IdentityHashMap.java 59.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

import java.io.*;
import java.lang.reflect.Array;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;

/**
 * This class implements the <tt>Map</tt> interface with a hash table, using
 * reference-equality in place of object-equality when comparing keys (and
 * values).  In other words, in an <tt>IdentityHashMap</tt>, two keys
 * <tt>k1</tt> and <tt>k2</tt> are considered equal if and only if
 * <tt>(k1==k2)</tt>.  (In normal <tt>Map</tt> implementations (like
 * <tt>HashMap</tt>) two keys <tt>k1</tt> and <tt>k2</tt> are considered equal
 * if and only if <tt>(k1==null ? k2==null : k1.equals(k2))</tt>.)
 *
 * <p><b>This class is <i>not</i> a general-purpose <tt>Map</tt>
 * implementation!  While this class implements the <tt>Map</tt> interface, it
 * intentionally violates <tt>Map's</tt> general contract, which mandates the
 * use of the <tt>equals</tt> method when comparing objects.  This class is
 * designed for use only in the rare cases wherein reference-equality
 * semantics are required.</b>
 *
 * <p>A typical use of this class is <i>topology-preserving object graph
 * transformations</i>, such as serialization or deep-copying.  To perform such
 * a transformation, a program must maintain a "node table" that keeps track
 * of all the object references that have already been processed.  The node
 * table must not equate distinct objects even if they happen to be equal.
 * Another typical use of this class is to maintain <i>proxy objects</i>.  For
 * example, a debugging facility might wish to maintain a proxy object for
 * each object in the program being debugged.
 *
 * <p>This class provides all of the optional map operations, and permits
 * <tt>null</tt> values and the <tt>null</tt> key.  This class makes no
 * guarantees as to the order of the map; in particular, it does not guarantee
 * that the order will remain constant over time.
 *
 * <p>This class provides constant-time performance for the basic
 * operations (<tt>get</tt> and <tt>put</tt>), assuming the system
 * identity hash function ({@link System#identityHashCode(Object)})
 * disperses elements properly among the buckets.
 *
 * <p>This class has one tuning parameter (which affects performance but not
 * semantics): <i>expected maximum size</i>.  This parameter is the maximum
 * number of key-value mappings that the map is expected to hold.  Internally,
 * this parameter is used to determine the number of buckets initially
 * comprising the hash table.  The precise relationship between the expected
 * maximum size and the number of buckets is unspecified.
 *
 * <p>If the size of the map (the number of key-value mappings) sufficiently
 * exceeds the expected maximum size, the number of buckets is increased
 * Increasing the number of buckets ("rehashing") may be fairly expensive, so
 * it pays to create identity hash maps with a sufficiently large expected
 * maximum size.  On the other hand, iteration over collection views requires
 * time proportional to the number of buckets in the hash table, so it
 * pays not to set the expected maximum size too high if you are especially
 * concerned with iteration performance or memory usage.
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access an identity hash map concurrently, and at
 * least one of the threads modifies the map structurally, it <i>must</i>
 * be synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.)  This is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.
 *
 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedMap Collections.synchronizedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 *   Map m = Collections.synchronizedMap(new IdentityHashMap(...));</pre>
 *
 * <p>The iterators returned by the <tt>iterator</tt> method of the
 * collections returned by all of this class's "collection view
 * methods" are <i>fail-fast</i>: if the map is structurally modified
 * at any time after the iterator is created, in any way except
 * through the iterator's own <tt>remove</tt> method, the iterator
 * will throw a {@link ConcurrentModificationException}.  Thus, in the
 * face of concurrent modification, the iterator fails quickly and
 * cleanly, rather than risking arbitrary, non-deterministic behavior
 * at an undetermined time in the future.
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>fail-fast iterators should be used only
 * to detect bugs.</i>
 *
 * <p>Implementation note: This is a simple <i>linear-probe</i> hash table,
 * as described for example in texts by Sedgewick and Knuth.  The array
 * alternates holding keys and values.  (This has better locality for large
 * tables than does using separate arrays.)  For many JRE implementations
 * and operation mixes, this class will yield better performance than
 * {@link HashMap} (which uses <i>chaining</i> rather than linear-probing).
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @see     System#identityHashCode(Object)
 * @see     Object#hashCode()
 * @see     Collection
 * @see     Map
 * @see     HashMap
 * @see     TreeMap
 * @author  Doug Lea and Josh Bloch
 * @since   1.4
 */

public class IdentityHashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, java.io.Serializable, Cloneable
{
    /**
     * The initial capacity used by the no-args constructor.
     * MUST be a power of two.  The value 32 corresponds to the
     * (specified) expected maximum size of 21, given a load factor
     * of 2/3.
     */
    private static final int DEFAULT_CAPACITY = 32;

    /**
     * The minimum capacity, used if a lower value is implicitly specified
     * by either of the constructors with arguments.  The value 4 corresponds
     * to an expected maximum size of 2, given a load factor of 2/3.
     * MUST be a power of two.
     */
    private static final int MINIMUM_CAPACITY = 4;

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<29.
     */
    private static final int MAXIMUM_CAPACITY = 1 << 29;

    /**
     * The table, resized as necessary. Length MUST always be a power of two.
     */
    transient Object[] table; // non-private to simplify nested class access

    /**
     * The number of key-value mappings contained in this identity hash map.
     *
     * @serial
     */
    int size;

    /**
     * The number of modifications, to support fast-fail iterators
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     */
    private transient int threshold;

    /**
     * Value representing null keys inside tables.
     */
    static final Object NULL_KEY = new Object();

    /**
     * Use NULL_KEY for key if it is null.
     */
    private static Object maskNull(Object key) {
        return (key == null ? NULL_KEY : key);
    }

    /**
     * Returns internal representation of null key back to caller as null.
     */
    static final Object unmaskNull(Object key) {
        return (key == NULL_KEY ? null : key);
    }

    /**
     * Constructs a new, empty identity hash map with a default expected
     * maximum size (21).
     */
    public IdentityHashMap() {
        init(DEFAULT_CAPACITY);
    }

    /**
     * Constructs a new, empty map with the specified expected maximum size.
     * Putting more than the expected number of key-value mappings into
     * the map may cause the internal data structure to grow, which may be
     * somewhat time-consuming.
     *
     * @param expectedMaxSize the expected maximum size of the map
     * @throws IllegalArgumentException if <tt>expectedMaxSize</tt> is negative
     */
    public IdentityHashMap(int expectedMaxSize) {
        if (expectedMaxSize < 0)
            throw new IllegalArgumentException("expectedMaxSize is negative: "
                                               + expectedMaxSize);
        init(capacity(expectedMaxSize));
    }

    /**
     * Returns the appropriate capacity for the specified expected maximum
     * size.  Returns the smallest power of two between MINIMUM_CAPACITY
     * and MAXIMUM_CAPACITY, inclusive, that is greater than
     * (3 * expectedMaxSize)/2, if such a number exists.  Otherwise
     * returns MAXIMUM_CAPACITY.  If (3 * expectedMaxSize)/2 is negative, it
     * is assumed that overflow has occurred, and MAXIMUM_CAPACITY is returned.
     */
    private int capacity(int expectedMaxSize) {
        // Compute min capacity for expectedMaxSize given a load factor of 2/3
        int minCapacity = (3 * expectedMaxSize)/2;

        // Compute the appropriate capacity
        int result;
        if (minCapacity > MAXIMUM_CAPACITY || minCapacity < 0) {
            result = MAXIMUM_CAPACITY;
        } else {
            result = MINIMUM_CAPACITY;
            while (result < minCapacity)
                result <<= 1;
        }
        return result;
    }

    /**
     * Initializes object to be an empty map with the specified initial
     * capacity, which is assumed to be a power of two between
     * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
     */
    private void init(int initCapacity) {
        // assert (initCapacity & -initCapacity) == initCapacity; // power of 2
        // assert initCapacity >= MINIMUM_CAPACITY;
        // assert initCapacity <= MAXIMUM_CAPACITY;

        threshold = (initCapacity * 2)/3;
        table = new Object[2 * initCapacity];
    }

    /**
     * Constructs a new identity hash map containing the keys-value mappings
     * in the specified map.
     *
     * @param m the map whose mappings are to be placed into this map
     * @throws NullPointerException if the specified map is null
     */
    public IdentityHashMap(Map<? extends K, ? extends V> m) {
        // Allow for a bit of growth
        this((int) ((1 + m.size()) * 1.1));
        putAll(m);
    }

    /**
     * Returns the number of key-value mappings in this identity hash map.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this identity hash map contains no key-value
     * mappings.
     *
     * @return <tt>true</tt> if this identity hash map contains no key-value
     *         mappings
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns index for Object x.
     */
    private static int hash(Object x, int length) {
        int h = System.identityHashCode(x);
        // Multiply by -127, and left-shift to use least bit as part of hash
        return ((h << 1) - (h << 8)) & (length - 1);
    }

    /**
     * Circularly traverses table of size len.
     */
    private static int nextKeyIndex(int i, int len) {
        return (i + 2 < len ? i + 2 : 0);
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key == k)},
     * then this method returns {@code v}; otherwise it returns
     * {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    @SuppressWarnings("unchecked")
    public V get(Object key) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);
        while (true) {
            Object item = tab[i];
            if (item == k)
                return (V) tab[i + 1];
            if (item == null)
                return null;
            i = nextKeyIndex(i, len);
        }
    }

    /**
     * Tests whether the specified object reference is a key in this identity
     * hash map.
     *
     * @param   key   possible key
     * @return  <code>true</code> if the specified object reference is a key
     *          in this map
     * @see     #containsValue(Object)
     */
    public boolean containsKey(Object key) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);
        while (true) {
            Object item = tab[i];
            if (item == k)
                return true;
            if (item == null)
                return false;
            i = nextKeyIndex(i, len);
        }
    }

    /**
     * Tests whether the specified object reference is a value in this identity
     * hash map.
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if this map maps one or more keys to the
     *         specified object reference
     * @see     #containsKey(Object)
     */
    public boolean containsValue(Object value) {
        Object[] tab = table;
        for (int i = 1; i < tab.length; i += 2)
            if (tab[i] == value && tab[i - 1] != null)
                return true;

        return false;
    }

    /**
     * Tests if the specified key-value mapping is in the map.
     *
     * @param   key   possible key
     * @param   value possible value
     * @return  <code>true</code> if and only if the specified key-value
     *          mapping is in the map
     */
    private boolean containsMapping(Object key, Object value) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);
        while (true) {
            Object item = tab[i];
            if (item == k)
                return tab[i + 1] == value;
            if (item == null)
                return false;
            i = nextKeyIndex(i, len);
        }
    }

    /**
     * Associates the specified value with the specified key in this identity
     * hash map.  If the map previously contained a mapping for the key, the
     * old value is replaced.
     *
     * @param key the key with which the specified value is to be associated
     * @param value the value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     * @see     Object#equals(Object)
     * @see     #get(Object)
     * @see     #containsKey(Object)
     */
    public V put(K key, V value) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);

        Object item;
        while ( (item = tab[i]) != null) {
            if (item == k) {
                @SuppressWarnings("unchecked")
                    V oldValue = (V) tab[i + 1];
                tab[i + 1] = value;
                return oldValue;
            }
            i = nextKeyIndex(i, len);
        }

        modCount++;
        tab[i] = k;
        tab[i + 1] = value;
        if (++size >= threshold)
            resize(len); // len == 2 * current capacity.
        return null;
    }

    /**
     * Resize the table to hold given capacity.
     *
     * @param newCapacity the new capacity, must be a power of two.
     */
    private void resize(int newCapacity) {
        // assert (newCapacity & -newCapacity) == newCapacity; // power of 2
        int newLength = newCapacity * 2;

        Object[] oldTable = table;
        int oldLength = oldTable.length;
        if (oldLength == 2*MAXIMUM_CAPACITY) { // can't expand any further
            if (threshold == MAXIMUM_CAPACITY-1)
                throw new IllegalStateException("Capacity exhausted.");
            threshold = MAXIMUM_CAPACITY-1;  // Gigantic map!
            return;
        }
        if (oldLength >= newLength)
            return;

        Object[] newTable = new Object[newLength];
        threshold = newLength / 3;

        for (int j = 0; j < oldLength; j += 2) {
            Object key = oldTable[j];
            if (key != null) {
                Object value = oldTable[j+1];
                oldTable[j] = null;
                oldTable[j+1] = null;
                int i = hash(key, newLength);
                while (newTable[i] != null)
                    i = nextKeyIndex(i, newLength);
                newTable[i] = key;
                newTable[i + 1] = value;
            }
        }
        table = newTable;
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        int n = m.size();
        if (n == 0)
            return;
        if (n > threshold) // conservatively pre-expand
            resize(capacity(n));

        for (Entry<? extends K, ? extends V> e : m.entrySet())
            put(e.getKey(), e.getValue());
    }

    /**
     * Removes the mapping for this key from this map if present.
     *
     * @param key key whose mapping is to be removed from the map
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V remove(Object key) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);

        while (true) {
            Object item = tab[i];
            if (item == k) {
                modCount++;
                size--;
                @SuppressWarnings("unchecked")
                    V oldValue = (V) tab[i + 1];
                tab[i + 1] = null;
                tab[i] = null;
                closeDeletion(i);
                return oldValue;
            }
            if (item == null)
                return null;
            i = nextKeyIndex(i, len);
        }

    }

    /**
     * Removes the specified key-value mapping from the map if it is present.
     *
     * @param   key   possible key
     * @param   value possible value
     * @return  <code>true</code> if and only if the specified key-value
     *          mapping was in the map
     */
    private boolean removeMapping(Object key, Object value) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);

        while (true) {
            Object item = tab[i];
            if (item == k) {
                if (tab[i + 1] != value)
                    return false;
                modCount++;
                size--;
                tab[i] = null;
                tab[i + 1] = null;
                closeDeletion(i);
                return true;
            }
            if (item == null)
                return false;
            i = nextKeyIndex(i, len);
        }
    }

    /**
     * Rehash all possibly-colliding entries following a
     * deletion. This preserves the linear-probe
     * collision properties required by get, put, etc.
     *
     * @param d the index of a newly empty deleted slot
     */
    private void closeDeletion(int d) {
        // Adapted from Knuth Section 6.4 Algorithm R
        Object[] tab = table;
        int len = tab.length;

        // Look for items to swap into newly vacated slot
        // starting at index immediately following deletion,
        // and continuing until a null slot is seen, indicating
        // the end of a run of possibly-colliding keys.
        Object item;
        for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
             i = nextKeyIndex(i, len) ) {
            // The following test triggers if the item at slot i (which
            // hashes to be at slot r) should take the spot vacated by d.
            // If so, we swap it in, and then continue with d now at the
            // newly vacated i.  This process will terminate when we hit
            // the null slot at the end of this run.
            // The test is messy because we are using a circular table.
            int r = hash(item, len);
            if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
                tab[d] = item;
                tab[d + 1] = tab[i + 1];
                tab[i] = null;
                tab[i + 1] = null;
                d = i;
            }
        }
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     */
    public void clear() {
        modCount++;
        Object[] tab = table;
        for (int i = 0; i < tab.length; i++)
            tab[i] = null;
        size = 0;
    }

    /**
     * Compares the specified object with this map for equality.  Returns
     * <tt>true</tt> if the given object is also a map and the two maps
     * represent identical object-reference mappings.  More formally, this
     * map is equal to another map <tt>m</tt> if and only if
     * <tt>this.entrySet().equals(m.entrySet())</tt>.
     *
     * <p><b>Owing to the reference-equality-based semantics of this map it is
     * possible that the symmetry and transitivity requirements of the
     * <tt>Object.equals</tt> contract may be violated if this map is compared
     * to a normal map.  However, the <tt>Object.equals</tt> contract is
     * guaranteed to hold among <tt>IdentityHashMap</tt> instances.</b>
     *
     * @param  o object to be compared for equality with this map
     * @return <tt>true</tt> if the specified object is equal to this map
     * @see Object#equals(Object)
     */
    public boolean equals(Object o) {
        if (o == this) {
            return true;
        } else if (o instanceof IdentityHashMap) {
            IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) o;
            if (m.size() != size)
                return false;

            Object[] tab = m.table;
            for (int i = 0; i < tab.length; i+=2) {
                Object k = tab[i];
                if (k != null && !containsMapping(k, tab[i + 1]))
                    return false;
            }
            return true;
        } else if (o instanceof Map) {
            Map<?,?> m = (Map<?,?>)o;
            return entrySet().equals(m.entrySet());
        } else {
            return false;  // o is not a Map
        }
    }

    /**
     * Returns the hash code value for this map.  The hash code of a map is
     * defined to be the sum of the hash codes of each entry in the map's
     * <tt>entrySet()</tt> view.  This ensures that <tt>m1.equals(m2)</tt>
     * implies that <tt>m1.hashCode()==m2.hashCode()</tt> for any two
     * <tt>IdentityHashMap</tt> instances <tt>m1</tt> and <tt>m2</tt>, as
     * required by the general contract of {@link Object#hashCode}.
     *
     * <p><b>Owing to the reference-equality-based semantics of the
     * <tt>Map.Entry</tt> instances in the set returned by this map's
     * <tt>entrySet</tt> method, it is possible that the contractual
     * requirement of <tt>Object.hashCode</tt> mentioned in the previous
     * paragraph will be violated if one of the two objects being compared is
     * an <tt>IdentityHashMap</tt> instance and the other is a normal map.</b>
     *
     * @return the hash code value for this map
     * @see Object#equals(Object)
     * @see #equals(Object)
     */
    public int hashCode() {
        int result = 0;
        Object[] tab = table;
        for (int i = 0; i < tab.length; i +=2) {
            Object key = tab[i];
            if (key != null) {
                Object k = unmaskNull(key);
                result += System.identityHashCode(k) ^
                          System.identityHashCode(tab[i + 1]);
            }
        }
        return result;
    }

    /**
     * Returns a shallow copy of this identity hash map: the keys and values
     * themselves are not cloned.
     *
     * @return a shallow copy of this map
     */
    public Object clone() {
        try {
            IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) super.clone();
            m.entrySet = null;
            m.table = table.clone();
            return m;
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }

    private abstract class IdentityHashMapIterator<T> implements Iterator<T> {
        int index = (size != 0 ? 0 : table.length); // current slot.
        int expectedModCount = modCount; // to support fast-fail
        int lastReturnedIndex = -1;      // to allow remove()
        boolean indexValid; // To avoid unnecessary next computation
        Object[] traversalTable = table; // reference to main table or copy

        public boolean hasNext() {
            Object[] tab = traversalTable;
            for (int i = index; i < tab.length; i+=2) {
                Object key = tab[i];
                if (key != null) {
                    index = i;
                    return indexValid = true;
                }
            }
            index = tab.length;
            return false;
        }

        protected int nextIndex() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (!indexValid && !hasNext())
                throw new NoSuchElementException();

            indexValid = false;
            lastReturnedIndex = index;
            index += 2;
            return lastReturnedIndex;
        }

        public void remove() {
            if (lastReturnedIndex == -1)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();

            expectedModCount = ++modCount;
            int deletedSlot = lastReturnedIndex;
            lastReturnedIndex = -1;
            // back up index to revisit new contents after deletion
            index = deletedSlot;
            indexValid = false;

            // Removal code proceeds as in closeDeletion except that
            // it must catch the rare case where an element already
            // seen is swapped into a vacant slot that will be later
            // traversed by this iterator. We cannot allow future
            // next() calls to return it again.  The likelihood of
            // this occurring under 2/3 load factor is very slim, but
            // when it does happen, we must make a copy of the rest of
            // the table to use for the rest of the traversal. Since
            // this can only happen when we are near the end of the table,
            // even in these rare cases, this is not very expensive in
            // time or space.

            Object[] tab = traversalTable;
            int len = tab.length;

            int d = deletedSlot;
            Object key = tab[d];
            tab[d] = null;        // vacate the slot
            tab[d + 1] = null;

            // If traversing a copy, remove in real table.
            // We can skip gap-closure on copy.
            if (tab != IdentityHashMap.this.table) {
                IdentityHashMap.this.remove(key);
                expectedModCount = modCount;
                return;
            }

            size--;

            Object item;
            for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
                 i = nextKeyIndex(i, len)) {
                int r = hash(item, len);
                // See closeDeletion for explanation of this conditional
                if ((i < r && (r <= d || d <= i)) ||
                    (r <= d && d <= i)) {

                    // If we are about to swap an already-seen element
                    // into a slot that may later be returned by next(),
                    // then clone the rest of table for use in future
                    // next() calls. It is OK that our copy will have
                    // a gap in the "wrong" place, since it will never
                    // be used for searching anyway.

                    if (i < deletedSlot && d >= deletedSlot &&
                        traversalTable == IdentityHashMap.this.table) {
                        int remaining = len - deletedSlot;
                        Object[] newTable = new Object[remaining];
                        System.arraycopy(tab, deletedSlot,
                                         newTable, 0, remaining);
                        traversalTable = newTable;
                        index = 0;
                    }

                    tab[d] = item;
                    tab[d + 1] = tab[i + 1];
                    tab[i] = null;
                    tab[i + 1] = null;
                    d = i;
                }
            }
        }
    }

    private class KeyIterator extends IdentityHashMapIterator<K> {
        @SuppressWarnings("unchecked")
        public K next() {
            return (K) unmaskNull(traversalTable[nextIndex()]);
        }
    }

    private class ValueIterator extends IdentityHashMapIterator<V> {
        @SuppressWarnings("unchecked")
        public V next() {
            return (V) traversalTable[nextIndex() + 1];
        }
    }

    private class EntryIterator
        extends IdentityHashMapIterator<Map.Entry<K,V>>
    {
        private Entry lastReturnedEntry = null;

        public Map.Entry<K,V> next() {
            lastReturnedEntry = new Entry(nextIndex());
            return lastReturnedEntry;
        }

        public void remove() {
            lastReturnedIndex =
                ((null == lastReturnedEntry) ? -1 : lastReturnedEntry.index);
            super.remove();
            lastReturnedEntry.index = lastReturnedIndex;
            lastReturnedEntry = null;
        }

        private class Entry implements Map.Entry<K,V> {
            private int index;

            private Entry(int index) {
                this.index = index;
            }

            @SuppressWarnings("unchecked")
            public K getKey() {
                checkIndexForEntryUse();
                return (K) unmaskNull(traversalTable[index]);
            }

            @SuppressWarnings("unchecked")
            public V getValue() {
                checkIndexForEntryUse();
                return (V) traversalTable[index+1];
            }

            @SuppressWarnings("unchecked")
            public V setValue(V value) {
                checkIndexForEntryUse();
                V oldValue = (V) traversalTable[index+1];
                traversalTable[index+1] = value;
                // if shadowing, force into main table
                if (traversalTable != IdentityHashMap.this.table)
                    put((K) traversalTable[index], value);
                return oldValue;
            }

            public boolean equals(Object o) {
                if (index < 0)
                    return super.equals(o);

                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                return (e.getKey() == unmaskNull(traversalTable[index]) &&
                       e.getValue() == traversalTable[index+1]);
            }

            public int hashCode() {
                if (lastReturnedIndex < 0)
                    return super.hashCode();

                return (System.identityHashCode(unmaskNull(traversalTable[index])) ^
                       System.identityHashCode(traversalTable[index+1]));
            }

            public String toString() {
                if (index < 0)
                    return super.toString();

                return (unmaskNull(traversalTable[index]) + "="
                        + traversalTable[index+1]);
            }

            private void checkIndexForEntryUse() {
                if (index < 0)
                    throw new IllegalStateException("Entry was removed");
            }
        }
    }

    // Views

    /**
     * This field is initialized to contain an instance of the entry set
     * view the first time this view is requested.  The view is stateless,
     * so there's no reason to create more than one.
     */
    private transient Set<Map.Entry<K,V>> entrySet = null;

    /**
     * Returns an identity-based set view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are reflected in
     * the set, and vice-versa.  If the map is modified while an iteration
     * over the set is in progress, the results of the iteration are
     * undefined.  The set supports element removal, which removes the
     * corresponding mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
     * <tt>clear</tt> methods.  It does not support the <tt>add</tt> or
     * <tt>addAll</tt> methods.
     *
     * <p><b>While the object returned by this method implements the
     * <tt>Set</tt> interface, it does <i>not</i> obey <tt>Set's</tt> general
     * contract.  Like its backing map, the set returned by this method
     * defines element equality as reference-equality rather than
     * object-equality.  This affects the behavior of its <tt>contains</tt>,
     * <tt>remove</tt>, <tt>containsAll</tt>, <tt>equals</tt>, and
     * <tt>hashCode</tt> methods.</b>
     *
     * <p><b>The <tt>equals</tt> method of the returned set returns <tt>true</tt>
     * only if the specified object is a set containing exactly the same
     * object references as the returned set.  The symmetry and transitivity
     * requirements of the <tt>Object.equals</tt> contract may be violated if
     * the set returned by this method is compared to a normal set.  However,
     * the <tt>Object.equals</tt> contract is guaranteed to hold among sets
     * returned by this method.</b>
     *
     * <p>The <tt>hashCode</tt> method of the returned set returns the sum of
     * the <i>identity hashcodes</i> of the elements in the set, rather than
     * the sum of their hashcodes.  This is mandated by the change in the
     * semantics of the <tt>equals</tt> method, in order to enforce the
     * general contract of the <tt>Object.hashCode</tt> method among sets
     * returned by this method.
     *
     * @return an identity-based set view of the keys contained in this map
     * @see Object#equals(Object)
     * @see System#identityHashCode(Object)
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks != null)
            return ks;
        else
            return keySet = new KeySet();
    }

    private class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return new KeyIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            int oldSize = size;
            IdentityHashMap.this.remove(o);
            return size != oldSize;
        }
        /*
         * Must revert from AbstractSet's impl to AbstractCollection's, as
         * the former contains an optimization that results in incorrect
         * behavior when c is a smaller "normal" (non-identity-based) Set.
         */
        public boolean removeAll(Collection<?> c) {
            Objects.requireNonNull(c);
            boolean modified = false;
            for (Iterator<K> i = iterator(); i.hasNext(); ) {
                if (c.contains(i.next())) {
                    i.remove();
                    modified = true;
                }
            }
            return modified;
        }
        public void clear() {
            IdentityHashMap.this.clear();
        }
        public int hashCode() {
            int result = 0;
            for (K key : this)
                result += System.identityHashCode(key);
            return result;
        }
        public Object[] toArray() {
            return toArray(new Object[0]);
        }
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            int expectedModCount = modCount;
            int size = size();
            if (a.length < size)
                a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
            Object[] tab = table;
            int ti = 0;
            for (int si = 0; si < tab.length; si += 2) {
                Object key;
                if ((key = tab[si]) != null) { // key present ?
                    // more elements than expected -> concurrent modification from other thread
                    if (ti >= size) {
                        throw new ConcurrentModificationException();
                    }
                    a[ti++] = (T) unmaskNull(key); // unmask key
                }
            }
            // fewer elements than expected or concurrent modification from other thread detected
            if (ti < size || expectedModCount != modCount) {
                throw new ConcurrentModificationException();
            }
            // final null marker as per spec
            if (ti < a.length) {
                a[ti] = null;
            }
            return a;
        }

        public Spliterator<K> spliterator() {
            return new KeySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
        }
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress,
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt> and <tt>clear</tt> methods.  It does not
     * support the <tt>add</tt> or <tt>addAll</tt> methods.
     *
     * <p><b>While the object returned by this method implements the
     * <tt>Collection</tt> interface, it does <i>not</i> obey
     * <tt>Collection's</tt> general contract.  Like its backing map,
     * the collection returned by this method defines element equality as
     * reference-equality rather than object-equality.  This affects the
     * behavior of its <tt>contains</tt>, <tt>remove</tt> and
     * <tt>containsAll</tt> methods.</b>
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs != null)
            return vs;
        else
            return values = new Values();
    }

    private class Values extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return new ValueIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public boolean remove(Object o) {
            for (Iterator<V> i = iterator(); i.hasNext(); ) {
                if (i.next() == o) {
                    i.remove();
                    return true;
                }
            }
            return false;
        }
        public void clear() {
            IdentityHashMap.this.clear();
        }
        public Object[] toArray() {
            return toArray(new Object[0]);
        }
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            int expectedModCount = modCount;
            int size = size();
            if (a.length < size)
                a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
            Object[] tab = table;
            int ti = 0;
            for (int si = 0; si < tab.length; si += 2) {
                if (tab[si] != null) { // key present ?
                    // more elements than expected -> concurrent modification from other thread
                    if (ti >= size) {
                        throw new ConcurrentModificationException();
                    }
                    a[ti++] = (T) tab[si+1]; // copy value
                }
            }
            // fewer elements than expected or concurrent modification from other thread detected
            if (ti < size || expectedModCount != modCount) {
                throw new ConcurrentModificationException();
            }
            // final null marker as per spec
            if (ti < a.length) {
                a[ti] = null;
            }
            return a;
        }

        public Spliterator<V> spliterator() {
            return new ValueSpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
        }
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * Each element in the returned set is a reference-equality-based
     * <tt>Map.Entry</tt>.  The set is backed by the map, so changes
     * to the map are reflected in the set, and vice-versa.  If the
     * map is modified while an iteration over the set is in progress,
     * the results of the iteration are undefined.  The set supports
     * element removal, which removes the corresponding mapping from
     * the map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
     * methods.  It does not support the <tt>add</tt> or
     * <tt>addAll</tt> methods.
     *
     * <p>Like the backing map, the <tt>Map.Entry</tt> objects in the set
     * returned by this method define key and value equality as
     * reference-equality rather than object-equality.  This affects the
     * behavior of the <tt>equals</tt> and <tt>hashCode</tt> methods of these
     * <tt>Map.Entry</tt> objects.  A reference-equality based <tt>Map.Entry
     * e</tt> is equal to an object <tt>o</tt> if and only if <tt>o</tt> is a
     * <tt>Map.Entry</tt> and <tt>e.getKey()==o.getKey() &amp;&amp;
     * e.getValue()==o.getValue()</tt>.  To accommodate these equals
     * semantics, the <tt>hashCode</tt> method returns
     * <tt>System.identityHashCode(e.getKey()) ^
     * System.identityHashCode(e.getValue())</tt>.
     *
     * <p><b>Owing to the reference-equality-based semantics of the
     * <tt>Map.Entry</tt> instances in the set returned by this method,
     * it is possible that the symmetry and transitivity requirements of
     * the {@link Object#equals(Object)} contract may be violated if any of
     * the entries in the set is compared to a normal map entry, or if
     * the set returned by this method is compared to a set of normal map
     * entries (such as would be returned by a call to this method on a normal
     * map).  However, the <tt>Object.equals</tt> contract is guaranteed to
     * hold among identity-based map entries, and among sets of such entries.
     * </b>
     *
     * @return a set view of the identity-mappings contained in this map
     */
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es = entrySet;
        if (es != null)
            return es;
        else
            return entrySet = new EntrySet();
    }

    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
            return containsMapping(entry.getKey(), entry.getValue());
        }
        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
            return removeMapping(entry.getKey(), entry.getValue());
        }
        public int size() {
            return size;
        }
        public void clear() {
            IdentityHashMap.this.clear();
        }
        /*
         * Must revert from AbstractSet's impl to AbstractCollection's, as
         * the former contains an optimization that results in incorrect
         * behavior when c is a smaller "normal" (non-identity-based) Set.
         */
        public boolean removeAll(Collection<?> c) {
            Objects.requireNonNull(c);
            boolean modified = false;
            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); ) {
                if (c.contains(i.next())) {
                    i.remove();
                    modified = true;
                }
            }
            return modified;
        }

        public Object[] toArray() {
            return toArray(new Object[0]);
        }

        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            int expectedModCount = modCount;
            int size = size();
            if (a.length < size)
                a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
            Object[] tab = table;
            int ti = 0;
            for (int si = 0; si < tab.length; si += 2) {
                Object key;
                if ((key = tab[si]) != null) { // key present ?
                    // more elements than expected -> concurrent modification from other thread
                    if (ti >= size) {
                        throw new ConcurrentModificationException();
                    }
                    a[ti++] = (T) new AbstractMap.SimpleEntry<>(unmaskNull(key), tab[si + 1]);
                }
            }
            // fewer elements than expected or concurrent modification from other thread detected
            if (ti < size || expectedModCount != modCount) {
                throw new ConcurrentModificationException();
            }
            // final null marker as per spec
            if (ti < a.length) {
                a[ti] = null;
            }
            return a;
        }

        public Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
        }
    }


    private static final long serialVersionUID = 8188218128353913216L;

    /**
     * Save the state of the <tt>IdentityHashMap</tt> instance to a stream
     * (i.e., serialize it).
     *
     * @serialData The <i>size</i> of the HashMap (the number of key-value
     *          mappings) (<tt>int</tt>), followed by the key (Object) and
     *          value (Object) for each key-value mapping represented by the
     *          IdentityHashMap.  The key-value mappings are emitted in no
     *          particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException  {
        // Write out and any hidden stuff
        s.defaultWriteObject();

        // Write out size (number of Mappings)
        s.writeInt(size);

        // Write out keys and values (alternating)
        Object[] tab = table;
        for (int i = 0; i < tab.length; i += 2) {
            Object key = tab[i];
            if (key != null) {
                s.writeObject(unmaskNull(key));
                s.writeObject(tab[i + 1]);
            }
        }
    }

    /**
     * Reconstitute the <tt>IdentityHashMap</tt> instance from a stream (i.e.,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException  {
        // Read in any hidden stuff
        s.defaultReadObject();

        // Read in size (number of Mappings)
        int size = s.readInt();

        // Allow for 33% growth (i.e., capacity is >= 2* size()).
        init(capacity((size*4)/3));

        // Read the keys and values, and put the mappings in the table
        for (int i=0; i<size; i++) {
            @SuppressWarnings("unchecked")
                K key = (K) s.readObject();
            @SuppressWarnings("unchecked")
                V value = (V) s.readObject();
            putForCreate(key, value);
        }
    }

    /**
     * The put method for readObject.  It does not resize the table,
     * update modCount, etc.
     */
    private void putForCreate(K key, V value)
        throws IOException
    {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);

        Object item;
        while ( (item = tab[i]) != null) {
            if (item == k)
                throw new java.io.StreamCorruptedException();
            i = nextKeyIndex(i, len);
        }
        tab[i] = k;
        tab[i + 1] = value;
    }

    @SuppressWarnings("unchecked")
    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Objects.requireNonNull(action);
        int expectedModCount = modCount;

        Object[] t = table;
        for (int index = 0; index < t.length; index += 2) {
            Object k = t[index];
            if (k != null) {
                action.accept((K) unmaskNull(k), (V) t[index + 1]);
            }

            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    }

    @SuppressWarnings("unchecked")
    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Objects.requireNonNull(function);
        int expectedModCount = modCount;

        Object[] t = table;
        for (int index = 0; index < t.length; index += 2) {
            Object k = t[index];
            if (k != null) {
                t[index + 1] = function.apply((K) unmaskNull(k), (V) t[index + 1]);
            }

            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Similar form as array-based Spliterators, but skips blank elements,
     * and guestimates size as decreasing by half per split.
     */
    static class IdentityHashMapSpliterator<K,V> {
        final IdentityHashMap<K,V> map;
        int index;             // current index, modified on advance/split
        int fence;             // -1 until first use; then one past last index
        int est;               // size estimate
        int expectedModCount;  // initialized when fence set

        IdentityHashMapSpliterator(IdentityHashMap<K,V> map, int origin,
                                   int fence, int est, int expectedModCount) {
            this.map = map;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                est = map.size;
                expectedModCount = map.modCount;
                hi = fence = map.table.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K,V>
        extends IdentityHashMapSpliterator<K,V>
        implements Spliterator<K> {
        KeySpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est,
                       int expectedModCount) {
            super(map, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
            return (lo >= mid) ? null :
                new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
                                        expectedModCount);
        }

        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super K> action) {
            if (action == null)
                throw new NullPointerException();
            int i, hi, mc; Object key;
            IdentityHashMap<K,V> m; Object[] a;
            if ((m = map) != null && (a = m.table) != null &&
                (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
                for (; i < hi; i += 2) {
                    if ((key = a[i]) != null)
                        action.accept((K)unmaskNull(key));
                }
                if (m.modCount == expectedModCount)
                    return;
            }
            throw new ConcurrentModificationException();
        }

        @SuppressWarnings("unchecked")
        public boolean tryAdvance(Consumer<? super K> action) {
            if (action == null)
                throw new NullPointerException();
            Object[] a = map.table;
            int hi = getFence();
            while (index < hi) {
                Object key = a[index];
                index += 2;
                if (key != null) {
                    action.accept((K)unmaskNull(key));
                    if (map.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K,V>
        extends IdentityHashMapSpliterator<K,V>
        implements Spliterator<V> {
        ValueSpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
            return (lo >= mid) ? null :
                new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            if (action == null)
                throw new NullPointerException();
            int i, hi, mc;
            IdentityHashMap<K,V> m; Object[] a;
            if ((m = map) != null && (a = m.table) != null &&
                (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
                for (; i < hi; i += 2) {
                    if (a[i] != null) {
                        @SuppressWarnings("unchecked") V v = (V)a[i+1];
                        action.accept(v);
                    }
                }
                if (m.modCount == expectedModCount)
                    return;
            }
            throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            if (action == null)
                throw new NullPointerException();
            Object[] a = map.table;
            int hi = getFence();
            while (index < hi) {
                Object key = a[index];
                @SuppressWarnings("unchecked") V v = (V)a[index+1];
                index += 2;
                if (key != null) {
                    action.accept(v);
                    if (map.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? SIZED : 0);
        }

    }

    static final class EntrySpliterator<K,V>
        extends IdentityHashMapSpliterator<K,V>
        implements Spliterator<Map.Entry<K,V>> {
        EntrySpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
            return (lo >= mid) ? null :
                new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
            if (action == null)
                throw new NullPointerException();
            int i, hi, mc;
            IdentityHashMap<K,V> m; Object[] a;
            if ((m = map) != null && (a = m.table) != null &&
                (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
                for (; i < hi; i += 2) {
                    Object key = a[i];
                    if (key != null) {
                        @SuppressWarnings("unchecked") K k =
                            (K)unmaskNull(key);
                        @SuppressWarnings("unchecked") V v = (V)a[i+1];
                        action.accept
                            (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));

                    }
                }
                if (m.modCount == expectedModCount)
                    return;
            }
            throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            if (action == null)
                throw new NullPointerException();
            Object[] a = map.table;
            int hi = getFence();
            while (index < hi) {
                Object key = a[index];
                @SuppressWarnings("unchecked") V v = (V)a[index+1];
                index += 2;
                if (key != null) {
                    @SuppressWarnings("unchecked") K k =
                        (K)unmaskNull(key);
                    action.accept
                        (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
                    if (map.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
        }
    }

}
反馈
建议
客服 返回
顶部