提交 07c71753 编写于 作者: B briangoetz

8015318: Extend Collector with 'finish' operation

Reviewed-by: mduigou
Contributed-by: brian.goetz@oracle.com
上级 fcb44dca
......@@ -25,6 +25,7 @@
package java.util;
import java.util.function.DoubleConsumer;
import java.util.stream.Collector;
/**
* A state object for collecting statistics such as count, min, max, sum, and
......@@ -35,24 +36,24 @@ import java.util.function.DoubleConsumer;
* summary statistics on a stream of doubles with:
* <pre> {@code
* DoubleSummaryStatistics stats = doubleStream.collect(DoubleSummaryStatistics::new,
* DoubleSummaryStatistics::accept,
* DoubleSummaryStatistics::combine);
* DoubleSummaryStatistics::accept,
* DoubleSummaryStatistics::combine);
* }</pre>
*
* <p>{@code DoubleSummaryStatistics} can be used as a
* {@linkplain java.util.stream.Stream#reduce(java.util.function.BinaryOperator) reduction}
* {@linkplain java.util.stream.Stream#collect(Collector) reduction}
* target for a {@linkplain java.util.stream.Stream stream}. For example:
*
* <pre> {@code
* DoubleSummaryStatistics stats = people.stream()
* .collect(Collectors.toDoubleSummaryStatistics(Person::getWeight));
* .collect(Collectors.summarizingDouble(Person::getWeight));
*}</pre>
*
* This computes, in a single pass, the count of people, as well as the minimum,
* maximum, sum, and average of their weights.
*
* @implNote This implementation is not thread safe. However, it is safe to use
* {@link java.util.stream.Collectors#toDoubleSummaryStatistics(java.util.function.ToDoubleFunction)
* {@link java.util.stream.Collectors#summarizingDouble(java.util.function.ToDoubleFunction)
* Collectors.toDoubleStatistics()} on a parallel stream, because the parallel
* implementation of {@link java.util.stream.Stream#collect Stream.collect()}
* provides the necessary partitioning, isolation, and merging of results for
......@@ -152,7 +153,7 @@ public class DoubleSummaryStatistics implements DoubleConsumer {
}
/**
* Returns the average of values recorded, or zero if no values have been
* Returns the arithmetic mean of values recorded, or zero if no values have been
* recorded. The average returned can vary depending upon the order in
* which values are recorded. This is due to accumulated rounding error in
* addition of values of differing magnitudes. Values sorted by increasing
......@@ -160,7 +161,7 @@ public class DoubleSummaryStatistics implements DoubleConsumer {
* value is a {@code NaN} or the sum is at any point a {@code NaN} then the
* average will be {@code NaN}.
*
* @return the average of values, or zero if none
* @return the arithmetic mean of values, or zero if none
*/
public final double getAverage() {
return getCount() > 0 ? getSum() / getCount() : 0.0d;
......
......@@ -25,6 +25,7 @@
package java.util;
import java.util.function.IntConsumer;
import java.util.stream.Collector;
/**
* A state object for collecting statistics such as count, min, max, sum, and
......@@ -35,24 +36,24 @@ import java.util.function.IntConsumer;
* summary statistics on a stream of ints with:
* <pre> {@code
* IntSummaryStatistics stats = intStream.collect(IntSummaryStatistics::new,
* IntSummaryStatistics::accept,
* IntSummaryStatistics::combine);
* IntSummaryStatistics::accept,
* IntSummaryStatistics::combine);
* }</pre>
*
* <p>{@code IntSummaryStatistics} can be used as a
* {@linkplain java.util.stream.Stream#reduce(java.util.function.BinaryOperator) reduction}
* {@linkplain java.util.stream.Stream#collect(Collector) reduction}
* target for a {@linkplain java.util.stream.Stream stream}. For example:
*
* <pre> {@code
* IntSummaryStatistics stats = people.stream()
* .collect(Collectors.toIntSummaryStatistics(Person::getDependents));
* .collect(Collectors.summarizingInt(Person::getDependents));
*}</pre>
*
* This computes, in a single pass, the count of people, as well as the minimum,
* maximum, sum, and average of their number of dependents.
*
* @implNote This implementation is not thread safe. However, it is safe to use
* {@link java.util.stream.Collectors#toIntSummaryStatistics(java.util.function.ToIntFunction)
* {@link java.util.stream.Collectors#summarizingInt(java.util.function.ToIntFunction)
* Collectors.toIntStatistics()} on a parallel stream, because the parallel
* implementation of {@link java.util.stream.Stream#collect Stream.collect()}
* provides the necessary partitioning, isolation, and merging of results for
......@@ -140,10 +141,10 @@ public class IntSummaryStatistics implements IntConsumer {
}
/**
* Returns the average of values recorded, or zero if no values have been
* Returns the arithmetic mean of values recorded, or zero if no values have been
* recorded.
*
* @return the average of values, or zero if none
* @return the arithmetic mean of values, or zero if none
*/
public final double getAverage() {
return getCount() > 0 ? (double) getSum() / getCount() : 0.0d;
......
......@@ -26,6 +26,7 @@ package java.util;
import java.util.function.IntConsumer;
import java.util.function.LongConsumer;
import java.util.stream.Collector;
/**
* A state object for collecting statistics such as count, min, max, sum, and
......@@ -36,24 +37,24 @@ import java.util.function.LongConsumer;
* summary statistics on a stream of longs with:
* <pre> {@code
* LongSummaryStatistics stats = longStream.collect(LongSummaryStatistics::new,
* LongSummaryStatistics::accept,
* LongSummaryStatistics::combine);
* LongSummaryStatistics::accept,
* LongSummaryStatistics::combine);
* }</pre>
*
* <p>{@code LongSummaryStatistics} can be used as a
* {@linkplain java.util.stream.Stream#reduce(java.util.function.BinaryOperator) reduction}
* {@linkplain java.util.stream.Stream#collect(Collector)} reduction}
* target for a {@linkplain java.util.stream.Stream stream}. For example:
*
* <pre> {@code
* LongSummaryStatistics stats = people.stream()
* .collect(Collectors.toLongSummaryStatistics(Person::getAge));
* .collect(Collectors.summarizingLong(Person::getAge));
*}</pre>
*
* This computes, in a single pass, the count of people, as well as the minimum,
* maximum, sum, and average of their ages in milliseconds.
* maximum, sum, and average of their ages.
*
* @implNote This implementation is not thread safe. However, it is safe to use
* {@link java.util.stream.Collectors#toLongSummaryStatistics(java.util.function.ToLongFunction)
* {@link java.util.stream.Collectors#summarizingLong(java.util.function.ToLongFunction)
* Collectors.toLongStatistics()} on a parallel stream, because the parallel
* implementation of {@link java.util.stream.Stream#collect Stream.collect()}
* provides the necessary partitioning, isolation, and merging of results for
......@@ -152,10 +153,10 @@ public class LongSummaryStatistics implements LongConsumer, IntConsumer {
}
/**
* Returns the average of values recorded, or zero if no values have been
* Returns the arithmetic mean of values recorded, or zero if no values have been
* recorded.
*
* @return The average of values, or zero if none
* @return The arithmetic mean of values, or zero if none
*/
public final double getAverage() {
return getCount() > 0 ? (double) getSum() / getCount() : 0.0d;
......
......@@ -49,16 +49,17 @@ package java.util;
* <p>
* A {@code StringJoiner} may be employed to create formatted output from a
* {@link java.util.stream.Stream} using
* {@link java.util.stream.Collectors#toStringJoiner}. For example:
* {@link java.util.stream.Collectors#joining(CharSequence)}. For example:
*
* <pre> {@code
* List<Integer> numbers = Arrays.asList(1, 2, 3, 4);
* String commaSeparatedNumbers = numbers.stream()
* .map(i -> i.toString())
* .collect(Collectors.toStringJoiner(", ")).toString();
* .collect(Collectors.joining(", "));
* }</pre>
*
* @see java.util.stream.Collectors#toStringJoiner
* @see java.util.stream.Collectors#joining(CharSequence)
* @see java.util.stream.Collectors#joining(CharSequence, CharSequence, CharSequence)
* @since 1.8
*/
public final class StringJoiner {
......
......@@ -25,40 +25,45 @@
package java.util.stream;
import java.util.Collections;
import java.util.EnumSet;
import java.util.Set;
import java.util.function.BiFunction;
import java.util.function.BiConsumer;
import java.util.function.BinaryOperator;
import java.util.function.Function;
import java.util.function.Supplier;
/**
* A <a href="package-summary.html#Reduction">reduction operation</a> that
* supports folding input elements into a cumulative result. The result may be
* a value or may be a mutable result container. Examples of operations
* accumulating results into a mutable result container include: accumulating
* input elements into a {@code Collection}; concatenating strings into a
* {@code StringBuilder}; computing summary information about elements such as
* sum, min, max, or average; computing "pivot table" summaries such as "maximum
* valued transaction by seller", etc. Reduction operations can be performed
* either sequentially or in parallel.
* folds input elements into a mutable result container, optionally transforming
* the accumulated result into a final representation after all input elements
* have been processed.
*
* <p>Examples of mutable reduction operations include:
* accumulating elements into a {@code Collection}; concatenating
* strings using a {@code StringBuilder}; computing summary information about
* elements such as sum, min, max, or average; computing "pivot table" summaries
* such as "maximum valued transaction by seller", etc. Reduction operations
* can be performed either sequentially or in parallel.
*
* <p>The following are examples of using the predefined {@code Collector}
* implementations in {@link Collectors} with the {@code Stream} API to perform
* mutable reduction tasks:
* <pre>{@code
* // Accumulate elements into a List
* List<String> list = stream.collect(Collectors.toList());
* // Accumulate names into a List
* List<String> list = people.stream().map(Person::getName).collect(Collectors.toList());
*
* // Accumulate elements into a TreeSet
* Set<String> list = stream.collect(Collectors.toCollection(TreeSet::new));
* // Accumulate names into a TreeSet
* Set<String> list = people.stream().map(Person::getName).collect(Collectors.toCollection(TreeSet::new));
*
* // Convert elements to strings and concatenate them, separated by commas
* String joined = stream.map(Object::toString)
* .collect(Collectors.toStringJoiner(", "))
* .toString();
* String joined = things.stream()
* .map(Object::toString)
* .collect(Collectors.joining(", "));
*
* // Find highest-paid employee
* Employee highestPaid = employees.stream()
* .collect(Collectors.maxBy(Comparators.comparing(Employee::getSalary)));
* .collect(Collectors.maxBy(Comparators.comparing(Employee::getSalary)))
* .get();
*
* // Group employees by department
* Map<Department, List<Employee>> byDept
......@@ -66,7 +71,7 @@ import java.util.function.Supplier;
* .collect(Collectors.groupingBy(Employee::getDepartment));
*
* // Find highest-paid employee by department
* Map<Department, Employee> highestPaidByDept
* Map<Department, Optional<Employee>> highestPaidByDept
* = employees.stream()
* .collect(Collectors.groupingBy(Employee::getDepartment,
* Collectors.maxBy(Comparators.comparing(Employee::getSalary))));
......@@ -74,43 +79,42 @@ import java.util.function.Supplier;
* // Partition students into passing and failing
* Map<Boolean, List<Student>> passingFailing =
* students.stream()
* .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD);
* .collect(Collectors.partitioningBy(s -> s.getGrade() >= PASS_THRESHOLD));
*
* }</pre>
*
* <p>A {@code Collector} is specified by three functions that work together to
* manage a result or result container. They are: creation of an initial
* result, incorporating a new data element into a result, and combining two
* results into one. The last function -- combining two results into one -- is
* used during parallel operations, where subsets of the input are accumulated
* in parallel, and then the subresults merged into a combined result. The
* result may be a mutable container or a value. If the result is mutable, the
* accumulation and combination functions may either mutate their left argument
* and return that (such as adding elements to a collection), or return a new
* result, in which case it should not perform any mutation.
*
* <p>Collectors also have a set of characteristics, including
* {@link Characteristics#CONCURRENT} and
* {@link Characteristics#STRICTLY_MUTATIVE}. These characteristics provide
* <p>A {@code Collector} is specified by four functions that work together to
* accumulate entries into a mutable result container, and optionally perform
* a final transform on the result. They are: creation of a new result container,
* incorporating a new data element into a result container, combining two
* result containers into one, and performing a final transform on the container.
* The combiner function is used during parallel operations, where
* subsets of the input are accumulated into separate result
* containers, and then the subresults merged into a combined result. The
* combiner function may merge one set of subresults into the other and return
* that, or it may return a new object to describe the combined results.
*
* <p>Collectors also have a set of characteristics, such as
* {@link Characteristics#CONCURRENT}. These characteristics provide
* hints that can be used by a reduction implementation to provide better
* performance.
*
* <p>Libraries that implement reduction based on {@code Collector}, such as
* {@link Stream#collect(Collector)}, must adhere to the following constraints:
* <ul>
* <li>The first argument passed to the accumulator function, and both
* arguments passed to the combiner function, must be the result of a
* previous invocation of {@link #resultSupplier()}, {@link #accumulator()},
* or {@link #combiner()}.</li>
* <li>The first argument passed to the accumulator function, both
* arguments passed to the combiner function, and the argument passed to the
* finisher function must be the result of a previous invocation of the
* result supplier, accumulator, or combiner functions.</li>
* <li>The implementation should not do anything with the result of any of
* the result supplier, accumulator, or combiner functions other than to
* pass them again to the accumulator or combiner functions, or return them
* to the caller of the reduction operation.</li>
* <li>If a result is passed to the accumulator or combiner function, and
* the same object is not returned from that function, it is never used
* again.</li>
* <li>Once a result is passed to the combiner function, it is never passed
* to the accumulator function again.</li>
* pass them again to the accumulator, combiner, or finisher functions,
* or return them to the caller of the reduction operation.</li>
* <li>If a result is passed to the combiner or finisher
* function, and the same object is not returned from that function, it is
* never used again.</li>
* <li>Once a result is passed to the combiner or finisher function, it
* is never passed to the accumulator function again.</li>
* <li>For non-concurrent collectors, any result returned from the result
* supplier, accumulator, or combiner functions must be serially
* thread-confined. This enables collection to occur in parallel without
......@@ -132,11 +136,10 @@ import java.util.function.Supplier;
* Performing a reduction operation with a {@code Collector} should produce a
* result equivalent to:
* <pre>{@code
* BiFunction<R,T,R> accumulator = collector.accumulator();
* R result = collector.resultSupplier().get();
* R container = collector.supplier().get();
* for (T t : data)
* result = accumulator.apply(result, t);
* return result;
* collector.accumulator().accept(container, t);
* return collector.finisher().apply(container);
* }</pre>
*
* <p>However, the library is free to partition the input, perform the reduction
......@@ -149,7 +152,7 @@ import java.util.function.Supplier;
* is accumulating elements into a {@code TreeSet}. In this case, the {@code
* resultSupplier()} function is {@code () -> new Treeset<T>()}, the
* {@code accumulator} function is
* {@code (set, element) -> { set.add(element); return set; }}, and the combiner
* {@code (set, element) -> set.add(element) }, and the combiner
* function is {@code (left, right) -> { left.addAll(right); return left; }}.
* (This behavior is implemented by
* {@code Collectors.toCollection(TreeSet::new)}).
......@@ -159,51 +162,49 @@ import java.util.function.Supplier;
* @see Stream#collect(Collector)
* @see Collectors
*
* @param <T> the type of input element to the collect operation
* @param <R> the result type of the collect operation
* @param <T> the type of input elements to the reduction operation
* @param <A> the mutable accumulation type of the reduction operation (often
* hidden as an implementation detail)
* @param <R> the result type of the reduction operation
* @since 1.8
*/
public interface Collector<T, R> {
public interface Collector<T, A, R> {
/**
* A function that creates and returns a new result that represents
* "no values". If the accumulator or combiner functions may mutate their
* arguments, this must be a new, empty result container.
* A function that creates and returns a new mutable result container.
*
* @return a function which, when invoked, returns a result representing
* "no values"
* @return a function which returns a new, mutable result container
*/
Supplier<R> resultSupplier();
Supplier<A> supplier();
/**
* A function that folds a new value into a cumulative result. The result
* may be a mutable result container or a value. The accumulator function
* may modify a mutable container and return it, or create a new result and
* return that, but if it returns a new result object, it must not modify
* any of its arguments.
*
* <p>If the collector has the {@link Characteristics#STRICTLY_MUTATIVE}
* characteristic, then the accumulator function <em>must</em> always return
* its first argument, after possibly mutating its state.
* A function that folds a new value into a mutable result container.
*
* @return a function which folds a new value into a cumulative result
* @return a function which folds a new value into a mutable result container
*/
BiFunction<R, T, R> accumulator();
BiConsumer<A, T> accumulator();
/**
* A function that accepts two partial results and merges them. The
* combiner function may fold state from one argument into the other and
* return that, or may return a new result object, but if it returns
* a new result object, it must not modify the state of either of its
* arguments.
*
* <p>If the collector has the {@link Characteristics#STRICTLY_MUTATIVE}
* characteristic, then the combiner function <em>must</em> always return
* its first argument, after possibly mutating its state.
* return that, or may return a new result object.
*
* @return a function which combines two partial results into a cumulative
* result
*/
BinaryOperator<R> combiner();
BinaryOperator<A> combiner();
/**
* Perform the final transformation from the intermediate accumulation type
* {@code A} to the final result representation {@code R}.
*
* <p>If the characteristic {@code IDENTITY_TRANSFORM} is
* set, this function may be presumed to be an identity transform with an
* unchecked cast from {@code A} to {@code R}.
*
* @return a function which transforms the intermediate result to the final
* result
*/
Function<A, R> finisher();
/**
* Returns a {@code Set} of {@code Collector.Characteristics} indicating
......@@ -213,6 +214,62 @@ public interface Collector<T, R> {
*/
Set<Characteristics> characteristics();
/**
* Returns a new {@code Collector} described by the given {@code supplier},
* {@code accumulator}, and {@code combiner} functions. The resulting
* {@code Collector} has the {@code Collector.Characteristics.IDENTITY_FINISH}
* characteristic.
*
* @param supplier The supplier function for the new collector
* @param accumulator The accumulator function for the new collector
* @param combiner The combiner function for the new collector
* @param characteristics The collector characteristics for the new
* collector
* @param <T> The type of input elements for the new collector
* @param <R> The type of intermediate accumulation result, and final result,
* for the new collector
* @return the new {@code Collector}
*/
public static<T, R> Collector<T, R, R> of(Supplier<R> supplier,
BiConsumer<R, T> accumulator,
BinaryOperator<R> combiner,
Characteristics... characteristics) {
Set<Characteristics> cs = (characteristics.length == 0)
? Collectors.CH_ID
: Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH,
characteristics));
return new Collectors.CollectorImpl<>(supplier, accumulator, combiner, cs);
}
/**
* Returns a new {@code Collector} described by the given {@code supplier},
* {@code accumulator}, {@code combiner}, and {@code finisher} functions.
*
* @param supplier The supplier function for the new collector
* @param accumulator The accumulator function for the new collector
* @param combiner The combiner function for the new collector
* @param finisher The finisher function for the new collector
* @param characteristics The collector characteristics for the new
* collector
* @param <T> The type of input elements for the new collector
* @param <A> The intermediate accumulation type of the new collector
* @param <R> The final result type of the new collector
* @return the new {@code Collector}
*/
public static<T, A, R> Collector<T, A, R> of(Supplier<A> supplier,
BiConsumer<A, T> accumulator,
BinaryOperator<A> combiner,
Function<A, R> finisher,
Characteristics... characteristics) {
Set<Characteristics> cs = Collectors.CH_NOID;
if (characteristics.length > 0) {
cs = EnumSet.noneOf(Characteristics.class);
Collections.addAll(cs, characteristics);
cs = Collections.unmodifiableSet(cs);
}
return new Collectors.CollectorImpl<>(supplier, accumulator, combiner, finisher, cs);
}
/**
* Characteristics indicating properties of a {@code Collector}, which can
* be used to optimize reduction implementations.
......@@ -222,8 +279,7 @@ public interface Collector<T, R> {
* Indicates that this collector is <em>concurrent</em>, meaning that
* the result container can support the accumulator function being
* called concurrently with the same result container from multiple
* threads. Concurrent collectors must also always have the
* {@code STRICTLY_MUTATIVE} characteristic.
* threads.
*
* <p>If a {@code CONCURRENT} collector is not also {@code UNORDERED},
* then it should only be evaluated concurrently if applied to an
......@@ -238,12 +294,10 @@ public interface Collector<T, R> {
UNORDERED,
/**
* Indicates that this collector operates by strict mutation of its
* result container. This means that the {@link #accumulator()} and
* {@link #combiner()} functions will always modify the state of and
* return their first argument, rather than returning a different result
* container.
* Indicates that the finisher function is the identity function and
* can be elided. If set, it must be the case that an unchecked cast
* from A to R will succeed.
*/
STRICTLY_MUTATIVE
IDENTITY_FINISH
}
}
......@@ -209,7 +209,7 @@ public class DelegatingStream<T> implements Stream<T> {
}
@Override
public <R> R collect(Collector<? super T, R> collector) {
public <R, A> R collect(Collector<? super T, A, ? extends R> collector) {
return delegate.collect(collector);
}
......
......@@ -527,7 +527,7 @@ public interface DoubleStream extends BaseStream<Double, DoubleStream> {
long count();
/**
* Returns an {@code OptionalDouble} describing the average of elements of
* Returns an {@code OptionalDouble} describing the arithmetic mean of elements of
* this stream, or an empty optional if this stream is empty. The average
* returned can vary depending upon the order in which elements are
* encountered. This is due to accumulated rounding error in addition of
......
......@@ -517,7 +517,7 @@ public interface IntStream extends BaseStream<Integer, IntStream> {
long count();
/**
* Returns an {@code OptionalDouble} describing the average of elements of
* Returns an {@code OptionalDouble} describing the arithmetic mean of elements of
* this stream, or an empty optional if this stream is empty. This is a
* special case of a
* <a href="package-summary.html#MutableReduction">reduction</a>.
......
......@@ -517,7 +517,7 @@ public interface LongStream extends BaseStream<Long, LongStream> {
long count();
/**
* Returns an {@code OptionalDouble} describing the average of elements of
* Returns an {@code OptionalDouble} describing the arithmetic mean of elements of
* this stream, or an empty optional if this stream is empty. This is a
* special case of a
* <a href="package-summary.html#MutableReduction">reduction</a>.
......
......@@ -148,17 +148,17 @@ final class ReduceOps {
* reference values.
*
* @param <T> the type of the input elements
* @param <R> the type of the result
* @param <I> the type of the intermediate reduction result
* @param collector a {@code Collector} defining the reduction
* @return a {@code ReduceOp} implementing the reduction
*/
public static <T,R> TerminalOp<T, R>
makeRef(Collector<? super T,R> collector) {
Supplier<R> supplier = Objects.requireNonNull(collector).resultSupplier();
BiFunction<R, ? super T, R> accumulator = collector.accumulator();
BinaryOperator<R> combiner = collector.combiner();
class ReducingSink extends Box<R>
implements AccumulatingSink<T, R, ReducingSink> {
public static <T, I> TerminalOp<T, I>
makeRef(Collector<? super T, I, ?> collector) {
Supplier<I> supplier = Objects.requireNonNull(collector).supplier();
BiConsumer<I, ? super T> accumulator = collector.accumulator();
BinaryOperator<I> combiner = collector.combiner();
class ReducingSink extends Box<I>
implements AccumulatingSink<T, I, ReducingSink> {
@Override
public void begin(long size) {
state = supplier.get();
......@@ -166,9 +166,7 @@ final class ReduceOps {
@Override
public void accept(T t) {
R newResult = accumulator.apply(state, t);
if (state != newResult)
state = newResult;
accumulator.accept(state, t);
}
@Override
......@@ -176,7 +174,7 @@ final class ReduceOps {
state = combiner.apply(state, other.state);
}
}
return new ReduceOp<T, R, ReducingSink>(StreamShape.REFERENCE) {
return new ReduceOp<T, I, ReducingSink>(StreamShape.REFERENCE) {
@Override
public ReducingSink makeSink() {
return new ReducingSink();
......
......@@ -490,16 +490,21 @@ abstract class ReferencePipeline<P_IN, P_OUT>
}
@Override
public final <R> R collect(Collector<? super P_OUT, R> collector) {
public final <R, A> R collect(Collector<? super P_OUT, A, ? extends R> collector) {
A container;
if (isParallel()
&& (collector.characteristics().contains(Collector.Characteristics.CONCURRENT))
&& (!isOrdered() || collector.characteristics().contains(Collector.Characteristics.UNORDERED))) {
R container = collector.resultSupplier().get();
BiFunction<R, ? super P_OUT, R> accumulator = collector.accumulator();
forEach(u -> accumulator.apply(container, u));
return container;
container = collector.supplier().get();
BiConsumer<A, ? super P_OUT> accumulator = collector.accumulator();
forEach(u -> accumulator.accept(container, u));
}
return evaluate(ReduceOps.makeRef(collector));
else {
container = evaluate(ReduceOps.makeRef(collector));
}
return collector.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)
? (R) container
: collector.finisher().apply(container);
}
@Override
......
......@@ -651,12 +651,13 @@ public interface Stream<T> extends BaseStream<T, Stream<T>> {
* }</pre>
*
* @param <R> the type of the result
* @param <A> the intermediate accumulation type of the {@code Collector}
* @param collector the {@code Collector} describing the reduction
* @return the result of the reduction
* @see #collect(Supplier, BiConsumer, BiConsumer)
* @see Collectors
*/
<R> R collect(Collector<? super T, R> collector);
<R, A> R collect(Collector<? super T, A, ? extends R> collector);
/**
* Returns the minimum element of this stream according to the provided
......
......@@ -547,7 +547,7 @@
* List<String> l = new ArrayList(Arrays.asList("one", "two"));
* Stream<String> sl = l.stream();
* l.add("three");
* String s = sl.collect(toStringJoiner(" ")).toString();
* String s = sl.collect(joining(" "));
* }</pre>
* First a list is created consisting of two strings: "one"; and "two". Then a stream is created from that list.
* Next the list is modified by adding a third string: "three". Finally the elements of the stream are collected
......@@ -557,7 +557,7 @@
* <pre>{@code
* List<String> l = new ArrayList(Arrays.asList("one", "two"));
* Stream<String> sl = l.stream();
* String s = sl.peek(s -> l.add("BAD LAMBDA")).collect(toStringJoiner(" ")).toString();
* String s = sl.peek(s -> l.add("BAD LAMBDA")).collect(joining(" "));
* }</pre>
* then a {@code ConcurrentModificationException} will be thrown since the {@code peek} operation will attempt
* to add the string "BAD LAMBDA" to the list after the terminal operation has commenced.
......
......@@ -40,17 +40,17 @@ public class FillableStringTest {
}
public void testStringBuilder() {
String s = generate().collect(Collectors.toStringBuilder()).toString();
String s = generate().collect(Collectors.joining());
assertEquals(s, "THREEFOURFIVE");
}
public void testStringBuffer() {
String s = generate().collect(Collectors.toStringBuilder()).toString();
String s = generate().collect(Collectors.joining());
assertEquals(s, "THREEFOURFIVE");
}
public void testStringJoiner() {
String s = generate().collect(Collectors.toStringJoiner("-")).toString();
String s = generate().collect(Collectors.joining("-"));
assertEquals(s, "THREE-FOUR-FIVE");
}
}
......@@ -36,7 +36,6 @@ import java.util.stream.Collectors;
import java.util.stream.LambdaTestHelpers;
import java.util.stream.OpTestCase;
import java.util.stream.Stream;
import java.util.stream.StreamOpFlagTestHelper;
import java.util.stream.StreamTestDataProvider;
import java.util.stream.TestData;
......@@ -59,13 +58,14 @@ import static java.util.stream.LambdaTestHelpers.pTrue;
public class GroupByOpTest extends OpTestCase {
public void testBypassCollect() {
Collector<Integer, Map<Boolean, List<Integer>>> collector
= Collectors.groupingBy(LambdaTestHelpers.forPredicate(pEven, true, false));
@SuppressWarnings("unchecked")
Collector<Integer, Map<Boolean, List<Integer>>, Map<Boolean, List<Integer>>> collector
= (Collector<Integer, Map<Boolean, List<Integer>>, Map<Boolean, List<Integer>>>) Collectors.groupingBy(LambdaTestHelpers.forPredicate(pEven, true, false));
Map<Boolean, List<Integer>> m = collector.resultSupplier().get();
Map<Boolean, List<Integer>> m = collector.supplier().get();
int[] ints = countTo(10).stream().mapToInt(e -> (int) e).toArray();
for (int i : ints)
m = collector.accumulator().apply(m, i);
collector.accumulator().accept(m, i);
assertEquals(2, m.keySet().size());
for(Collection<Integer> group : m.values()) {
......@@ -130,7 +130,7 @@ public class GroupByOpTest extends OpTestCase {
// - Total number of values equals size of data
for (MapperData<Integer, ?> md : getMapperData(data)) {
Collector<Integer, Map<Object, List<Integer>>> tab = Collectors.groupingBy(md.m);
Collector<Integer, ?, Map<Object, List<Integer>>> tab = Collectors.groupingBy(md.m);
Map<Object, List<Integer>> result =
withData(data)
.terminal(s -> s, s -> s.collect(tab))
......
......@@ -43,9 +43,9 @@ import static java.util.stream.LambdaTestHelpers.countTo;
public class SummaryStatisticsTest extends OpTestCase {
public void testIntStatistics() {
List<IntSummaryStatistics> instances = new ArrayList<>();
instances.add(countTo(1000).stream().collect(Collectors.toIntSummaryStatistics(i -> i)));
instances.add(countTo(1000).stream().collect(Collectors.summarizingInt(i -> i)));
instances.add(countTo(1000).stream().mapToInt(i -> i).summaryStatistics());
instances.add(countTo(1000).parallelStream().collect(Collectors.toIntSummaryStatistics(i -> i)));
instances.add(countTo(1000).parallelStream().collect(Collectors.summarizingInt(i -> i)));
instances.add(countTo(1000).parallelStream().mapToInt(i -> i).summaryStatistics());
for (IntSummaryStatistics stats : instances) {
......@@ -58,9 +58,9 @@ public class SummaryStatisticsTest extends OpTestCase {
public void testLongStatistics() {
List<LongSummaryStatistics> instances = new ArrayList<>();
instances.add(countTo(1000).stream().collect(Collectors.toLongSummaryStatistics(i -> i)));
instances.add(countTo(1000).stream().collect(Collectors.summarizingLong(i -> i)));
instances.add(countTo(1000).stream().mapToLong(i -> i).summaryStatistics());
instances.add(countTo(1000).parallelStream().collect(Collectors.toLongSummaryStatistics(i -> i)));
instances.add(countTo(1000).parallelStream().collect(Collectors.summarizingLong(i -> i)));
instances.add(countTo(1000).parallelStream().mapToLong(i -> i).summaryStatistics());
for (LongSummaryStatistics stats : instances) {
......@@ -73,9 +73,9 @@ public class SummaryStatisticsTest extends OpTestCase {
public void testDoubleStatistics() {
List<DoubleSummaryStatistics> instances = new ArrayList<>();
instances.add(countTo(1000).stream().collect(Collectors.toDoubleSummaryStatistics(i -> i)));
instances.add(countTo(1000).stream().collect(Collectors.summarizingDouble(i -> i)));
instances.add(countTo(1000).stream().mapToDouble(i -> i).summaryStatistics());
instances.add(countTo(1000).parallelStream().collect(Collectors.toDoubleSummaryStatistics(i -> i)));
instances.add(countTo(1000).parallelStream().collect(Collectors.summarizingDouble(i -> i)));
instances.add(countTo(1000).parallelStream().mapToDouble(i -> i).summaryStatistics());
for (DoubleSummaryStatistics stats : instances) {
......
......@@ -23,13 +23,17 @@
package org.openjdk.tests.java.util.stream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Set;
import java.util.StringJoiner;
import java.util.TreeMap;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentSkipListMap;
......@@ -53,7 +57,10 @@ import static java.util.stream.Collectors.groupingByConcurrent;
import static java.util.stream.Collectors.partitioningBy;
import static java.util.stream.Collectors.reducing;
import static java.util.stream.Collectors.toCollection;
import static java.util.stream.Collectors.toConcurrentMap;
import static java.util.stream.Collectors.toList;
import static java.util.stream.Collectors.toMap;
import static java.util.stream.Collectors.toSet;
import static java.util.stream.LambdaTestHelpers.assertContents;
import static java.util.stream.LambdaTestHelpers.assertContentsUnordered;
import static java.util.stream.LambdaTestHelpers.mDoubler;
......@@ -65,16 +72,6 @@ import static java.util.stream.LambdaTestHelpers.mDoubler;
*/
@SuppressWarnings({"rawtypes", "unchecked"})
public class TabulatorsTest extends OpTestCase {
// There are 8 versions of groupingBy:
// groupingBy: { map supplier, not } x { downstream collector, not } x { concurrent, not }
// There are 2 versions of partition: { map supplier, not }
// There are 4 versions of toMap
// mappedTo(function, mapSupplier?, mergeFunction?)
// Each variety needs at least one test
// Plus a variety of multi-level tests (groupBy(..., partition), partition(..., groupBy))
// Plus negative tests for mapping to null
// Each test should be matched by a nest of asserters (see TabulationAssertion...)
private static abstract class TabulationAssertion<T, U> {
abstract void assertValue(U value,
......@@ -101,7 +98,7 @@ public class TabulatorsTest extends OpTestCase {
boolean ordered) throws ReflectiveOperationException {
if (!clazz.isAssignableFrom(map.getClass()))
fail(String.format("Class mismatch in GroupedMapAssertion: %s, %s", clazz, map.getClass()));
assertContentsUnordered(map.keySet(), source.get().map(classifier).collect(Collectors.toSet()));
assertContentsUnordered(map.keySet(), source.get().map(classifier).collect(toSet()));
for (Map.Entry<K, ? extends V> entry : map.entrySet()) {
K key = entry.getKey();
downstream.assertValue(entry.getValue(),
......@@ -111,6 +108,39 @@ public class TabulatorsTest extends OpTestCase {
}
}
static class ToMapAssertion<T, K, V, M extends Map<K,V>> extends TabulationAssertion<T, M> {
private final Class<? extends Map> clazz;
private final Function<T, K> keyFn;
private final Function<T, V> valueFn;
private final BinaryOperator<V> mergeFn;
ToMapAssertion(Function<T, K> keyFn,
Function<T, V> valueFn,
BinaryOperator<V> mergeFn,
Class<? extends Map> clazz) {
this.clazz = clazz;
this.keyFn = keyFn;
this.valueFn = valueFn;
this.mergeFn = mergeFn;
}
@Override
void assertValue(M map, Supplier<Stream<T>> source, boolean ordered) throws ReflectiveOperationException {
Set<K> uniqueKeys = source.get().map(keyFn).collect(toSet());
assertTrue(clazz.isAssignableFrom(map.getClass()));
assertEquals(uniqueKeys, map.keySet());
source.get().forEach(t -> {
K key = keyFn.apply(t);
V v = source.get()
.filter(e -> key.equals(keyFn.apply(e)))
.map(valueFn)
.reduce(mergeFn)
.get();
assertEquals(map.get(key), v);
});
}
}
static class PartitionAssertion<T, D> extends TabulationAssertion<T, Map<Boolean,D>> {
private final Predicate<T> predicate;
private final TabulationAssertion<T,D> downstream;
......@@ -204,7 +234,7 @@ public class TabulatorsTest extends OpTestCase {
private <T> ResultAsserter<T> mapTabulationAsserter(boolean ordered) {
return (act, exp, ord, par) -> {
if (par & (!ordered || !ord)) {
if (par && (!ordered || !ord)) {
TabulatorsTest.nestedMapEqualityAssertion(act, exp);
}
else {
......@@ -215,7 +245,7 @@ public class TabulatorsTest extends OpTestCase {
private<T, M extends Map>
void exerciseMapTabulation(TestData<T, Stream<T>> data,
Collector<T, ? extends M> collector,
Collector<T, ?, ? extends M> collector,
TabulationAssertion<T, M> assertion)
throws ReflectiveOperationException {
boolean ordered = !collector.characteristics().contains(Collector.Characteristics.UNORDERED);
......@@ -248,6 +278,172 @@ public class TabulatorsTest extends OpTestCase {
assertEquals(o1, o2);
}
private<T, R> void assertCollect(TestData.OfRef<T> data,
Collector<T, ?, R> collector,
Function<Stream<T>, R> streamReduction) {
R check = streamReduction.apply(data.stream());
withData(data).terminal(s -> s.collect(collector)).expectedResult(check).exercise();
}
@Test(dataProvider = "StreamTestData<Integer>", dataProviderClass = StreamTestDataProvider.class)
public void testReduce(String name, TestData.OfRef<Integer> data) throws ReflectiveOperationException {
assertCollect(data, Collectors.reducing(0, Integer::sum),
s -> s.reduce(0, Integer::sum));
assertCollect(data, Collectors.reducing(Integer.MAX_VALUE, Integer::min),
s -> s.min(Integer::compare).orElse(Integer.MAX_VALUE));
assertCollect(data, Collectors.reducing(Integer.MIN_VALUE, Integer::max),
s -> s.max(Integer::compare).orElse(Integer.MIN_VALUE));
assertCollect(data, Collectors.reducing(Integer::sum),
s -> s.reduce(Integer::sum));
assertCollect(data, Collectors.minBy(Comparator.naturalOrder()),
s -> s.min(Integer::compare));
assertCollect(data, Collectors.maxBy(Comparator.naturalOrder()),
s -> s.max(Integer::compare));
assertCollect(data, Collectors.reducing(0, x -> x*2, Integer::sum),
s -> s.map(x -> x*2).reduce(0, Integer::sum));
assertCollect(data, Collectors.summingLong(x -> x * 2L),
s -> s.map(x -> x*2L).reduce(0L, Long::sum));
assertCollect(data, Collectors.summingInt(x -> x * 2),
s -> s.map(x -> x*2).reduce(0, Integer::sum));
assertCollect(data, Collectors.summingDouble(x -> x * 2.0d),
s -> s.map(x -> x * 2.0d).reduce(0.0d, Double::sum));
assertCollect(data, Collectors.averagingInt(x -> x * 2),
s -> s.mapToInt(x -> x * 2).average().orElse(0));
assertCollect(data, Collectors.averagingLong(x -> x * 2),
s -> s.mapToLong(x -> x * 2).average().orElse(0));
assertCollect(data, Collectors.averagingDouble(x -> x * 2),
s -> s.mapToDouble(x -> x * 2).average().orElse(0));
// Test explicit Collector.of
Collector<Integer, long[], Double> avg2xint = Collector.of(() -> new long[2],
(a, b) -> {
a[0] += b * 2;
a[1]++;
},
(a, b) -> {
a[0] += b[0];
a[1] += b[1];
return a;
},
a -> a[1] == 0 ? 0.0d : (double) a[0] / a[1]);
assertCollect(data, avg2xint,
s -> s.mapToInt(x -> x * 2).average().orElse(0));
}
@Test(dataProvider = "StreamTestData<Integer>", dataProviderClass = StreamTestDataProvider.class)
public void testJoin(String name, TestData.OfRef<Integer> data) throws ReflectiveOperationException {
withData(data)
.terminal(s -> s.map(Object::toString).collect(Collectors.joining()))
.expectedResult(join(data, ""))
.exercise();
Collector<String, StringBuilder, String> likeJoining = Collector.of(StringBuilder::new, StringBuilder::append, (sb1, sb2) -> sb1.append(sb2.toString()), StringBuilder::toString);
withData(data)
.terminal(s -> s.map(Object::toString).collect(likeJoining))
.expectedResult(join(data, ""))
.exercise();
withData(data)
.terminal(s -> s.map(Object::toString).collect(Collectors.joining(",")))
.expectedResult(join(data, ","))
.exercise();
withData(data)
.terminal(s -> s.map(Object::toString).collect(Collectors.joining(",", "[", "]")))
.expectedResult("[" + join(data, ",") + "]")
.exercise();
withData(data)
.terminal(s -> s.map(Object::toString)
.collect(StringBuilder::new, StringBuilder::append, StringBuilder::append)
.toString())
.expectedResult(join(data, ""))
.exercise();
withData(data)
.terminal(s -> s.map(Object::toString)
.collect(() -> new StringJoiner(","),
(sj, cs) -> sj.add(cs),
(j1, j2) -> j1.merge(j2))
.toString())
.expectedResult(join(data, ","))
.exercise();
withData(data)
.terminal(s -> s.map(Object::toString)
.collect(() -> new StringJoiner(",", "[", "]"),
(sj, cs) -> sj.add(cs),
(j1, j2) -> j1.merge(j2))
.toString())
.expectedResult("[" + join(data, ",") + "]")
.exercise();
}
private<T> String join(TestData.OfRef<T> data, String delim) {
StringBuilder sb = new StringBuilder();
boolean first = true;
for (T i : data) {
if (!first)
sb.append(delim);
sb.append(i.toString());
first = false;
}
return sb.toString();
}
@Test(dataProvider = "StreamTestData<Integer>", dataProviderClass = StreamTestDataProvider.class)
public void testSimpleToMap(String name, TestData.OfRef<Integer> data) throws ReflectiveOperationException {
Function<Integer, Integer> keyFn = i -> i * 2;
Function<Integer, Integer> valueFn = i -> i * 4;
List<Integer> dataAsList = Arrays.asList(data.stream().toArray(Integer[]::new));
Set<Integer> dataAsSet = new HashSet<>(dataAsList);
BinaryOperator<Integer> sum = Integer::sum;
for (BinaryOperator<Integer> op : Arrays.asList((u, v) -> u,
(u, v) -> v,
sum)) {
try {
exerciseMapTabulation(data, toMap(keyFn, valueFn),
new ToMapAssertion<>(keyFn, valueFn, op, HashMap.class));
if (dataAsList.size() != dataAsSet.size())
fail("Expected ISE on input with duplicates");
}
catch (IllegalStateException e) {
if (dataAsList.size() == dataAsSet.size())
fail("Expected no ISE on input without duplicates");
}
exerciseMapTabulation(data, toMap(keyFn, valueFn, op),
new ToMapAssertion<>(keyFn, valueFn, op, HashMap.class));
exerciseMapTabulation(data, toMap(keyFn, valueFn, op, TreeMap::new),
new ToMapAssertion<>(keyFn, valueFn, op, TreeMap.class));
}
// For concurrent maps, only use commutative merge functions
try {
exerciseMapTabulation(data, toConcurrentMap(keyFn, valueFn),
new ToMapAssertion<>(keyFn, valueFn, sum, ConcurrentHashMap.class));
if (dataAsList.size() != dataAsSet.size())
fail("Expected ISE on input with duplicates");
}
catch (IllegalStateException e) {
if (dataAsList.size() == dataAsSet.size())
fail("Expected no ISE on input without duplicates");
}
exerciseMapTabulation(data, toConcurrentMap(keyFn, valueFn, sum),
new ToMapAssertion<>(keyFn, valueFn, sum, ConcurrentHashMap.class));
exerciseMapTabulation(data, toConcurrentMap(keyFn, valueFn, sum, ConcurrentSkipListMap::new),
new ToMapAssertion<>(keyFn, valueFn, sum, ConcurrentSkipListMap.class));
}
@Test(dataProvider = "StreamTestData<Integer>", dataProviderClass = StreamTestDataProvider.class)
public void testSimpleGroupBy(String name, TestData.OfRef<Integer> data) throws ReflectiveOperationException {
Function<Integer, Integer> classifier = i -> i % 3;
......
......@@ -47,7 +47,7 @@ public class MethodReferenceTestInstanceMethod {
}
public void testStringBuffer() {
String s = generate().collect(Collectors.toStringBuilder()).toString();
String s = generate().collect(Collectors.joining());
assertEquals(s, "THREEFOURFIVE");
}
......
......@@ -119,7 +119,7 @@ public class TestHarness {
Class stub = new Class(specimen.getName(), cm);
String params =
Arrays.asList(args).stream().collect(Collectors.toStringJoiner(", ")).toString();
Arrays.asList(args).stream().collect(Collectors.joining(", ")).toString();
ConcreteMethod sm = new ConcreteMethod(
method.getReturnType(), method.getName(),
......@@ -150,7 +150,7 @@ public class TestHarness {
null, Arrays.asList((Method)method));
Class cstub = new Class(specimen.getName());
String params = Arrays.asList(args).stream().collect(Collectors.toStringJoiner(", ")).toString();
String params = Arrays.asList(args).stream().collect(Collectors.joining(", ")).toString();
ConcreteMethod sm = new ConcreteMethod(
"int", SourceModel.stdMethodName,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册