keytool.1 81.3 KB
Newer Older
1
." Copyright (c) 1998-2011 keytool tool, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
." DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
."
." This code is free software; you can redistribute it and/or modify it
." under the terms of the GNU General Public License version 2 only, as
." published by the Free Software Foundation.
."
." This code is distributed in the hope that it will be useful, but WITHOUT
." ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
." FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
." version 2 for more details (a copy is included in the LICENSE file that
." accompanied this code).
."
." You should have received a copy of the GNU General Public License version
." 2 along with this work; if not, write to the Free Software Foundation,
." Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
."
18 19 20
." Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
." or visit www.oracle.com if you need additional information or have any
." questions.
T
tbell 已提交
21
."
22
.TH keytool 1 "10 May 2011"
D
duke 已提交
23 24

.LP
T
tbell 已提交
25
.SH "Name"
D
duke 已提交
26 27 28 29 30
keytool \- Key and Certificate Management Tool
.LP
.LP
Manages a keystore (database) of cryptographic keys, X.509 certificate chains, and trusted certificates.
.LP
31
.SH "SYNOPSIS"
D
duke 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
.LP
.nf
\f3
.fl
\fP\f3keytool\fP [ commands ]
.fl
.fi

.LP
.LP
The keytool command interface has changed in Java SE 6. See the Changes Section for a detailed description. Note that previously defined commands are still supported.
.LP
.SH "DESCRIPTION"
.LP
\f3keytool\fP is a key and certificate management utility. It allows users to administer their own public/private key pairs and associated certificates for use in self\-authentication (where the user authenticates himself/herself to other users/services) or data integrity and authentication services, using digital signatures. It also allows users to cache the public keys (in the form of certificates) of their communicating peers. 
.LP
A \f2certificate\fP is a digitally signed statement from one entity (person, company, etc.), saying that the public key (and some other information) of some other entity has a particular value. (See Certificates.) When data is digitally signed, the signature can be verified to check the data integrity and authenticity. \f2Integrity\fP means that the data has not been modified or tampered with, and \f2authenticity\fP means the data indeed comes from whoever claims to have created and signed it.
.LP
.LP
\f3keytool\fP also enables users to administer secret keys used in symmetric encryption/decryption (e.g. DES).
.LP
.LP
54
\f3keytool\fP stores the keys and certificates in a \f2keystore\fP.
D
duke 已提交
55 56 57 58
.LP
.SH "COMMAND AND OPTION NOTES"
.LP
.LP
59
The various commands and their options are listed and described below. Note:
D
duke 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
.LP
.RS 3
.TP 2
o
All command and option names are preceded by a minus sign (\-). 
.TP 2
o
The options for each command may be provided in any order. 
.TP 2
o
All items not italicized or in braces or square brackets are required to appear as is. 
.TP 2
o
Braces surrounding an option generally signify that a default value will be used if the option is not specified on the command line. Braces are also used around the \f2\-v\fP, \f2\-rfc\fP, and \f2\-J\fP options, which only have meaning if they appear on the command line (that is, they don't have any "default" values other than not existing). 
.TP 2
o
Brackets surrounding an option signify that the user is prompted for the value(s) if the option is not specified on the command line. (For a \f2\-keypass\fP option, if you do not specify the option on the command line, \f3keytool\fP will first attempt to use the keystore password to recover the private/secret key, and if this fails, will then prompt you for the private/secret key password.) 
.TP 2
o
Items in italics (option values) represent the actual values that must be supplied. For example, here is the format of the \f2\-printcert\fP command: 
.nf
\f3
.fl
  keytool \-printcert {\-file \fP\f4cert_file\fP\f3} {\-v}
.fl
\fP
.fi
.LP
When specifying a \f2\-printcert\fP command, replace \f2cert_file\fP with the actual file name, as in: 
.nf
\f3
.fl
  keytool \-printcert \-file VScert.cer
.fl
\fP
.fi
.TP 2
o
Option values must be quoted if they contain a blank (space). 
.TP 2
o
The \f2\-help\fP command is the default. Thus, the command line 
.nf
\f3
.fl
  keytool
.fl
\fP
.fi
109
.LP
D
duke 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
is equivalent to 
.nf
\f3
.fl
  keytool \-help
.fl
\fP
.fi
.RE

.LP
.SS 
Option Defaults
.LP
.LP
125 126
Below are the defaults for various option values.
.LP
D
duke 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
.nf
\f3
.fl
\-alias "mykey"
.fl

.fl
\-keyalg
.fl
    "DSA" (when using \fP\f3\-genkeypair\fP\f3)
.fl
    "DES" (when using \fP\f3\-genseckey\fP\f3)
.fl

.fl
\-keysize
.fl
144 145 146
    2048 (when using \fP\f3\-genkeypair\fP\f3 and \-keyalg is "RSA")
.fl
    1024 (when using \fP\f3\-genkeypair\fP\f3 and \-keyalg is "DSA")
147 148
.fl
    256 (when using \fP\f3\-genkeypair\fP\f3 and \-keyalg is "EC")
D
duke 已提交
149 150 151 152 153 154
.fl
    56 (when using \fP\f3\-genseckey\fP\f3 and \-keyalg is "DES")
.fl
    168 (when using \fP\f3\-genseckey\fP\f3 and \-keyalg is "DESede")
.fl

155 156
.fl

D
duke 已提交
157 158 159 160 161
.fl
\-validity 90
.fl

.fl
T
tbell 已提交
162
\-keystore the file named \fP\f4.keystore\fP\f3 in the user's home directory
D
duke 已提交
163 164 165
.fl

.fl
T
tbell 已提交
166
\-storetype the value of the "keystore.type" property in the security properties file,
D
duke 已提交
167
.fl
168
           which is returned by the static \fP\f4getDefaultType\fP\f3 method in
T
tbell 已提交
169 170
.fl
           \fP\f4java.security.KeyStore\fP\f3
D
duke 已提交
171 172 173
.fl

.fl
T
tbell 已提交
174
\-file stdin if reading, stdout if writing
D
duke 已提交
175 176 177 178 179 180 181 182 183
.fl

.fl
\-protected false
.fl
\fP
.fi

.LP
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
.LP
In generating a public/private key pair, the signature algorithm (\f2\-sigalg\fP option) is derived from the algorithm of the underlying private key:
.LP
.RS 3
.TP 2
o
If the underlying private key is of type "DSA", the \f2\-sigalg\fP option defaults to "SHA1withDSA" 
.TP 2
o
If the underlying private key is of type "RSA", the \f2\-sigalg\fP option defaults to "SHA256withRSA". 
.TP 2
o
If the underlying private key is of type "EC", the \f2\-sigalg\fP option defaults to "SHA256withECDSA". 
.RE

.LP
.LP
Please consult the 
D
duke 已提交
202 203 204
.na
\f2Java Cryptography Architecture API Specification & Reference\fP @
.fi
205 206
http://download.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA for a full list of \f2\-keyalg\fP and \f2\-sigalg\fP you can choose from.
.LP
D
duke 已提交
207 208 209 210
.SS 
Common Options
.LP
.LP
211 212
The \f2\-v\fP option can appear for all commands except \f2\-help\fP. If it appears, it signifies "verbose" mode; more information will be provided in the output.
.LP
D
duke 已提交
213 214 215 216 217 218 219 220 221
.LP
There is also a \f2\-J\fP\f2javaoption\fP option that may appear for any command. If it appears, the specified \f2javaoption\fP string is passed through directly to the Java interpreter. This option should not contain any spaces. It is useful for adjusting the execution environment or memory usage. For a list of possible interpreter options, type \f2java \-h\fP or \f2java \-X\fP at the command line.
.LP
.LP
These options may appear for all commands operating on a keystore:
.LP
.RS 3
.TP 3
\-storetype storetype 
222 223
.LP
This qualifier specifies the type of keystore to be instantiated.  
D
duke 已提交
224 225
.TP 3
\-keystore keystore 
226
.LP
D
duke 已提交
227 228 229 230 231 232
The keystore location. 
.LP
If the JKS storetype is used and a keystore file does not yet exist, then certain \f3keytool\fP commands may result in a new keystore file being created. For example, if \f2keytool \-genkeypair\fP is invoked and the \f2\-keystore\fP option is not specified, the default keystore file named \f2.keystore\fP in the user's home directory will be created if it does not already exist. Similarly, if the \f2\-keystore \fP\f2ks_file\fP option is specified but \f2ks_file\fP does not exist, then it will be created 
.LP
Note that the input stream from the \f2\-keystore\fP option is passed to the \f2KeyStore.load\fP method. If \f2NONE\fP is specified as the URL, then a null stream is passed to the \f2KeyStore.load\fP method. \f2NONE\fP should be specified if the \f2KeyStore\fP is not file\-based (for example, if it resides on a hardware token device).  
.TP 3
233 234
\-storepass[:env|:file] argument 
.LP
D
duke 已提交
235 236
The password which is used to protect the integrity of the keystore. 
.LP
237 238 239 240 241 242 243 244 245 246 247 248 249
If the modifier \f2env\fP or \f2file\fP is not specified, then the password has the value \f2argument\fP, which must be at least 6 characters long. Otherwise, the password is retrieved as follows: 
.RS 3
.TP 2
o
\f2env\fP: Retrieve the password from the environment variable named \f2argument\fP 
.TP 2
o
\f2file\fP: Retrieve the password from the file named \f2argument\fP 
.RE
.LP
\f3Note\fP: All other options that require passwords, such as \f2\-keypass\fP, \f2\-srckeypass\fP, \f2\-destkeypass\fP \f2\-srcstorepass\fP, and \f2\-deststorepass\fP, accept the \f2env\fP and \f2file\fP modifiers. (Remember to separate the password option and the modifier with a colon, (\f2:\fP).) 
.LP
The password must be provided to all commands that access the keystore contents. For such commands, if a \f2\-storepass\fP option is not provided at the command line, the user is prompted for it. 
D
duke 已提交
250 251 252 253
.LP
When retrieving information from the keystore, the password is optional; if no password is given, the integrity of the retrieved information cannot be checked and a warning is displayed.  
.TP 3
\-providerName provider_name 
254 255
.LP
Used to identify a cryptographic service provider's name when listed in the security properties file.  
D
duke 已提交
256 257
.TP 3
\-providerClass provider_class_name 
258 259
.LP
Used to specify the name of cryptographic service provider's master class file when the service provider is not listed in the security properties file.  
D
duke 已提交
260 261
.TP 3
\-providerArg provider_arg 
262 263
.LP
Used in conjunction with \f2\-providerClass\fP. Represents an optional string input argument for the constructor of \f2provider_class_name\fP.  
D
duke 已提交
264 265
.TP 3
\-protected 
266
.LP
D
duke 已提交
267
Either \f2true\fP or \f2false\fP. This value should be specified as \f2true\fP if a password must be given via a protected authentication path such as a dedicated PIN reader. 
T
tbell 已提交
268 269 270 271
.LP
Note: Since there are two keystores involved in \f2\-importkeystore\fP command, two options, namely, \f2\-srcprotected\fP and \f2\-destprotected\fP are provided for the source keystore and the destination keystore respectively.  
.TP 3
\-ext {name{:critical}{=value}} 
272 273 274
.LP
Denotes an X.509 certificate extension. The option can be used in \-genkeypair and \-gencert to embed extensions into the certificate generated, or in \f2\-certreq\fP to show what extensions are requested in the certificate request. The option can appear multiple times. name can be a supported extension name (see below) or an arbitrary OID number. value, if provided, denotes the parameter for the extension; if omitted, denotes the default value (if defined) of the extension or the extension requires no parameter. The \f2:critical\fP modifier, if provided, means the extension's isCritical attribute is true; otherwise, false. You may use \f2:c\fP in place of \f2:critical\fP.  
.RE
D
duke 已提交
275

T
tbell 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
.LP
.LP
Currently keytool supports these named extensions (case\-insensitive):
.LP
.LP
.if \n+(b.=1 .nr d. \n(.c-\n(c.-1
.de 35
.ps \n(.s
.vs \n(.vu
.in \n(.iu
.if \n(.u .fi
.if \n(.j .ad
.if \n(.j=0 .na
..
.nf
.nr #~ 0
.if n .nr #~ 0.6n
.ds #d .d
.if \(ts\n(.z\(ts\(ts .ds #d nl
.fc
.nr 33 \n(.s
.rm 80 81
.nr 34 \n(.lu
.eo
.am 81
.br
.di a+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(81 .ll \n(81u
.in 0
The full form: "ca:{true|false}[,pathlen:<len>]"; or, <len>, a shorthand for "ca:true,pathlen:<len>"; or omitted, means "ca:true"
.br
.di
.nr a| \n(dn
.nr a- \n(dl
..
.ec \
.eo
.am 81
.br
.di b+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(81 .ll \n(81u
.in 0
usage(,usage)*, usage can be one of digitalSignature, nonRepudiation (contentCommitment), keyEncipherment, dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly, decipherOnly. Usage can be abbreviated with the first few letters (say, dig for digitalSignature) or in camel\-case style (say, dS for digitalSignature, cRLS for cRLSign), as long as no ambiguity is found. Usage is case\-insensitive.
.br
.di
.nr b| \n(dn
.nr b- \n(dl
..
.ec \
.eo
.am 81
.br
.di c+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(81 .ll \n(81u
.in 0
usage(,usage)*, usage can be one of anyExtendedKeyUsage, serverAuth, clientAuth, codeSigning, emailProtection, timeStamping, OCSPSigning, or any OID string. Named usage can be abbreviated with the first few letters or in camel\-case style, as long as no ambiguity is found. Usage is case\-insensitive.
.br
.di
.nr c| \n(dn
.nr c- \n(dl
..
.ec \
.eo
.am 80
.br
.di d+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(80 .ll \n(80u
.in 0
SAN or SubjectAlternativeName
.br
.di
.nr d| \n(dn
.nr d- \n(dl
..
.ec \
.eo
.am 81
.br
.di e+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(81 .ll \n(81u
.in 0
type:value(,type:value)*, type can be EMAIL, URI, DNS, IP, or OID, value is the string format value for the type.
.br
.di
.nr e| \n(dn
.nr e- \n(dl
..
.ec \
.eo
.am 80
.br
.di f+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(80 .ll \n(80u
.in 0
IAN or IssuerAlternativeName
.br
.di
.nr f| \n(dn
.nr f- \n(dl
..
.ec \
.eo
.am 81
.br
.di g+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(81 .ll \n(81u
.in 0
same as SubjectAlternativeName
.br
.di
.nr g| \n(dn
.nr g- \n(dl
..
.ec \
.eo
.am 81
.br
.di h+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(81 .ll \n(81u
.in 0
method:location\-type:location\-value (,method:location\-type:location\-value)*, method can be "timeStamping", "caRepository" or any OID. location\-type and location\-value can be any type:value supported by the SubjectAlternativeName extension.
.br
.di
.nr h| \n(dn
.nr h- \n(dl
..
.ec \
.eo
.am 80
.br
.di i+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(80 .ll \n(80u
.in 0
AIA or AuthorityInfoAccess
.br
.di
.nr i| \n(dn
.nr i- \n(dl
..
.ec \
.eo
.am 81
.br
.di j+
.35
.ft \n(.f
.ll \n(34u*1u/3u
.if \n(.l<\n(81 .ll \n(81u
.in 0
same as SubjectInfoAccess. method can be "ocsp","caIssuers" or any OID.
.br
.di
.nr j| \n(dn
.nr j- \n(dl
..
.ec \
.35
.nf
.ll \n(34u
.nr 80 0
.nr 38 \w\f3Name\fP
.if \n(80<\n(38 .nr 80 \n(38
.nr 38 \wBC or BasicConstraints
.if \n(80<\n(38 .nr 80 \n(38
.nr 38 \wKU or KeyUsage
.if \n(80<\n(38 .nr 80 \n(38
.nr 38 \wEKU or ExtendedkeyUsage
.if \n(80<\n(38 .nr 80 \n(38
.nr 38 \wSIA or SubjectInfoAccess
.if \n(80<\n(38 .nr 80 \n(38
.80
.rm 80
.nr 38 \n(d-
.if \n(80<\n(38 .nr 80 \n(38
.nr 38 \n(f-
.if \n(80<\n(38 .nr 80 \n(38
.nr 38 \n(i-
.if \n(80<\n(38 .nr 80 \n(38
.nr 81 0
.nr 38 \w\f3Value\fP
.if \n(81<\n(38 .nr 81 \n(38
.81
.rm 81
.nr 38 \n(a-
.if \n(81<\n(38 .nr 81 \n(38
.nr 38 \n(b-
.if \n(81<\n(38 .nr 81 \n(38
.nr 38 \n(c-
.if \n(81<\n(38 .nr 81 \n(38
.nr 38 \n(e-
.if \n(81<\n(38 .nr 81 \n(38
.nr 38 \n(g-
.if \n(81<\n(38 .nr 81 \n(38
.nr 38 \n(h-
.if \n(81<\n(38 .nr 81 \n(38
.nr 38 \n(j-
.if \n(81<\n(38 .nr 81 \n(38
.35
.nf
.ll \n(34u
.nr 38 1n
.nr 79 0
.nr 40 \n(79+(0*\n(38)
.nr 80 +\n(40
.nr 41 \n(80+(3*\n(38)
.nr 81 +\n(41
.nr TW \n(81
510
.if t .if \n(TW>\n(.li .tm Table at line 319 file Input is too wide - \n(TW units
T
tbell 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
.fc  
.nr #T 0-1
.nr #a 0-1
.eo
.de T#
.ds #d .d
.if \(ts\n(.z\(ts\(ts .ds #d nl
.mk ##
.nr ## -1v
.ls 1
.ls
..
.ec
.ta \n(80u \n(81u 
.nr 31 \n(.f
.nr 35 1m
\&\h'|\n(40u'\f3Name\fP\h'|\n(41u'\f3Value\fP
.ne \n(a|u+\n(.Vu
.if (\n(a|+\n(#^-1v)>\n(#- .nr #- +(\n(a|+\n(#^-\n(#--1v)
.ta \n(80u \n(81u 
.nr 31 \n(.f
.nr 35 1m
\&\h'|\n(40u'BC or BasicConstraints\h'|\n(41u'
.mk ##
.nr 31 \n(##
.sp |\n(##u-1v
.nr 37 \n(41u
.in +\n(37u
.a+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(31u
.ne \n(b|u+\n(.Vu
.if (\n(b|+\n(#^-1v)>\n(#- .nr #- +(\n(b|+\n(#^-\n(#--1v)
.ta \n(80u \n(81u 
.nr 31 \n(.f
.nr 35 1m
\&\h'|\n(40u'KU or KeyUsage\h'|\n(41u'
.mk ##
.nr 31 \n(##
.sp |\n(##u-1v
.nr 37 \n(41u
.in +\n(37u
.b+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(31u
.ne \n(c|u+\n(.Vu
.if (\n(c|+\n(#^-1v)>\n(#- .nr #- +(\n(c|+\n(#^-\n(#--1v)
.ta \n(80u \n(81u 
.nr 31 \n(.f
.nr 35 1m
\&\h'|\n(40u'EKU or ExtendedkeyUsage\h'|\n(41u'
.mk ##
.nr 31 \n(##
.sp |\n(##u-1v
.nr 37 \n(41u
.in +\n(37u
.c+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(31u
.ne \n(d|u+\n(.Vu
.ne \n(e|u+\n(.Vu
.if (\n(d|+\n(#^-1v)>\n(#- .nr #- +(\n(d|+\n(#^-\n(#--1v)
.if (\n(e|+\n(#^-1v)>\n(#- .nr #- +(\n(e|+\n(#^-\n(#--1v)
.ta \n(80u \n(81u 
.nr 31 \n(.f
.nr 35 1m
\&\h'|\n(40u'\h'|\n(41u'
.mk ##
.nr 31 \n(##
.sp |\n(##u-1v
.nr 37 \n(40u
.in +\n(37u
.d+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(##u-1v
.nr 37 \n(41u
.in +\n(37u
.e+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(31u
.ne \n(f|u+\n(.Vu
.ne \n(g|u+\n(.Vu
.if (\n(f|+\n(#^-1v)>\n(#- .nr #- +(\n(f|+\n(#^-\n(#--1v)
.if (\n(g|+\n(#^-1v)>\n(#- .nr #- +(\n(g|+\n(#^-\n(#--1v)
.ta \n(80u \n(81u 
.nr 31 \n(.f
.nr 35 1m
\&\h'|\n(40u'\h'|\n(41u'
.mk ##
.nr 31 \n(##
.sp |\n(##u-1v
.nr 37 \n(40u
.in +\n(37u
.f+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(##u-1v
.nr 37 \n(41u
.in +\n(37u
.g+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(31u
.ne \n(h|u+\n(.Vu
.if (\n(h|+\n(#^-1v)>\n(#- .nr #- +(\n(h|+\n(#^-\n(#--1v)
.ta \n(80u \n(81u 
.nr 31 \n(.f
.nr 35 1m
\&\h'|\n(40u'SIA or SubjectInfoAccess\h'|\n(41u'
.mk ##
.nr 31 \n(##
.sp |\n(##u-1v
.nr 37 \n(41u
.in +\n(37u
.h+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(31u
.ne \n(i|u+\n(.Vu
.ne \n(j|u+\n(.Vu
.if (\n(i|+\n(#^-1v)>\n(#- .nr #- +(\n(i|+\n(#^-\n(#--1v)
.if (\n(j|+\n(#^-1v)>\n(#- .nr #- +(\n(j|+\n(#^-\n(#--1v)
.ta \n(80u \n(81u 
.nr 31 \n(.f
.nr 35 1m
\&\h'|\n(40u'\h'|\n(41u'
.mk ##
.nr 31 \n(##
.sp |\n(##u-1v
.nr 37 \n(40u
.in +\n(37u
.i+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(##u-1v
.nr 37 \n(41u
.in +\n(37u
.j+
.in -\n(37u
.mk 32
.if \n(32>\n(31 .nr 31 \n(32
.sp |\n(31u
.fc
.nr T. 1
.T# 1
.35
.rm a+
.rm b+
.rm c+
.rm d+
.rm e+
.rm f+
.rm g+
.rm h+
.rm i+
.rm j+
.if \n-(b.=0 .nr c. \n(.c-\n(d.-38

.LP
.LP
For name as OID, value is the HEX dumped DER encoding of the extnValue for the extension excluding the OCTET STRING type and length bytes. Any extra character other than standard HEX numbers (0\-9, a\-f, A\-F) are ignored in the HEX string. Therefore, both \f2"01:02:03:04"\fP and \f2"01020304"\fP are accepted as identical values. If there's no value, the extension has an empty value field then.
.LP
.LP
688
A special name \f2'honored'\fP, used in \f2\-gencert\fP only, denotes how the extensions included in the certificate request should be honored. The value for this name is a comma separated list of \f2"all"\fP (all requested extensions are honored), \f2"name{:[critical|non\-critical]}"\fP (the named extension is honored, but using a different isCritical attribute) and \f2"\-name"\fP (used with all, denotes an exception). Requested extensions are not honored by default.
T
tbell 已提交
689 690 691 692 693 694
.LP
.LP
If, besides the \-ext honored option, another named or OID \-ext option is provided, this extension will be added to those already honored. However, if this name (or OID) also appears in the honored value, its value and criticality overrides the one in the request.
.LP
.LP
The subjectKeyIdentifier extension is always created. For non self\-signed certificates, the authorityKeyIdentifier is always created.
D
duke 已提交
695
.LP
696 697 698
.LP
\f3Note:\fP Users should be aware that some combinations of extensions (and other certificate fields) may not conform to the Internet standard. See Warning Regarding Certificate Conformance for details.
.LP
D
duke 已提交
699 700 701 702 703 704 705
.SH "COMMANDS"
.LP
.SS 
Creating or Adding Data to the Keystore
.LP
.RS 3
.TP 3
706
\-gencert {\-rfc} {\-infile infile} {\-outfile outfile} {\-alias alias} {\-sigalg sigalg} {\-dname dname} {\-startdate startdate {\-ext ext}* {\-validity valDays} [\-keypass keypass] {\-keystore keystore} [\-storepass storepass] {\-storetype storetype} {\-providername provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-protected} {\-Jjavaoption} 
T
tbell 已提交
707
.LP
708
Generates a certificate as a response to a certificate request file (which can be created by the \f2keytool \-certreq\fP command). The command reads the request from \f2infile\fP (if omitted, from the standard input), signs it using alias's private key, and output the X.509 certificate into \f2outfile\fP (if omitted, to the standard output). If \f2\-rfc\fP is specified, output format is BASE64\-encoded PEM; otherwise, a binary DER is created. 
T
tbell 已提交
709
.LP
710
\f2sigalg\fP specifies the algorithm that should be used to sign the certificate. \f2startdate\fP is the start time/date that the certificate is valid. \f2valDays\fP tells the number of days for which the certificate should be considered valid. 
T
tbell 已提交
711
.LP
712 713
If \f2dname\fP is provided, it's used as the subject of the generated certificate. Otherwise, the one from the certificate request is used. 
.LP
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
\f2ext\fP shows what X.509 extensions will be embedded in the certificate. Read Common Options for the grammar of \f2\-ext\fP. 
.LP
The \f2\-gencert\fP command enables you to create certificate chains. The following example creates a certificate, \f2e1\fP, that contains three certificates in its certificate chain. 
.LP
The following commands creates four key pairs named \f2ca\fP, \f2ca1\fP, \f2ca2\fP, and \f2e1\fP: 
.nf
\f3
.fl
keytool \-alias ca \-dname CN=CA \-genkeypair
.fl
keytool \-alias ca1 \-dname CN=CA \-genkeypair
.fl
keytool \-alias ca2 \-dname CN=CA \-genkeypair
.fl
keytool \-alias e1 \-dname CN=E1 \-genkeypair
.fl
\fP
.fi
.LP
The following two commands create a chain of signed certificates; \f2ca\fP signs ca1 and \f2ca1 signs ca2\fP, all of which are self\-issued: 
.nf
\f3
.fl
keytool \-alias ca1 \-certreq | keytool \-alias ca \-gencert \-ext san=dns:ca1 | keytool \-alias ca1 \-importcert
.fl
keytool \-alias ca2 \-certreq | $KT \-alias ca1 \-gencert \-ext san=dns:ca2 | $KT \-alias ca2 \-importcert
.fl
\fP
.fi
.LP
The following command creates the certificate \f2e1\fP and stores it in the file \f2e1.cert\fP, which is signed by \f2ca2\fP. As a result, \f2e1\fP should contain \f2ca\fP, \f2ca1\fP, and \f2ca2\fP in its certificate chain: 
.nf
\f3
.fl
keytool \-alias e1 \-certreq | keytool \-alias ca2 \-gencert > e1.cert
.fl
\fP
.fi
T
tbell 已提交
752
.TP 3
753
\-genkeypair {\-alias alias} {\-keyalg keyalg} {\-keysize keysize} {\-sigalg sigalg} [\-dname dname] [\-keypass keypass] {\-startdate value} {\-ext ext}* {\-validity valDays} {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-protected} {\-Jjavaoption} 
D
duke 已提交
754 755 756 757 758 759 760 761 762
.LP
Generates a key pair (a public key and associated private key). Wraps the public key into an X.509 v3 self\-signed certificate, which is stored as a single\-element certificate chain. This certificate chain and the private key are stored in a new keystore entry identified by \f2alias\fP. 
.LP
\f2keyalg\fP specifies the algorithm to be used to generate the key pair, and \f2keysize\fP specifies the size of each key to be generated. \f2sigalg\fP specifies the algorithm that should be used to sign the self\-signed certificate; this algorithm must be compatible with \f2keyalg\fP. 
.LP
\f2dname\fP specifies the X.500 Distinguished Name to be associated with \f2alias\fP, and is used as the \f2issuer\fP and \f2subject\fP fields in the self\-signed certificate. If no distinguished name is provided at the command line, the user will be prompted for one. 
.LP
\f2keypass\fP is a password used to protect the private key of the generated key pair. If no password is provided, the user is prompted for it. If you press RETURN at the prompt, the key password is set to the same password as that used for the keystore. \f2keypass\fP must be at least 6 characters long. 
.LP
T
tbell 已提交
763 764
\f2startdate\fP specifies the issue time of the certificate, also known as the "Not Before" value of the X.509 certificate's Validity field. 
.LP
765
The option value can be set in one of these two forms: 
T
tbell 已提交
766 767 768
.RS 3
.TP 3
1.
769
([+\-]\f2nnn\fP[ymdHMS])+ 
T
tbell 已提交
770 771
.TP 3
2.
772
[yyyy/mm/dd] [HH:MM:SS] 
T
tbell 已提交
773 774
.RE
.LP
775
With the first form, the issue time is shifted by the specified value from the current time. The value is a concatenation of a sequence of sub values. Inside each sub value, the plus sign ("+") means shifting forward, and the minus sign ("\-") means shifting backward. The time to be shifted is \f2nnn\fP units of years, months, days, hours, minutes, or seconds (denoted by a single character of "y", "m", "d", "H", "M", or "S" respectively). The exact value of the issue time is calculated using the \f2java.util.GregorianCalendar.add(int field, int amount)\fP method on each sub value, from left to right. For example, by specifying \f2"\-startdate \-1y+1m\-1d"\fP, the issue time will be: 
T
tbell 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
.nf
\f3
.fl
   Calendar c = new GregorianCalendar();
.fl
   c.add(Calendar.YEAR, \-1);
.fl
   c.add(Calendar.MONTH, 1);
.fl
   c.add(Calendar.DATE, \-1);
.fl
   return c.getTime()
.fl
\fP
.fi
D
duke 已提交
791
.LP
792
With the second form, the user sets the exact issue time in two parts, year/month/day and hour:minute:second (using the local time zone). The user may provide only one part, which means the other part is the same as the current date (or time). User must provide the exact number of digits as shown in the format definition (padding with 0 if shorter). When both the date and time are provided, there is one (and only one) space character between the two parts. The hour should always be provided in 24 hour format. 
T
tbell 已提交
793
.LP
794
When the option is not provided, the start date is the current time. The option can be provided at most once. 
T
tbell 已提交
795 796 797 798
.LP
\f2valDays\fP specifies the number of days (starting at the date specified by \f2\-startdate\fP, or the current date if \f2\-startdate\fP is not specified) for which the certificate should be considered valid. 
.LP
This command was named \f2\-genkey\fP in previous releases. This old name is still supported in this release and will be supported in future releases, but for clarity the new name, \f2\-genkeypair\fP, is preferred going forward.  
D
duke 已提交
799 800 801 802 803 804 805 806 807
.TP 3
\-genseckey {\-alias alias} {\-keyalg keyalg} {\-keysize keysize} [\-keypass keypass] {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-protected} {\-Jjavaoption} 
.LP
Generates a secret key and stores it in a new \f2KeyStore.SecretKeyEntry\fP identified by \f2alias\fP. 
.LP
\f2keyalg\fP specifies the algorithm to be used to generate the secret key, and \f2keysize\fP specifies the size of the key to be generated. \f2keypass\fP is a password used to protect the secret key. If no password is provided, the user is prompted for it. If you press RETURN at the prompt, the key password is set to the same password as that used for the keystore. \f2keypass\fP must be at least 6 characters long.  
.TP 3
\-importcert {\-alias alias} {\-file cert_file} [\-keypass keypass] {\-noprompt} {\-trustcacerts} {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerName provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-protected} {\-Jjavaoption} 
.LP
T
tbell 已提交
808
Reads the certificate or certificate chain (where the latter is supplied in a PKCS#7 formatted reply or a sequence of X.509 certificates) from the file \f2cert_file\fP, and stores it in the keystore entry identified by \f2alias\fP. If no file is given, the certificate or certificate chain is read from stdin. 
D
duke 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
.LP
\f3keytool\fP can import X.509 v1, v2, and v3 certificates, and PKCS#7 formatted certificate chains consisting of certificates of that type. The data to be imported must be provided either in binary encoding format, or in printable encoding format (also known as Base64 encoding) as defined by the Internet RFC 1421 standard. In the latter case, the encoding must be bounded at the beginning by a string that starts with "\-\-\-\-\-BEGIN", and bounded at the end by a string that starts with "\-\-\-\-\-END". 
.LP
You import a certificate for two reasons: 
.RS 3
.TP 3
1.
to add it to the list of trusted certificates, or 
.TP 3
2.
to import a certificate reply received from a CA as the result of submitting a Certificate Signing Request (see the \-certreq command) to that CA. 
.RE
.LP
Which type of import is intended is indicated by the value of the \f2\-alias\fP option: 
.RS 3
.TP 3
1.
\f3If the alias does not point to a key entry\fP, then \f3keytool\fP assumes you are adding a trusted certificate entry. In this case, the alias should not already exist in the keystore. If the alias does already exist, then \f3keytool\fP outputs an error, since there is already a trusted certificate for that alias, and does not import the certificate. 
.TP 3
2.
\f3If the alias points to a key entry\fP, then \f3keytool\fP assumes you are importing a certificate reply. 
.RE
\f3Importing a New Trusted Certificate\fP 
.LP
833
Before adding the certificate to the keystore, \f3keytool\fP tries to verify it by attempting to construct a chain of trust from that certificate to a self\-signed certificate (belonging to a root CA), using trusted certificates that are already available in the keystore. 
D
duke 已提交
834
.LP
835
If the \f2\-trustcacerts\fP option has been specified, additional certificates are considered for the chain of trust, namely the certificates in a file named "cacerts". 
D
duke 已提交
836
.LP
837
If \f3keytool\fP fails to establish a trust path from the certificate to be imported up to a self\-signed certificate (either from the keystore or the "cacerts" file), the certificate information is printed out, and the user is prompted to verify it, e.g., by comparing the displayed certificate fingerprints with the fingerprints obtained from some other (trusted) source of information, which might be the certificate owner himself/herself. Be very careful to ensure the certificate is valid prior to importing it as a "trusted" certificate! \-\- see WARNING Regarding Importing Trusted Certificates. The user then has the option of aborting the import operation. If the \f2\-noprompt\fP option is given, however, there will be no interaction with the user. 
D
duke 已提交
838 839
\f3Importing a Certificate Reply\fP 
.LP
840
When importing a certificate reply, the certificate reply is validated using trusted certificates from the keystore, and optionally using the certificates configured in the "cacerts" keystore file (if the \f2\-trustcacerts\fP option was specified). 
D
duke 已提交
841
.LP
842
The methods of determining whether the certificate reply is trusted are described in the following: 
D
duke 已提交
843 844 845 846 847 848
.RS 3
.TP 2
o
\f3If the reply is a single X.509 certificate\fP, \f3keytool\fP attempts to establish a trust chain, starting at the certificate reply and ending at a self\-signed certificate (belonging to a root CA). The certificate reply and the hierarchy of certificates used to authenticate the certificate reply form the new certificate chain of \f2alias\fP. If a trust chain cannot be established, the certificate reply is not imported. In this case, \f3keytool\fP does not print out the certificate and prompt the user to verify it, because it is very hard (if not impossible) for a user to determine the authenticity of the certificate reply. 
.TP 2
o
T
tbell 已提交
849
\f3If the reply is a PKCS#7 formatted certificate chain or a sequence of X.509 certificates\fP, the chain is ordered with the user certificate first followed by zero or more CA certificates. If the chain ends with a self\-signed root CA certificate and \f2\-trustcacerts\fP option was specified, \f3keytool\fP will attempt to match it with any of the trusted certificates in the keystore or the "cacerts" keystore file. If the chain does not end with a self\-signed root CA certificate and the \f2\-trustcacerts\fP option was specified, \f3keytool\fP will try to find one from the trusted certificates in the keystore or the "cacerts" keystore file and add it to the end of the chain. If the certificate is not found and \f2\-noprompt\fP option is not specified, the information of the last certificate in the chain is printed out, and the user is prompted to verify it. 
D
duke 已提交
850 851
.RE
.LP
852
If the public key in the certificate reply matches the user's public key already stored with under \f2alias\fP, the old certificate chain is replaced with the new certificate chain in the reply. The old chain can only be replaced if a valid \f2keypass\fP, the password used to protect the private key of the entry, is supplied. If no password is provided, and the private key password is different from the keystore password, the user is prompted for it. 
D
duke 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866
.LP
This command was named \f2\-import\fP in previous releases. This old name is still supported in this release and will be supported in future releases, but for clarify the new name, \f2\-importcert\fP, is preferred going forward.    
.TP 3
\-importkeystore \-srckeystore srckeystore \-destkeystore destkeystore {\-srcstoretype srcstoretype} {\-deststoretype deststoretype} [\-srcstorepass srcstorepass] [\-deststorepass deststorepass] {\-srcprotected} {\-destprotected} {\-srcalias srcalias {\-destalias destalias} [\-srckeypass srckeypass] [\-destkeypass destkeypass] } {\-noprompt} {\-srcProviderName src_provider_name} {\-destProviderName dest_provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-protected} {\-Jjavaoption} 
.LP
Imports a single entry or all entries from a source keystore to a destination keystore. 
.LP
When the \f2srcalias\fP option is provided, the command imports the single entry identified by the alias to the destination keystore. If a destination alias is not provided with \f2destalias\fP, then \f2srcalias\fP is used as the destination alias. If the source entry is protected by a password, \f2srckeypass\fP will be used to recover the entry. If \f2srckeypass\fP is not provided, then \f3keytool\fP will attempt to use \f2srcstorepass\fP to recover the entry. If \f2srcstorepass\fP is either not provided or is incorrect, the user will be prompted for a password. The destination entry will be protected using \f2destkeypass\fP. If \f2destkeypass\fP is not provided, the destination entry will be protected with the source entry password. 
.LP
If the \f2srcalias\fP option is not provided, then all entries in the source keystore are imported into the destination keystore. Each destination entry will be stored under the alias from the source entry. If the source entry is protected by a password, \f2srcstorepass\fP will be used to recover the entry. If \f2srcstorepass\fP is either not provided or is incorrect, the user will be prompted for a password. If a source keystore entry type is not supported in the destination keystore, or if an error occurs while storing an entry into the destination keystore, the user will be prompted whether to skip the entry and continue, or to quit. The destination entry will be protected with the source entry password. 
.LP
If the destination alias already exists in the destination keystore, the user is prompted to either overwrite the entry, or to create a new entry under a different alias name. 
.LP
Note that if \f2\-noprompt\fP is provided, the user will not be prompted for a new destination alias. Existing entries will automatically be overwritten with the destination alias name. Finally, entries that can not be imported are automatically skipped and a warning is output.  
T
tbell 已提交
867 868 869 870
.TP 3
\-printcertreq {\-file file} 
.LP
Prints the content of a PKCS #10 format certificate request, which can be generated by the keytool \-certreq command. The command reads the request from file; if omitted, from the standard input.  
D
duke 已提交
871
.RE
872 873

.LP
D
duke 已提交
874 875 876 877 878
.SS 
Exporting Data
.LP
.RS 3
.TP 3
879
\-certreq {\-alias alias} {\-dname dname} {\-sigalg sigalg} {\-file certreq_file} [\-keypass keypass] {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerName provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-protected} {\-Jjavaoption} 
D
duke 已提交
880 881 882 883 884
.LP
Generates a Certificate Signing Request (CSR), using the PKCS#10 format. 
.LP
A CSR is intended to be sent to a certificate authority (CA). The CA will authenticate the certificate requestor (usually off\-line) and will return a certificate or certificate chain, used to replace the existing certificate chain (which initially consists of a self\-signed certificate) in the keystore. 
.LP
885
The private key associated with \f2alias\fP is used to create the PKCS#10 certificate request. In order to access the private key, the appropriate password must be provided, since private keys are protected in the keystore with a password. If \f2keypass\fP is not provided at the command line, and is different from the password used to protect the integrity of the keystore, the user is prompted for it. If dname is provided, it's used as the subject in the CSR. Otherwise, the X.500 Distinguished Name associated with alias is used. 
D
duke 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
.LP
\f2sigalg\fP specifies the algorithm that should be used to sign the CSR. 
.LP
The CSR is stored in the file \f2certreq_file\fP. If no file is given, the CSR is output to stdout. 
.LP
Use the \f2importcert\fP command to import the response from the CA.  
.TP 3
\-exportcert {\-alias alias} {\-file cert_file} {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerName provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-rfc} {\-v} {\-protected} {\-Jjavaoption} 
.LP
Reads (from the keystore) the certificate associated with \f2alias\fP, and stores it in the file \f2cert_file\fP. 
.LP
If no file is given, the certificate is output to stdout. 
.LP
The certificate is by default output in binary encoding, but will instead be output in the printable encoding format, as defined by the Internet RFC 1421 standard, if the \f2\-rfc\fP option is specified. 
.LP
If \f2alias\fP refers to a trusted certificate, that certificate is output. Otherwise, \f2alias\fP refers to a key entry with an associated certificate chain. In that case, the first certificate in the chain is returned. This certificate authenticates the public key of the entity addressed by \f2alias\fP. 
.LP
This command was named \f2\-export\fP in previous releases. This old name is still supported in this release and will be supported in future releases, but for clarify the new name, \f2\-exportcert\fP, is preferred going forward.  
.RE

.LP
.SS 
Displaying Data
.LP
.RS 3
.TP 3
\-list {\-alias alias} {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerName provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v | \-rfc} {\-protected} {\-Jjavaoption} 
.LP
Prints (to stdout) the contents of the keystore entry identified by \f2alias\fP. If no alias is specified, the contents of the entire keystore are printed. 
.LP
T
tbell 已提交
916
This command by default prints the SHA1 fingerprint of a certificate. If the \f2\-v\fP option is specified, the certificate is printed in human\-readable format, with additional information such as the owner, issuer, serial number, and any extensions. If the \f2\-rfc\fP option is specified, certificate contents are printed using the printable encoding format, as defined by the Internet RFC 1421 standard 
D
duke 已提交
917 918 919
.LP
You cannot specify both \f2\-v\fP and \f2\-rfc\fP.  
.TP 3
920
\-printcert {\-file cert_file | \-sslserver host[:port]} {\-jarfile JAR_file {\-rfc} {\-v} {\-Jjavaoption} 
T
tbell 已提交
921
.LP
922
Reads the certificate from the file \f2cert_file\fP, the SSL server located at \f2host:port\fP, or the signed JAR file \f2JAR_file\fP (with the option \f2\-jarfile\fP and prints its contents in a human\-readable format. When no port is specified, the standard HTTPS port 443 is assumed. Note that \f2\-sslserver\fP and \f2\-file\fP options cannot be provided at the same time. Otherwise, an error is reported. If neither option is given, the certificate is read from stdin. 
D
duke 已提交
923
.LP
T
tbell 已提交
924
If \f2\-rfc\fP is specified, keytool prints the certificate in PEM mode as defined by the Internet RFC 1421 standard. 
D
duke 已提交
925
.LP
T
tbell 已提交
926
If the certificate is read from a file or stdin, it may be either binary encoded or in printable encoding format, as defined by the Internet RFC 1421 standard 
D
duke 已提交
927
.LP
928 929 930 931 932 933 934 935 936 937 938 939 940
If the SSL server is behind a firewall, \f2\-J\-Dhttps.proxyHost=proxyhost\fP and \f2\-J\-Dhttps.proxyPort=proxyport\fP can be specified on the command line for proxy tunneling. See the 
.na
\f2JSSE Reference Guide\fP @
.fi
http://download.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html for more information. 
.LP
\f3Note\fP: This option can be used independently of a keystore.  
.TP 3
\-printcrl \-file crl_ {\-v} 
.LP
Reads the certificate revocation list (CRL) from the file \f2crl_file\fP. 
.LP
A Certificate Revocation List (CRL) is a list of digital certificates which have been revoked by the Certificate Authority (CA) that issued them. The CA generates \f2crl_file\fP. 
T
tbell 已提交
941 942
.LP
\f3Note\fP: This option can be used independently of a keystore.  
D
duke 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
.RE

.LP
.SS 
Managing the Keystore
.LP
.RS 3
.TP 3
\-storepasswd [\-new new_storepass] {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerName provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-Jjavaoption} 
.LP
Changes the password used to protect the integrity of the keystore contents. The new password is \f2new_storepass\fP, which must be at least 6 characters long.  
.TP 3
\-keypasswd {\-alias alias} [\-keypass old_keypass] [\-new new_keypass] {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerName provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-Jjavaoption} 
.LP
Changes the password under which the private/secret key identified by \f2alias\fP is protected, from \f2old_keypass\fP to \f2new_keypass\fP, which must be at least 6 characters long. 
.LP
If the \f2\-keypass\fP option is not provided at the command line, and the key password is different from the keystore password, the user is prompted for it. 
.LP
If the \f2\-new\fP option is not provided at the command line, the user is prompted for it.  
.TP 3
\-delete [\-alias alias] {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerName provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-protected} {\-Jjavaoption} 
.LP
Deletes from the keystore the entry identified by \f2alias\fP. The user is prompted for the alias, if no alias is provided at the command line.  
.TP 3
\-changealias {\-alias alias} [\-destalias destalias] [\-keypass keypass] {\-storetype storetype} {\-keystore keystore} [\-storepass storepass] {\-providerName provider_name} {\-providerClass provider_class_name {\-providerArg provider_arg}} {\-v} {\-protected} {\-Jjavaoption} 
.LP
Move an existing keystore entry from the specified \f2alias\fP to a new alias, \f2destalias\fP. If no destination alias is provided, the command will prompt for one. If the original entry is protected with an entry password, the password can be supplied via the "\-keypass" option. If no key password is provided, the \f2storepass\fP (if given) will be attempted first. If that attempt fails, the user will be prompted for a password.  
.RE

.LP
.SS 
Getting Help
.LP
.RS 3
.TP 3
\-help 
.LP
980 981 982 983 984 985 986 987 988 989
Lists the basic commands and their options. 
.LP
For more information about a specific command, enter the following, where \f2command_name\fP is the name of the command: 
.nf
\f3
.fl
    keytool \-\fP\f4command_name\fP\f3 \-help
.fl
\fP
.fi
D
duke 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
.RE

.LP
.SH "EXAMPLES"
.LP
.LP
Suppose you want to create a keystore for managing your public/private key pair and certificates from entities you trust.
.LP
.SS 
Generating Your Key Pair
.LP
.LP
The first thing you need to do is create a keystore and generate the key pair. You could use a command such as the following:
.LP
.nf
\f3
.fl
1007
    keytool \-genkeypair \-dname "cn=Mark Jones, ou=Java, o=Oracle, c=US"
D
duke 已提交
1008
.fl
1009
      \-alias business \-keypass \fP\f4<new password for private key>\fP\f3 \-keystore /working/mykeystore
D
duke 已提交
1010
.fl
1011
      \-storepass \fP\f4<new password for keystore>\fP\f3 \-validity 180
D
duke 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
.fl
\fP
.fi

.LP
.LP
(Please note: This must be typed as a single line. Multiple lines are used in the examples just for legibility purposes.)
.LP
.LP
1021
This command creates the keystore named "mykeystore" in the "working" directory (assuming it doesn't already exist), and assigns it the password specified by \f2<new password for keystore>\fP. It generates a public/private key pair for the entity whose "distinguished name" has a common name of "Mark Jones", organizational unit of "Java", organization of "Oracle" and two\-letter country code of "US". It uses the default "DSA" key generation algorithm to create the keys, both 1024 bits long.
D
duke 已提交
1022 1023
.LP
.LP
1024
It creates a self\-signed certificate (using the default "SHA1withDSA" signature algorithm) that includes the public key and the distinguished name information. This certificate will be valid for 180 days, and is associated with the private key in a keystore entry referred to by the alias "business". The private key is assigned the password specified by \f2<new password for private key>\fP.
D
duke 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
.LP
.LP
The command could be significantly shorter if option defaults were accepted. As a matter of fact, no options are required; defaults are used for unspecified options that have default values, and you are prompted for any required values. Thus, you could simply have the following:
.LP
.nf
\f3
.fl
    keytool \-genkeypair
.fl
\fP
.fi

.LP
.LP
1039 1040 1041 1042
In this case, a keystore entry with alias "mykey" is created, with a newly\-generated key pair and a certificate that is valid for 90 days. This entry is placed in the keystore named ".keystore" in your home directory. (The keystore is created if it doesn't already exist.) You will be prompted for the distinguished name information, the keystore password, and the private key password.
.LP
.LP
The rest of the examples assume you executed the \f2\-genkeypair\fP command without options specified, and that you responded to the prompts with values equal to those given in the first \f2\-genkeypair\fP command, above (for example, a distinguished name of "cn=Mark Jones, ou=Java, o=Oracle, c=US").
D
duke 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
.LP
.SS 
Requesting a Signed Certificate from a Certification Authority
.LP
.LP
So far all we've got is a self\-signed certificate. A certificate is more likely to be trusted by others if it is signed by a Certification Authority (CA). To get such a signature, you first generate a Certificate Signing Request (CSR), via the following:
.LP
.nf
\f3
.fl
    keytool \-certreq \-file MarkJ.csr
.fl
\fP
.fi

1058
.LP
D
duke 已提交
1059 1060
.LP
This creates a CSR (for the entity identified by the default alias "mykey") and puts the request in the file named "MarkJ.csr". Submit this file to a CA, such as VeriSign, Inc. The CA will authenticate you, the requestor (usually off\-line), and then will return a certificate, signed by them, authenticating your public key. (In some cases, they will actually return a chain of certificates, each one authenticating the public key of the signer of the previous certificate in the chain.)
1061
.LP
D
duke 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
.SS 
Importing a Certificate for the CA
.LP
.LP
You need to replace your self\-signed certificate with a certificate chain, where each certificate in the chain authenticates the public key of the signer of the previous certificate in the chain, up to a "root" CA.
.LP
.LP
Before you import the certificate reply from a CA, you need one or more "trusted certificates" in your keystore or in the \f2cacerts\fP keystore file (which is described in importcert command):
.LP
.RS 3
.TP 2
o
If the certificate reply is a certificate chain, you just need the top certificate of the chain (that is, the "root" CA certificate authenticating that CA's public key). 
.TP 2
o
If the certificate reply is a single certificate, you need a certificate for the issuing CA (the one that signed it), and if that certificate is not self\-signed, you need a certificate for its signer, and so on, up to a self\-signed "root" CA certificate. 
.RE

.LP
.LP
1082
The "cacerts" keystore file ships with several VeriSign root CA certificates, so you probably won't need to import a VeriSign certificate as a trusted certificate in your keystore. But if you request a signed certificate from a different CA, and a certificate authenticating that CA's public key hasn't been added to "cacerts", you will need to import a certificate from the CA as a "trusted certificate".
D
duke 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
.LP
.LP
A certificate from a CA is usually either self\-signed, or signed by another CA (in which case you also need a certificate authenticating that CA's public key). Suppose company ABC, Inc., is a CA, and you obtain a file named "ABCCA.cer" that is purportedly a self\-signed certificate from ABC, authenticating that CA's public key.
.LP
.LP
Be very careful to ensure the certificate is valid prior to importing it as a "trusted" certificate! View it first (using the \f3keytool\fP \f2\-printcert\fP command, or the \f3keytool\fP \f2\-importcert\fP command without the \f2\-noprompt\fP option), and make sure that the displayed certificate fingerprint(s) match the expected ones. You can call the person who sent the certificate, and compare the fingerprint(s) that you see with the ones that they show (or that a secure public key repository shows). Only if the fingerprints are equal is it guaranteed that the certificate has not been replaced in transit with somebody else's (for example, an attacker's) certificate. If such an attack took place, and you did not check the certificate before you imported it, you would end up trusting anything the attacker has signed.
.LP
.LP
If you trust that the certificate is valid, then you can add it to your keystore via the following:
.LP
.nf
\f3
.fl
    keytool \-importcert \-alias abc \-file ABCCA.cer
.fl
\fP
.fi

1101
.LP
D
duke 已提交
1102 1103
.LP
This creates a "trusted certificate" entry in the keystore, with the data from the file "ABCCA.cer", and assigns the alias "abc" to the entry.
1104
.LP
D
duke 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
.SS 
Importing the Certificate Reply from the CA
.LP
.LP
Once you've imported a certificate authenticating the public key of the CA you submitted your certificate signing request to (or there's already such a certificate in the "cacerts" file), you can import the certificate reply and thereby replace your self\-signed certificate with a certificate chain. This chain is the one returned by the CA in response to your request (if the CA reply is a chain), or one constructed (if the CA reply is a single certificate) using the certificate reply and trusted certificates that are already available in the keystore where you import the reply or in the "cacerts" keystore file.
.LP
.LP
For example, suppose you sent your certificate signing request to VeriSign. You can then import the reply via the following, which assumes the returned certificate is named "VSMarkJ.cer":
.LP
.nf
\f3
.fl
    keytool \-importcert \-trustcacerts \-file VSMarkJ.cer
.fl
\fP
.fi

.LP
.SS 
Exporting a Certificate Authenticating Your Public Key
.LP
.LP
1127 1128
Suppose you have used the jarsigner(1) tool to sign a Java ARchive (JAR) file. Clients that want to use the file will want to authenticate your signature.
.LP
D
duke 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
.LP
One way they can do this is by first importing your public key certificate into their keystore as a "trusted" entry. You can export the certificate and supply it to your clients. As an example, you can copy your certificate to a file named \f2MJ.cer\fP via the following, assuming the entry is aliased by "mykey":
.LP
.nf
\f3
.fl
    keytool \-exportcert \-alias mykey \-file MJ.cer
.fl
\fP
.fi

1140
.LP
D
duke 已提交
1141 1142
.LP
Given that certificate, and the signed JAR file, a client can use the \f3jarsigner\fP tool to authenticate your signature.
1143
.LP
D
duke 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
.SS 
Importing Keystore
.LP
.LP
The command "importkeystore" is used to import an entire keystore into another keystore, which means all entries from the source keystore, including keys and certificates, are all imported to the destination keystore within a single command. You can use this command to import entries from a different type of keystore. During the import, all new entries in the destination keystore will have the same alias names and protection passwords (for secret keys and private keys). If \f3keytool\fP has difficulties recover the private keys or secret keys from the source keystore, it will prompt you for a password. If it detects alias duplication, it will ask you for a new one, you can specify a new alias or simply allow \f3keytool\fP to overwrite the existing one.
.LP
.LP
For example, to import entries from a normal JKS type keystore key.jks into a PKCS #11 type hardware based keystore, you can use the command:
.LP
.nf
\f3
.fl
1156
  keytool \-importkeystore
D
duke 已提交
1157 1158 1159 1160 1161
.fl
    \-srckeystore key.jks \-destkeystore NONE
.fl
    \-srcstoretype JKS \-deststoretype PKCS11
.fl
1162
    \-srcstorepass \fP\f4<source keystore password>\fP\f3 \-deststorepass \fP\f4<destination keystore password>\fP\f3
D
duke 已提交
1163 1164 1165 1166 1167 1168
.fl
\fP
.fi

.LP
.LP
1169
The importkeystore command can also be used to import a single entry from a source keystore to a destination keystore. In this case, besides the options you see in the above example, you need to specify the alias you want to import. With the srcalias option given, you can also specify the destination alias name in the command line, as well as protection password for a secret/private key and the destination protection password you want. The following command demonstrates this:
D
duke 已提交
1170 1171 1172 1173
.LP
.nf
\f3
.fl
1174
  keytool \-importkeystore
D
duke 已提交
1175 1176 1177 1178 1179
.fl
    \-srckeystore key.jks \-destkeystore NONE
.fl
    \-srcstoretype JKS \-deststoretype PKCS11
.fl
1180
    \-srcstorepass \fP\f4<source keystore password>\fP\f3 \-deststorepass \fP\f4<destination keystore password>\fP\f3
D
duke 已提交
1181 1182 1183
.fl
    \-srcalias myprivatekey \-destalias myoldprivatekey
.fl
1184
    \-srckeypass \fP\f4<source entry password>\fP\f3 \-destkeypass \fP\f4<destination entry password>\fP\f3
D
duke 已提交
1185 1186 1187 1188 1189 1190
.fl
    \-noprompt
.fl
\fP
.fi

T
tbell 已提交
1191 1192
.LP
.SS 
1193
Generating Certificates for a Typical SSL Server
T
tbell 已提交
1194 1195
.LP
.LP
1196
The following are keytool commands to generate keypairs and certificates for three entities, namely, Root CA (root), Intermediate CA (ca), and SSL server (server). Ensure that you store all the certificates in the same keystore. In these examples, it is recommended that you specify RSA as the key algorithm.
T
tbell 已提交
1197 1198 1199 1200
.LP
.nf
\f3
.fl
1201
keytool \-genkeypair \-keystore root.jks \-alias root \-ext bc:c
T
tbell 已提交
1202
.fl
1203
keytool \-genkeypair \-keystore ca.jks \-alias ca \-ext bc:c
T
tbell 已提交
1204
.fl
1205
keytool \-genkeypair \-keystore server.jks \-alias server
T
tbell 已提交
1206
.fl
1207

T
tbell 已提交
1208
.fl
1209
keytool \-keystore root.jks \-alias root \-exportcert \-rfc > root.pem
T
tbell 已提交
1210
.fl
1211

T
tbell 已提交
1212
.fl
1213
keytool \-storepass \fP\f4<storepass>\fP\f3 \-keystore ca.jks \-certreq \-alias ca | keytool \-storepass \fP\f4<storepass>\fP\f3 \-keystore root.jks \-gencert \-alias root \-ext BC=0 \-rfc > ca.pem
T
tbell 已提交
1214 1215 1216
.fl
keytool \-keystore ca.jks \-importcert \-alias ca \-file ca.pem
.fl
1217

T
tbell 已提交
1218
.fl
1219
keytool \-storepass \fP\f4<storepass>\fP\f3 \-keystore server.jks \-certreq \-alias server | keytool \-storepass \fP\f4<storepass>\fP\f3 \-keystore ca.jks \-gencert \-alias ca \-ext ku:c=dig,kE \-rfc > server.pem
T
tbell 已提交
1220 1221 1222 1223 1224 1225
.fl
cat root.pem ca.pem server.pem | keytool \-keystore server.jks \-importcert \-alias server
.fl
\fP
.fi

D
duke 已提交
1226 1227 1228 1229 1230 1231 1232 1233
.LP
.SH "TERMINOLOGY and WARNINGS"
.LP
.SS 
KeyStore
.LP
.LP
A keystore is a storage facility for cryptographic keys and certificates.
1234
.LP
D
duke 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243
.RS 3
.TP 2
o
\f3KeyStore Entries\fP 
.LP
Keystores may have different types of entries. The two most applicable entry types for \f3keytool\fP include: 
.RS 3
.TP 3
1.
1244
\f3key entries\fP \- each holds very sensitive cryptographic key information, which is stored in a protected format to prevent unauthorized access. Typically, a key stored in this type of entry is a secret key, or a private key accompanied by the certificate "chain" for the corresponding public key. The \f3keytool\fP can handle both types of entries, while the \f3jarsigner\fP tool only handle the latter type of entry, that is private keys and their associated certificate chains. 
D
duke 已提交
1245 1246 1247 1248 1249 1250 1251 1252
.TP 3
2.
\f3trusted certificate entries\fP \- each contains a single public key certificate belonging to another party. It is called a "trusted certificate" because the keystore owner trusts that the public key in the certificate indeed belongs to the identity identified by the "subject" (owner) of the certificate. The issuer of the certificate vouches for this, by signing the certificate. 
.RE
.TP 2
o
\f3KeyStore Aliases\fP 
.LP
1253
All keystore entries (key and trusted certificate entries) are accessed via unique \f2aliases\fP. 
D
duke 已提交
1254
.LP
1255
An alias is specified when you add an entity to the keystore using the \-genseckey command to generate a secret key, \-genkeypair command to generate a key pair (public and private key) or the \-importcert command to add a certificate or certificate chain to the list of trusted certificates. Subsequent \f3keytool\fP commands must use this same alias to refer to the entity. 
D
duke 已提交
1256
.LP
1257
For example, suppose you use the alias \f2duke\fP to generate a new public/private key pair and wrap the public key into a self\-signed certificate (see Certificate Chains) via the following command: 
D
duke 已提交
1258 1259 1260 1261 1262 1263 1264 1265
.nf
\f3
.fl
    keytool \-genkeypair \-alias duke \-keypass dukekeypasswd
.fl
\fP
.fi
.LP
1266
This specifies an initial password of "dukekeypasswd" required by subsequent commands to access the private key associated with the alias \f2duke\fP. If you later want to change duke's private key password, you use a command like the following: 
D
duke 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
.nf
\f3
.fl
    keytool \-keypasswd \-alias duke \-keypass dukekeypasswd \-new newpass
.fl
\fP
.fi
.LP
This changes the password from "dukekeypasswd" to "newpass". 
.LP
1277
Please note: A password should not actually be specified on a command line or in a script unless it is for testing purposes, or you are on a secure system. If you don't specify a required password option on a command line, you will be prompted for it.   
D
duke 已提交
1278 1279 1280 1281
.TP 2
o
\f3KeyStore Implementation\fP 
.LP
1282
The \f2KeyStore\fP class provided in the \f2java.security\fP package supplies well\-defined interfaces to access and modify the information in a keystore. It is possible for there to be multiple different concrete implementations, where each implementation is that for a particular \f2type\fP of keystore. 
D
duke 已提交
1283
.LP
1284
Currently, two command\-line tools (\f3keytool\fP and \f3jarsigner\fP) and a GUI\-based tool named \f3Policy Tool\fP make use of keystore implementations. Since \f2KeyStore\fP is publicly available, users can write additional security applications that use it. 
D
duke 已提交
1285
.LP
1286
There is a built\-in default implementation, provided by Oracle. It implements the keystore as a file, utilizing a proprietary keystore type (format) named "JKS". It protects each private key with its individual password, and also protects the integrity of the entire keystore with a (possibly different) password. 
D
duke 已提交
1287
.LP
T
tbell 已提交
1288 1289 1290 1291
Keystore implementations are provider\-based. More specifically, the application interfaces supplied by \f2KeyStore\fP are implemented in terms of a "Service Provider Interface" (SPI). That is, there is a corresponding abstract \f2KeystoreSpi\fP class, also in the \f2java.security\fP package, which defines the Service Provider Interface methods that "providers" must implement. (The term "provider" refers to a package or a set of packages that supply a concrete implementation of a subset of services that can be accessed by the Java Security API.) Thus, to provide a keystore implementation, clients must implement a "provider" and supply a KeystoreSpi subclass implementation, as described in 
.na
\f2How to Implement a Provider for the Java Cryptography Architecture\fP @
.fi
1292
http://download.oracle.com/javase/7/docs/technotes/guides/security/crypto/HowToImplAProvider.html. 
D
duke 已提交
1293
.LP
1294
Applications can choose different \f2types\fP of keystore implementations from different providers, using the "getInstance" factory method supplied in the \f2KeyStore\fP class. A keystore type defines the storage and data format of the keystore information, and the algorithms used to protect private/secret keys in the keystore and the integrity of the keystore itself. Keystore implementations of different types are not compatible. 
D
duke 已提交
1295
.LP
1296
\f3keytool\fP works on any file\-based keystore implementation. (It treats the keystore location that is passed to it at the command line as a filename and converts it to a FileInputStream, from which it loads the keystore information.) The \f3jarsigner\fP and \f3policytool\fP tools, on the other hand, can read a keystore from any location that can be specified using a URL. 
D
duke 已提交
1297
.LP
1298
For \f3keytool\fP and \f3jarsigner\fP, you can specify a keystore type at the command line, via the \f2\-storetype\fP option. For \f3Policy Tool\fP, you can specify a keystore type via the "Keystore" menu. 
D
duke 已提交
1299
.LP
1300
If you don't explicitly specify a keystore type, the tools choose a keystore implementation based simply on the value of the \f2keystore.type\fP property specified in the security properties file. The security properties file is called \f2java.security\fP, and it resides in the security properties directory, \f2java.home\fP/lib/security, where \f2java.home\fP is the runtime environment's directory (the \f2jre\fP directory in the SDK or the top\-level directory of the Java 2 Runtime Environment).  
D
duke 已提交
1301
.LP
1302
Each tool gets the \f2keystore.type\fP value and then examines all the currently\-installed providers until it finds one that implements keystores of that type. It then uses the keystore implementation from that provider. 
D
duke 已提交
1303
.LP
1304
The \f2KeyStore\fP class defines a static method named \f2getDefaultType\fP that lets applications and applets retrieve the value of the \f2keystore.type\fP property. The following line of code creates an instance of the default keystore type (as specified in the \f2keystore.type\fP property): 
D
duke 已提交
1305 1306 1307 1308 1309 1310 1311 1312
.nf
\f3
.fl
    KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefaultType());
.fl
\fP
.fi
.LP
1313
The default keystore type is "jks" (the proprietary type of the keystore implementation provided by Oracle). This is specified by the following line in the security properties file: 
D
duke 已提交
1314 1315 1316 1317 1318 1319 1320 1321
.nf
\f3
.fl
    keystore.type=jks
.fl
\fP
.fi
.LP
1322
To have the tools utilize a keystore implementation other than the default, you can change that line to specify a different keystore type. 
D
duke 已提交
1323
.LP
1324
For example, if you have a provider package that supplies a keystore implementation for a keystore type called "pkcs12", change the line to 
D
duke 已提交
1325 1326 1327 1328 1329 1330 1331 1332
.nf
\f3
.fl
    keystore.type=pkcs12
.fl
\fP
.fi
.LP
1333
Note: case doesn't matter in keystore type designations. For example, "JKS" would be considered the same as "jks".  
D
duke 已提交
1334
.RE
1335 1336

.LP
D
duke 已提交
1337 1338 1339
.SS 
Certificate
.LP
1340
A \f3certificate\fP (also known as a \f3public\-key certificate\fP) is a digitally signed statement from one entity (the \f2issuer\fP), saying that the public key (and some other information) of another entity (the \f2subject\fP) has some specific value. 
D
duke 已提交
1341 1342 1343 1344 1345 1346 1347
.RS 3
.TP 2
o
\f3Certificate Terms\fP 
.RS 3
.TP 3
Public Keys 
1348 1349
.LP
These are numbers associated with a particular entity, and are intended to be known to everyone who needs to have trusted interactions with that entity. Public keys are used to verify signatures.  
D
duke 已提交
1350 1351
.TP 3
Digitally Signed 
1352 1353
.LP
If some data is \f2digitally signed\fP it has been stored with the "identity" of an entity, and a signature that proves that entity knows about the data. The data is rendered unforgeable by signing with the entity's private key.  
D
duke 已提交
1354 1355
.TP 3
Identity 
1356 1357
.LP
A known way of addressing an entity. In some systems the identity is the public key, in others it can be anything from a Unix UID to an Email address to an X.509 Distinguished Name.  
D
duke 已提交
1358 1359
.TP 3
Signature 
1360 1361
.LP
A signature is computed over some data using the private key of an entity (the \f2signer\fP, which in the case of a certificate is also known as the \f2issuer\fP).  
D
duke 已提交
1362 1363
.TP 3
Private Keys 
1364 1365
.LP
These are numbers, each of which is supposed to be known only to the particular entity whose private key it is (that is, it's supposed to be kept secret). Private and public keys exist in pairs in all public key cryptography systems (also referred to as "public key crypto systems"). In a typical public key crypto system, such as DSA, a private key corresponds to exactly one public key. Private keys are used to compute signatures.  
D
duke 已提交
1366 1367 1368
.TP 3
Entity 
.LP
1369 1370
An entity is a person, organization, program, computer, business, bank, or something else you are trusting to some degree.  
.RE
D
duke 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
.LP
Basically, public key cryptography requires access to users' public keys. In a large\-scale networked environment it is impossible to guarantee that prior relationships between communicating entities have been established or that a trusted repository exists with all used public keys. Certificates were invented as a solution to this public key distribution problem. Now a \f2Certification Authority\fP (CA) can act as a trusted third party. CAs are entities (for example, businesses) that are trusted to sign (issue) certificates for other entities. It is assumed that CAs will only create valid and reliable certificates, as they are bound by legal agreements. There are many public Certification Authorities, such as 
.na
\f2VeriSign\fP @
.fi
http://www.verisign.com/, 
.na
\f2Thawte\fP @
.fi
http://www.thawte.com/, 
.na
\f2Entrust\fP @
.fi
1384
http://www.entrust.com/, and so on. You can also run your own Certification Authority using products such as Microsoft Certificate Server or the Entrust CA product for your organization. 
D
duke 已提交
1385
.LP
1386
Using \f3keytool\fP, it is possible to display, import, and export certificates. It is also possible to generate self\-signed certificates. 
D
duke 已提交
1387
.LP
1388
\f3keytool\fP currently handles X.509 certificates.  
D
duke 已提交
1389 1390 1391 1392
.TP 2
o
\f3X.509 Certificates\fP 
.LP
1393
The X.509 standard defines what information can go into a certificate, and describes how to write it down (the data format). All the data in a certificate is encoded using two related standards called ASN.1/DER. \f2Abstract Syntax Notation 1\fP describes data. The \f2Definite Encoding Rules\fP describe a single way to store and transfer that data. 
D
duke 已提交
1394
.LP
1395
All X.509 certificates have the following data, in addition to the signature: 
D
duke 已提交
1396 1397 1398
.RS 3
.TP 3
Version 
1399
.LP
D
duke 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408
This identifies which version of the X.509 standard applies to this certificate, which affects what information can be specified in it. Thus far, three versions are defined. \f3keytool\fP can import and export v1, v2, and v3 certificates. It generates v3 certificates. 
.LP
\f2X.509 Version 1\fP has been available since 1988, is widely deployed, and is the most generic. 
.LP
\f2X.509 Version 2\fP introduced the concept of subject and issuer unique identifiers to handle the possibility of reuse of subject and/or issuer names over time. Most certificate profile documents strongly recommend that names not be reused, and that certificates should not make use of unique identifiers. Version 2 certificates are not widely used. 
.LP
\f2X.509 Version 3\fP is the most recent (1996) and supports the notion of extensions, whereby anyone can define an extension and include it in the certificate. Some common extensions in use today are: \f2KeyUsage\fP (limits the use of the keys to particular purposes such as "signing\-only") and \f2AlternativeNames\fP (allows other identities to also be associated with this public key, e.g. DNS names, Email addresses, IP addresses). Extensions can be marked \f2critical\fP to indicate that the extension should be checked and enforced/used. For example, if a certificate has the KeyUsage extension marked critical and set to "keyCertSign" then if this certificate is presented during SSL communication, it should be rejected, as the certificate extension indicates that the associated private key should only be used for signing certificates and not for SSL use.  
.TP 3
Serial Number 
1409 1410
.LP
The entity that created the certificate is responsible for assigning it a serial number to distinguish it from other certificates it issues. This information is used in numerous ways, for example when a certificate is revoked its serial number is placed in a Certificate Revocation List (CRL).  
D
duke 已提交
1411 1412
.TP 3
Signature Algorithm Identifier 
1413 1414
.LP
This identifies the algorithm used by the CA to sign the certificate.  
D
duke 已提交
1415 1416
.TP 3
Issuer Name 
1417 1418
.LP
The X.500 Distinguished Name of the entity that signed the certificate. This is normally a CA. Using this certificate implies trusting the entity that signed this certificate. (Note that in some cases, such as \f2root or top\-level\fP CA certificates, the issuer signs its own certificate.)  
D
duke 已提交
1419 1420
.TP 3
Validity Period 
1421 1422
.LP
Each certificate is valid only for a limited amount of time. This period is described by a start date and time and an end date and time, and can be as short as a few seconds or almost as long as a century. The validity period chosen depends on a number of factors, such as the strength of the private key used to sign the certificate or the amount one is willing to pay for a certificate. This is the expected period that entities can rely on the public value, if the associated private key has not been compromised.  
D
duke 已提交
1423 1424
.TP 3
Subject Name 
1425
.LP
D
duke 已提交
1426 1427 1428 1429
The name of the entity whose public key the certificate identifies. This name uses the X.500 standard, so it is intended to be unique across the Internet. This is the X.500 Distinguished Name (DN) of the entity, for example, 
.nf
\f3
.fl
1430
    CN=Java Duke, OU=Java Software Division, O=Oracle Corporation, C=US
D
duke 已提交
1431 1432 1433
.fl
\fP
.fi
1434 1435
.LP
(These refer to the subject's Common Name, Organizational Unit, Organization, and Country.)  
D
duke 已提交
1436 1437 1438
.TP 3
Subject Public Key Information 
.LP
1439
This is the public key of the entity being named, together with an algorithm identifier which specifies which public key crypto system this key belongs to and any associated key parameters.  
D
duke 已提交
1440 1441 1442 1443 1444
.RE
.TP 2
o
\f3Certificate Chains\fP 
.LP
1445
\f3keytool\fP can create and manage keystore "key" entries that each contain a private key and an associated certificate "chain". The first certificate in the chain contains the public key corresponding to the private key. 
D
duke 已提交
1446
.LP
1447
When keys are first generated (see the \-genkeypair command), the chain starts off containing a single element, a \f2self\-signed certificate\fP. A self\-signed certificate is one for which the issuer (signer) is the same as the subject (the entity whose public key is being authenticated by the certificate). Whenever the \f2\-genkeypair\fP command is called to generate a new public/private key pair, it also wraps the public key into a self\-signed certificate. 
D
duke 已提交
1448
.LP
1449
Later, after a Certificate Signing Request (CSR) has been generated (see the \-certreq command) and sent to a Certification Authority (CA), the response from the CA is imported (see \-importcert), and the self\-signed certificate is replaced by a chain of certificates. At the bottom of the chain is the certificate (reply) issued by the CA authenticating the subject's public key. The next certificate in the chain is one that authenticates the \f2CA\fP's public key. 
D
duke 已提交
1450
.LP
1451
In many cases, this is a self\-signed certificate (that is, a certificate from the CA authenticating its own public key) and the last certificate in the chain. In other cases, the CA may return a chain of certificates. In this case, the bottom certificate in the chain is the same (a certificate signed by the CA, authenticating the public key of the key entry), but the second certificate in the chain is a certificate signed by a \f2different\fP CA, authenticating the public key of the CA you sent the CSR to. Then, the next certificate in the chain will be a certificate authenticating the second CA's key, and so on, until a self\-signed "root" certificate is reached. Each certificate in the chain (after the first) thus authenticates the public key of the signer of the previous certificate in the chain. 
D
duke 已提交
1452
.LP
1453
Many CAs only return the issued certificate, with no supporting chain, especially when there is a flat hierarchy (no intermediates CAs). In this case, the certificate chain must be established from trusted certificate information already stored in the keystore. 
D
duke 已提交
1454
.LP
1455
A different reply format (defined by the PKCS#7 standard) also includes the supporting certificate chain, in addition to the issued certificate. Both reply formats can be handled by \f3keytool\fP. 
D
duke 已提交
1456
.LP
1457
The top\-level (root) CA certificate is self\-signed. However, the trust into the root's public key does not come from the root certificate itself (anybody could generate a self\-signed certificate with the distinguished name of say, the VeriSign root CA!), but from other sources like a newspaper. The root CA public key is widely known. The only reason it is stored in a certificate is because this is the format understood by most tools, so the certificate in this case is only used as a "vehicle" to transport the root CA's public key. Before you add the root CA certificate to your keystore, you should view it (using the \f2\-printcert\fP option) and compare the displayed fingerprint with the well\-known fingerprint (obtained from a newspaper, the root CA's Web page, etc.).   
D
duke 已提交
1458 1459 1460 1461
.TP 2
o
\f3The cacerts Certificates File\fP 
.LP
1462
A certificates file named \f3"cacerts"\fP resides in the security properties directory, \f2java.home\fP/lib/security, where \f2java.home\fP is the runtime environment's directory (the \f2jre\fP directory in the SDK or the top\-level directory of the Java 2 Runtime Environment).  
D
duke 已提交
1463
.LP
1464 1465 1466 1467 1468 1469 1470 1471
The "cacerts" file represents a system\-wide keystore with CA certificates. System administrators can configure and manage that file using \f3keytool\fP, specifying "jks" as the keystore type. The "cacerts" keystore file ships with a default set of root CA certificates; list them with the following command: 
.nf
\f3
.fl
keytool \-list \-keystore \fP\f4java.home\fP\f3/lib/security/cacerts
.fl
\fP
.fi
D
duke 已提交
1472
.LP
1473
The initial password of the "cacerts" keystore file is "changeit". System administrators should change that password and the default access permission of that file upon installing the SDK. 
D
duke 已提交
1474
.LP
1475
\f3IMPORTANT: Verify Your \fP\f4cacerts\fP\f3 File\fP: Since you trust the CAs in the \f2cacerts\fP file as entities for signing and issuing certificates to other entities, you must manage the \f2cacerts\fP file carefully. The \f2cacerts\fP file should contain only certificates of the CAs you trust. It is your responsibility to verify the trusted root CA certificates bundled in the \f2cacerts\fP file and make your own trust decisions. To remove an untrusted CA certificate from the \f2cacerts\fP file, use the delete option of the \f2keytool\fP command. You can find the \f2cacerts\fP file in the JRE installation directory. Contact your system administrator if you do not have permission to edit this file.  
D
duke 已提交
1476 1477 1478 1479
.TP 2
o
\f3The Internet RFC 1421 Certificate Encoding Standard\fP 
.LP
1480
Certificates are often stored using the printable encoding format defined by the Internet RFC 1421 standard, instead of their binary encoding. This certificate format, also known as "Base 64 encoding", facilitates exporting certificates to other applications by email or through some other mechanism. 
D
duke 已提交
1481
.LP
1482
Certificates read by the \f2\-importcert\fP and \f2\-printcert\fP commands can be in either this format or binary encoded. 
D
duke 已提交
1483
.LP
1484
The \f2\-exportcert\fP command by default outputs a certificate in binary encoding, but will instead output a certificate in the printable encoding format, if the \f2\-rfc\fP option is specified. 
D
duke 已提交
1485
.LP
1486
The \f2\-list\fP command by default prints the SHA1 fingerprint of a certificate. If the \f2\-v\fP option is specified, the certificate is printed in human\-readable format, while if the \f2\-rfc\fP option is specified, the certificate is output in the printable encoding format. 
D
duke 已提交
1487
.LP
1488
In its printable encoding format, the encoded certificate is bounded at the beginning by 
D
duke 已提交
1489 1490 1491 1492 1493 1494 1495 1496
.nf
\f3
.fl
\-\-\-\-\-BEGIN CERTIFICATE\-\-\-\-\-
.fl
\fP
.fi
.LP
1497
and at the end by 
D
duke 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
.nf
\f3
.fl
\-\-\-\-\-END CERTIFICATE\-\-\-\-\-
.fl
\fP
.fi
.RE

.LP
.SS 
X.500 Distinguished Names
.LP
.LP
1512 1513
X.500 Distinguished Names are used to identify entities, such as those which are named by the \f2subject\fP and \f2issuer\fP (signer) fields of X.509 certificates. \f3keytool\fP supports the following subparts:
.LP
D
duke 已提交
1514 1515 1516 1517 1518 1519
.RS 3
.TP 2
o
\f2commonName\fP \- common name of a person, e.g., "Susan Jones" 
.TP 2
o
1520
\f2organizationUnit\fP \- small organization (e.g., department or division) name, e.g., "Purchasing" 
D
duke 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
.TP 2
o
\f2organizationName\fP \- large organization name, e.g., "ABCSystems, Inc." 
.TP 2
o
\f2localityName\fP \- locality (city) name, e.g., "Palo Alto" 
.TP 2
o
\f2stateName\fP \- state or province name, e.g., "California" 
.TP 2
o
\f2country\fP \- two\-letter country code, e.g., "CH" 
.RE

.LP
.LP
When supplying a distinguished name string as the value of a \f2\-dname\fP option, as for the \f2\-genkeypair\fP  command, the string must be in the following format:
.LP
.nf
\f3
.fl
CN=\fP\f4cName\fP\f3, OU=\fP\f4orgUnit\fP\f3, O=\fP\f4org\fP\f3, L=\fP\f4city\fP\f3, S=\fP\f4state\fP\f3, C=\fP\f4countryCode\fP\f3
.fl
\fP
.fi

.LP
.LP
where all the italicized items represent actual values and the above keywords are abbreviations for the following:
.LP
.nf
\f3
.fl
1554
        CN=commonName
D
duke 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
.fl
        OU=organizationUnit
.fl
        O=organizationName
.fl
        L=localityName
.fl
        S=stateName
.fl
        C=country
.fl
\fP
.fi

.LP
.LP
A sample distinguished name string is
.LP
.nf
\f3
.fl
1576
CN=Mark Smith, OU=Java, O=Oracle, L=Cupertino, S=California, C=US
D
duke 已提交
1577 1578 1579 1580 1581
.fl
\fP
.fi

.LP
1582 1583 1584
.LP
and a sample command using such a string is
.LP
D
duke 已提交
1585 1586 1587
.nf
\f3
.fl
1588
keytool \-genkeypair \-dname "CN=Mark Smith, OU=Java, O=Oracle, L=Cupertino,
D
duke 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
.fl
S=California, C=US" \-alias mark
.fl
\fP
.fi

.LP
.LP
Case does not matter for the keyword abbreviations. For example, "CN", "cn", and "Cn" are all treated the same.
.LP
.LP
Order matters; each subcomponent must appear in the designated order. However, it is not necessary to have all the subcomponents. You may use a subset, for example:
.LP
.nf
\f3
.fl
1605
CN=Steve Meier, OU=Java, O=Oracle, C=US
D
duke 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
.fl
\fP
.fi

.LP
.LP
If a distinguished name string value contains a comma, the comma must be escaped by a "\\" character when you specify the string on a command line, as in
.LP
.nf
\f3
.fl
1617
   cn=Peter Schuster, ou=Java\\, Product Development, o=Oracle, c=US
D
duke 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
.fl
\fP
.fi

.LP
.LP
It is never necessary to specify a distinguished name string on a command line. If it is needed for a command, but not supplied on the command line, the user is prompted for each of the subcomponents. In this case, a comma does not need to be escaped by a "\\".
.LP
.SS 
WARNING Regarding Importing Trusted Certificates
.LP
.LP
1630 1631
IMPORTANT: Be sure to check a certificate very carefully before importing it as a trusted certificate!
.LP
D
duke 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
.LP
View it first (using the \f2\-printcert\fP command, or the \f2\-importcert\fP command without the \f2\-noprompt\fP option), and make sure that the displayed certificate fingerprint(s) match the expected ones. For example, suppose someone sends or emails you a certificate, and you put it in a file named \f2/tmp/cert\fP. Before you consider adding the certificate to your list of trusted certificates, you can execute a \f2\-printcert\fP command to view its fingerprints, as in
.LP
.nf
\f3
.fl
  keytool \-printcert \-file /tmp/cert
.fl
    Owner: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll
.fl
    Issuer: CN=ll, OU=ll, O=ll, L=ll, S=ll, C=ll
.fl
    Serial Number: 59092b34
.fl
    Valid from: Thu Sep 25 18:01:13 PDT 1997 until: Wed Dec 24 17:01:13 PST 1997
.fl
    Certificate Fingerprints:
.fl
         MD5:  11:81:AD:92:C8:E5:0E:A2:01:2E:D4:7A:D7:5F:07:6F
.fl
         SHA1: 20:B6:17:FA:EF:E5:55:8A:D0:71:1F:E8:D6:9D:C0:37:13:0E:5E:FE
1653 1654 1655 1656
.fl
         SHA256: 90:7B:70:0A:EA:DC:16:79:92:99:41:FF:8A:FE:EB:90:
.fl
                 17:75:E0:90:B2:24:4D:3A:2A:16:A6:E4:11:0F:67:A4
D
duke 已提交
1657 1658 1659 1660 1661
.fl
\fP
.fi

.LP
1662 1663 1664
.LP
Then call or otherwise contact the person who sent the certificate, and compare the fingerprint(s) that you see with the ones that they show. Only if the fingerprints are equal is it guaranteed that the certificate has not been replaced in transit with somebody else's (for example, an attacker's) certificate. If such an attack took place, and you did not check the certificate before you imported it, you would end up trusting anything the attacker has signed (for example, a JAR file with malicious class files inside).
.LP
D
duke 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
.LP
Note: it is not required that you execute a \f2\-printcert\fP command prior to importing a certificate, since before adding a certificate to the list of trusted certificates in the keystore, the \f2\-importcert\fP command prints out the certificate information and prompts you to verify it. You then have the option of aborting the import operation. Note, however, this is only the case if you invoke the \f2\-importcert\fP command without the \f2\-noprompt\fP option. If the \f2\-noprompt\fP option is given, there is no interaction with the user.
.LP
.SS 
Warning Regarding Passwords
.LP
.LP
Most commands operating on a keystore require the store password. Some commands require a private/secret key password.
.LP
.LP
Passwords can be specified on the command line (in the \f2\-storepass\fP and \f2\-keypass\fP options, respectively). However, a password should not be specified on a command line or in a script unless it is for testing purposes, or you are on a secure system.
.LP
.LP
If you don't specify a required password option on a command line, you will be prompted for it.
.LP
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
.SS 
Warning Regarding Certificate Conformance
.LP
.LP
The Internet standard 
.na
\f2RFC 5280\fP @
.fi
http://tools.ietf.org/rfc/rfc5280.txt has defined a profile on conforming X.509 certificates, which includes what values and value combinations are valid for certificate fields and extensions. \f3keytool\fP has not enforced all these rules so it can generate certificates which do not conform to the standard, and these certificates might be rejected by JRE or other applications. Users should make sure that they provide the correct options for \f2\-dname\fP, \f2\-ext\fP, etc.
.LP
D
duke 已提交
1690 1691 1692 1693 1694
.SH "SEE ALSO"
.LP
.RS 3
.TP 2
o
1695
jar(1) tool documentation 
D
duke 已提交
1696 1697
.TP 2
o
1698
jarsigner(1) tool documentation 
D
duke 已提交
1699 1700 1701 1702 1703 1704
.TP 2
o
the 
.na
\f4Security\fP @
.fi
1705
http://download.oracle.com/javase/tutorial/security/index.html trail of the 
D
duke 已提交
1706 1707 1708
.na
\f4Java Tutorial\fP @
.fi
1709
http://download.oracle.com/javase/tutorial/ for examples of the use of \f3keytool\fP 
D
duke 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
.RE

.LP
.SH "CHANGES"
.LP
.LP
The command interface for keytool changed in Java SE 6.
.LP
.LP
\f3keytool\fP no longer displays password input when entered by users. Since password input can no longer be viewed when entered, users will be prompted to re\-enter passwords any time a password is being set or changed (for example, when setting the initial keystore password, or when changing a key password).
.LP
.LP
Some commands have simply been renamed, and other commands deemed obsolete are no longer listed in this document. All previous commands (both renamed and obsolete) are still supported in this release and will continue to be supported in future releases. The following summarizes all of the changes made to the keytool command interface:
.LP
.LP
Renamed commands:
.LP
.RS 3
.TP 2
o
\f2\-export\fP, renamed to \f2\-exportcert\fP 
.TP 2
o
\f2\-genkey\fP, renamed to \f2\-genkeypair\fP 
.TP 2
o
\f2\-import\fP, renamed to \f2\-importcert\fP 
.RE

.LP
.LP
Commands deemed obsolete and no longer documented:
.LP
.RS 3
.TP 2
o
.na
\f2\-keyclone\fP @
.fi
1749
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html#keycloneCmd 
D
duke 已提交
1750 1751 1752 1753 1754
.TP 2
o
.na
\f2\-identitydb\fP @
.fi
1755
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html#identitydbCmd 
D
duke 已提交
1756 1757 1758 1759 1760
.TP 2
o
.na
\f2\-selfcert\fP @
.fi
1761
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html#selfcertCmd 
D
duke 已提交
1762 1763 1764 1765
.RE

.LP