DelayOverflow.java 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 */

/*
 * @test
 * @bug 6725789
 * @summary Check for long overflow in task time comparison.
 */

import java.util.concurrent.*;

public class DelayOverflow {
    static void waitForNanoTimeTick() {
        for (long t0 = System.nanoTime(); t0 == System.nanoTime(); )
            ;
    }

    void scheduleNow(ScheduledThreadPoolExecutor pool,
                     Runnable r, int how) {
        switch (how) {
        case 0:
            pool.schedule(r, 0, TimeUnit.MILLISECONDS);
            break;
        case 1:
            pool.schedule(Executors.callable(r), 0, TimeUnit.DAYS);
            break;
        case 2:
            pool.scheduleWithFixedDelay(r, 0, 1000, TimeUnit.NANOSECONDS);
            break;
        case 3:
            pool.scheduleAtFixedRate(r, 0, 1000, TimeUnit.MILLISECONDS);
            break;
        default:
            fail(String.valueOf(how));
        }
    }

    void scheduleAtTheEndOfTime(ScheduledThreadPoolExecutor pool,
                                Runnable r, int how) {
        switch (how) {
        case 0:
            pool.schedule(r, Long.MAX_VALUE, TimeUnit.MILLISECONDS);
            break;
        case 1:
            pool.schedule(Executors.callable(r), Long.MAX_VALUE, TimeUnit.DAYS);
            break;
        case 2:
            pool.scheduleWithFixedDelay(r, Long.MAX_VALUE, 1000, TimeUnit.NANOSECONDS);
            break;
        case 3:
            pool.scheduleAtFixedRate(r, Long.MAX_VALUE, 1000, TimeUnit.MILLISECONDS);
            break;
        default:
            fail(String.valueOf(how));
        }
    }

    /**
     * Attempts to test exhaustively and deterministically, all 20
     * possible ways that one task can be scheduled in the maximal
     * distant future, while at the same time an existing tasks's time
     * has already expired.
     */
    void test(String[] args) throws Throwable {
        for (int nowHow = 0; nowHow < 4; nowHow++) {
            for (int thenHow = 0; thenHow < 4; thenHow++) {

                final ScheduledThreadPoolExecutor pool
                    = new ScheduledThreadPoolExecutor(1);
                final CountDownLatch runLatch     = new CountDownLatch(1);
                final CountDownLatch busyLatch    = new CountDownLatch(1);
                final CountDownLatch proceedLatch = new CountDownLatch(1);
                final Runnable notifier = new Runnable() {
                        public void run() { runLatch.countDown(); }};
                final Runnable neverRuns = new Runnable() {
                        public void run() { fail(); }};
                final Runnable keepPoolBusy = new Runnable() {
                        public void run() {
                            try {
                                busyLatch.countDown();
                                proceedLatch.await();
                            } catch (Throwable t) { unexpected(t); }
                        }};
                pool.schedule(keepPoolBusy, 0, TimeUnit.SECONDS);
                busyLatch.await();
                scheduleNow(pool, notifier, nowHow);
                waitForNanoTimeTick();
                scheduleAtTheEndOfTime(pool, neverRuns, thenHow);
                proceedLatch.countDown();

                check(runLatch.await(10L, TimeUnit.SECONDS));
                equal(runLatch.getCount(), 0L);

                pool.setExecuteExistingDelayedTasksAfterShutdownPolicy(false);
                pool.shutdown();
            }

            final int nowHowCopy = nowHow;
            final ScheduledThreadPoolExecutor pool
                = new ScheduledThreadPoolExecutor(1);
            final CountDownLatch runLatch = new CountDownLatch(1);
            final Runnable notifier = new Runnable() {
                    public void run() { runLatch.countDown(); }};
            final Runnable scheduleNowScheduler = new Runnable() {
                    public void run() {
                        try {
                            scheduleNow(pool, notifier, nowHowCopy);
                            waitForNanoTimeTick();
                        } catch (Throwable t) { unexpected(t); }
                    }};
            pool.scheduleWithFixedDelay(scheduleNowScheduler,
                                        0, Long.MAX_VALUE,
                                        TimeUnit.NANOSECONDS);

            check(runLatch.await(10L, TimeUnit.SECONDS));
            equal(runLatch.getCount(), 0L);

            pool.setExecuteExistingDelayedTasksAfterShutdownPolicy(false);
            pool.shutdown();
        }
    }

    //--------------------- Infrastructure ---------------------------
    volatile int passed = 0, failed = 0;
    void pass() {passed++;}
    void fail() {failed++; Thread.dumpStack();}
    void fail(String msg) {System.err.println(msg); fail();}
    void unexpected(Throwable t) {failed++; t.printStackTrace();}
    void check(boolean cond) {if (cond) pass(); else fail();}
    void equal(Object x, Object y) {
        if (x == null ? y == null : x.equals(y)) pass();
        else fail(x + " not equal to " + y);}
    public static void main(String[] args) throws Throwable {
        Class<?> k = new Object(){}.getClass().getEnclosingClass();
        try {k.getMethod("instanceMain",String[].class)
                .invoke( k.newInstance(), (Object) args);}
        catch (Throwable e) {throw e.getCause();}}
    public void instanceMain(String[] args) throws Throwable {
        try {test(args);} catch (Throwable t) {unexpected(t);}
        System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
        if (failed > 0) throw new AssertionError("Some tests failed");}
}