - // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to - // the (dx/dt, dy/dt) vectors at the endpoints. + // this computes the offsets at t = 0, 1 computeOffset(dx1, dy1, lineWidth2, offset[0]); computeOffset(dx3, dy3, lineWidth2, offset[1]); - float x1p = x1 + offset[0][0]; // start - float y1p = y1 + offset[0][1]; // point - float x3p = x3 + offset[1][0]; // end - float y3p = y3 + offset[1][1]; // point - computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2); - leftOff[0] = x1p; leftOff[1] = y1p; - leftOff[4] = x3p; leftOff[5] = y3p; - x1p = x1 - offset[0][0]; y1p = y1 - offset[0][1]; - x3p = x3 - offset[1][0]; y3p = y3 - offset[1][1]; - computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2); - rightOff[0] = x1p; rightOff[1] = y1p; - rightOff[4] = x3p; rightOff[5] = y3p; + leftOff[0] = x1 + offset[0][0]; leftOff[1] = y1 + offset[0][1]; + leftOff[4] = x3 + offset[1][0]; leftOff[5] = y3 + offset[1][1]; + rightOff[0] = x1 - offset[0][0]; rightOff[1] = y1 - offset[0][1]; + rightOff[4] = x3 - offset[1][0]; rightOff[5] = y3 - offset[1][1]; + + float x1p = leftOff[0]; // start + float y1p = leftOff[1]; // point + float x3p = leftOff[4]; // end + float y3p = leftOff[5]; // point + + // Corner cases: + // 1. If the two control vectors are parallel, we'll end up with NaN's + // in leftOff (and rightOff in the body of the if below), so we'll + // do getLineOffsets, which is right. + // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0) + // or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1) + // or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that + // computeIntersection will put NaN's in leftOff and right off, and + // we will do getLineOffsets, which is right. + computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2); + float cx = leftOff[2]; + float cy = leftOff[3]; + + if (!(isFinite(cx) && isFinite(cy))) { + // maybe the right path is not degenerate. + x1p = rightOff[0]; + y1p = rightOff[1]; + x3p = rightOff[4]; + y3p = rightOff[5]; + computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2); + cx = rightOff[2]; + cy = rightOff[3]; + if (!(isFinite(cx) && isFinite(cy))) { + // both are degenerate. This curve is a line. + getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); + return 4; + } + // {left,right}Off[0,1,4,5] are already set to the correct values. + leftOff[2] = 2*x2 - cx; + leftOff[3] = 2*y2 - cy; + return 6; + } + + // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2)) + // == 2*(x2, y2) - (left_x2, left_y2) + rightOff[2] = 2*x2 - cx; + rightOff[3] = 2*y2 - cy; return 6; } + private static boolean isFinite(float x) { + return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY); + } + // This is where the curve to be processed is put. We give it // enough room to store 2 curves: one for the current subdivision, the // other for the rest of the curve. @@ -812,12 +821,12 @@ final class Stroker implements PathConsumer2D { // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { - float len = (float)Math.sqrt(dxs*dxs + dys*dys); + float len = (float) sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { - float len = (float)Math.sqrt(dxf*dxf + dyf*dyf); + float len = (float) sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } @@ -834,7 +843,6 @@ final class Stroker implements PathConsumer2D { while(it.hasNext()) { int curCurveOff = it.next(); - kind = 0; switch (type) { case 8: kind = computeOffsetCubic(middle, curCurveOff, lp, rp); @@ -843,24 +851,22 @@ final class Stroker implements PathConsumer2D { kind = computeOffsetQuad(middle, curCurveOff, lp, rp); break; } - if (kind != 0) { - emitLineTo(lp[0], lp[1]); - switch(kind) { - case 8: - emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false); - emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true); - break; - case 6: - emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false); - emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true); - break; - case 4: - emitLineTo(lp[2], lp[3]); - emitLineTo(rp[0], rp[1], true); - break; - } - emitLineTo(rp[kind - 2], rp[kind - 1], true); + emitLineTo(lp[0], lp[1]); + switch(kind) { + case 8: + emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false); + emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true); + break; + case 6: + emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false); + emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true); + break; + case 4: + emitLineTo(lp[2], lp[3]); + emitLineTo(rp[0], rp[1], true); + break; } + emitLineTo(rp[kind - 2], rp[kind - 1], true); } this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2; @@ -887,7 +893,7 @@ final class Stroker implements PathConsumer2D { // we rotate it so that the first vector in the control polygon is // parallel to the x-axis. This will ensure that rotated quarter // circles won't be subdivided. - final float hypot = (float)Math.sqrt(x12 * x12 + y12 * y12); + final float hypot = (float) sqrt(x12 * x12 + y12 * y12); final float cos = x12 / hypot; final float sin = y12 / hypot; final float x1 = cos * pts[0] + sin * pts[1]; @@ -976,12 +982,12 @@ final class Stroker implements PathConsumer2D { // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { - float len = (float)Math.sqrt(dxs*dxs + dys*dys); + float len = (float) sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { - float len = (float)Math.sqrt(dxf*dxf + dyf*dyf); + float len = (float) sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } @@ -999,20 +1005,18 @@ final class Stroker implements PathConsumer2D { int curCurveOff = it.next(); kind = computeOffsetCubic(middle, curCurveOff, lp, rp); - if (kind != 0) { - emitLineTo(lp[0], lp[1]); - switch(kind) { - case 8: - emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false); - emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true); - break; - case 4: - emitLineTo(lp[2], lp[3]); - emitLineTo(rp[0], rp[1], true); - break; - } - emitLineTo(rp[kind - 2], rp[kind - 1], true); + emitLineTo(lp[0], lp[1]); + switch(kind) { + case 8: + emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false); + emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true); + break; + case 4: + emitLineTo(lp[2], lp[3]); + emitLineTo(rp[0], rp[1], true); + break; } + emitLineTo(rp[kind - 2], rp[kind - 1], true); } this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2; @@ -1050,12 +1054,12 @@ final class Stroker implements PathConsumer2D { // if these vectors are too small, normalize them, to avoid future // precision problems. if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { - float len = (float)Math.sqrt(dxs*dxs + dys*dys); + float len = (float) sqrt(dxs*dxs + dys*dys); dxs /= len; dys /= len; } if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { - float len = (float)Math.sqrt(dxf*dxf + dyf*dyf); + float len = (float) sqrt(dxf*dxf + dyf*dyf); dxf /= len; dyf /= len; } @@ -1073,20 +1077,18 @@ final class Stroker implements PathConsumer2D { int curCurveOff = it.next(); kind = computeOffsetQuad(middle, curCurveOff, lp, rp); - if (kind != 0) { - emitLineTo(lp[0], lp[1]); - switch(kind) { - case 6: - emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false); - emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true); - break; - case 4: - emitLineTo(lp[2], lp[3]); - emitLineTo(rp[0], rp[1], true); - break; - } - emitLineTo(rp[kind - 2], rp[kind - 1], true); + emitLineTo(lp[0], lp[1]); + switch(kind) { + case 6: + emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false); + emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true); + break; + case 4: + emitLineTo(lp[2], lp[3]); + emitLineTo(rp[0], rp[1], true); + break; } + emitLineTo(rp[kind - 2], rp[kind - 1], true); } this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2; diff --git a/test/sun/java2d/pisces/Test7036754.java b/test/sun/java2d/pisces/Test7036754.java new file mode 100644 index 0000000000000000000000000000000000000000..1dd39ddc8b94a520c104b1cb4b3726eab9403c6a --- /dev/null +++ b/test/sun/java2d/pisces/Test7036754.java @@ -0,0 +1,58 @@ +/* + * Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +/** + * @test + * @bug 7036754 + * + * @summary Verifies that there are no non-finite numbers when stroking + * certain quadratic curves. + * + * @author Jim Graham + * @run main Test7036754 + */ + +import java.awt.*; +import java.awt.geom.*; + +public class Test7036754 { + public static void main(String argv[]) { + Shape s = new QuadCurve2D.Float(839.24677f, 508.97888f, + 839.2953f, 508.97122f, + 839.3438f, 508.96353f); + s = new BasicStroke(10f).createStrokedShape(s); + float nsegs[] = {2, 2, 4, 6, 0}; + float coords[] = new float[6]; + PathIterator pi = s.getPathIterator(null); + while (!pi.isDone()) { + int type = pi.currentSegment(coords); + for (int i = 0; i < nsegs[type]; i++) { + float c = coords[i]; + if (Float.isNaN(c) || Float.isInfinite(c)) { + throw new RuntimeException("bad value in stroke"); + } + } + pi.next(); + } + } +}