ReferencePipeline.java 23.3 KB
Newer Older
M
mduigou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
/*
 * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package java.util.stream;

import java.util.Comparator;
import java.util.Comparators;
import java.util.Iterator;
import java.util.Objects;
import java.util.Optional;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.BinaryOperator;
import java.util.function.Consumer;
import java.util.function.DoubleConsumer;
import java.util.function.Function;
import java.util.function.IntConsumer;
import java.util.function.IntFunction;
import java.util.function.LongConsumer;
import java.util.function.Predicate;
import java.util.function.Supplier;
import java.util.function.ToDoubleFunction;
import java.util.function.ToIntFunction;
import java.util.function.ToLongFunction;

/**
 * Abstract base class for an intermediate pipeline stage or pipeline source
 * stage implementing whose elements are of type {@code U}.
 *
 * @param <P_IN> type of elements in the upstream source
 * @param <P_OUT> type of elements in produced by this stage
 *
 * @since 1.8
 */
abstract class ReferencePipeline<P_IN, P_OUT>
        extends AbstractPipeline<P_IN, P_OUT, Stream<P_OUT>>
        implements Stream<P_OUT>  {

    /**
     * Constructor for the head of a stream pipeline.
     *
     * @param source {@code Supplier<Spliterator>} describing the stream source
     * @param sourceFlags the source flags for the stream source, described in
     *        {@link StreamOpFlag}
     * @param parallel {@code true} if the pipeline is parallel
     */
    ReferencePipeline(Supplier<? extends Spliterator<?>> source,
                      int sourceFlags, boolean parallel) {
        super(source, sourceFlags, parallel);
    }

    /**
     * Constructor for the head of a stream pipeline.
     *
     * @param source {@code Spliterator} describing the stream source
     * @param sourceFlags The source flags for the stream source, described in
     *        {@link StreamOpFlag}
     * @param parallel {@code true} if the pipeline is parallel
     */
    ReferencePipeline(Spliterator<?> source,
                      int sourceFlags, boolean parallel) {
        super(source, sourceFlags, parallel);
    }

    /**
     * Constructor for appending an intermediate operation onto an existing
     * pipeline.
     *
     * @param upstream the upstream element source.
     */
    ReferencePipeline(AbstractPipeline<?, P_IN, ?> upstream, int opFlags) {
        super(upstream, opFlags);
    }

    // Shape-specific methods

    @Override
    final StreamShape getOutputShape() {
        return StreamShape.REFERENCE;
    }

    @Override
    final <P_IN> Node<P_OUT> evaluateToNode(PipelineHelper<P_OUT> helper,
                                        Spliterator<P_IN> spliterator,
                                        boolean flattenTree,
                                        IntFunction<P_OUT[]> generator) {
        return Nodes.collect(helper, spliterator, flattenTree, generator);
    }

    @Override
    final <P_IN> Spliterator<P_OUT> wrap(PipelineHelper<P_OUT> ph,
                                     Supplier<Spliterator<P_IN>> supplier,
                                     boolean isParallel) {
        return new StreamSpliterators.WrappingSpliterator<>(ph, supplier, isParallel);
    }

    @Override
    final Spliterator<P_OUT> lazySpliterator(Supplier<? extends Spliterator<P_OUT>> supplier) {
        return new StreamSpliterators.DelegatingSpliterator<>(supplier);
    }

    @Override
    final void forEachWithCancel(Spliterator<P_OUT> spliterator, Sink<P_OUT> sink) {
        do { } while (!sink.cancellationRequested() && spliterator.tryAdvance(sink));
    }

    @Override
    final Node.Builder<P_OUT> makeNodeBuilder(long exactSizeIfKnown, IntFunction<P_OUT[]> generator) {
        return Nodes.builder(exactSizeIfKnown, generator);
    }


    // BaseStream

    @Override
    public final Iterator<P_OUT> iterator() {
140
        return Spliterators.iterator(spliterator());
M
mduigou 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    }


    // Stream

    // Stateless intermediate operations from Stream

    @Override
    public Stream<P_OUT> unordered() {
        if (!isOrdered())
            return this;
        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_ORDERED) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
                return sink;
            }
        };
    }

    @Override
    public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {
        Objects.requireNonNull(predicate);
        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
                                     StreamOpFlag.NOT_SIZED) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    @Override
                    public void accept(P_OUT u) {
                        if (predicate.test(u))
                            downstream.accept(u);
                    }
                };
            }
        };
    }

    @Override
    public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
        Objects.requireNonNull(mapper);
        return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    @Override
                    public void accept(P_OUT u) {
                        downstream.accept(mapper.apply(u));
                    }
                };
            }
        };
    }

    @Override
    public final IntStream mapToInt(ToIntFunction<? super P_OUT> mapper) {
        Objects.requireNonNull(mapper);
        return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
                                              StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    @Override
                    public void accept(P_OUT u) {
                        downstream.accept(mapper.applyAsInt(u));
                    }
                };
            }
        };
    }

    @Override
    public final LongStream mapToLong(ToLongFunction<? super P_OUT> mapper) {
        Objects.requireNonNull(mapper);
        return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
                                      StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    @Override
                    public void accept(P_OUT u) {
                        downstream.accept(mapper.applyAsLong(u));
                    }
                };
            }
        };
    }

    @Override
    public final DoubleStream mapToDouble(ToDoubleFunction<? super P_OUT> mapper) {
        Objects.requireNonNull(mapper);
        return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    @Override
                    public void accept(P_OUT u) {
                        downstream.accept(mapper.applyAsDouble(u));
                    }
                };
            }
        };
    }

    @Override
    public final <R> Stream<R> flatMap(Function<? super P_OUT, ? extends Stream<? extends R>> mapper) {
        Objects.requireNonNull(mapper);
        // We can do better than this, by polling cancellationRequested when stream is infinite
        return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    public void accept(P_OUT u) {
                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
                        Stream<? extends R> result = mapper.apply(u);
                        if (result != null)
                            result.sequential().forEach(downstream);
                    }
                };
            }
        };
    }

    @Override
    public final IntStream flatMapToInt(Function<? super P_OUT, ? extends IntStream> mapper) {
        Objects.requireNonNull(mapper);
        // We can do better than this, by polling cancellationRequested when stream is infinite
        return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
                                              StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    IntConsumer downstreamAsInt = downstream::accept;
                    public void accept(P_OUT u) {
                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
                        IntStream result = mapper.apply(u);
                        if (result != null)
                            result.sequential().forEach(downstreamAsInt);
                    }
                };
            }
        };
    }

    @Override
    public final DoubleStream flatMapToDouble(Function<? super P_OUT, ? extends DoubleStream> mapper) {
        Objects.requireNonNull(mapper);
        // We can do better than this, by polling cancellationRequested when stream is infinite
        return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
                                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    DoubleConsumer downstreamAsDouble = downstream::accept;
                    public void accept(P_OUT u) {
                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
                        DoubleStream result = mapper.apply(u);
                        if (result != null)
                            result.sequential().forEach(downstreamAsDouble);
                    }
                };
            }
        };
    }

    @Override
    public final LongStream flatMapToLong(Function<? super P_OUT, ? extends LongStream> mapper) {
        Objects.requireNonNull(mapper);
        // We can do better than this, by polling cancellationRequested when stream is infinite
        return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
                                                   StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    LongConsumer downstreamAsLong = downstream::accept;
                    public void accept(P_OUT u) {
                        // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
                        LongStream result = mapper.apply(u);
                        if (result != null)
                            result.sequential().forEach(downstreamAsLong);
                    }
                };
            }
        };
    }

    @Override
    public final Stream<P_OUT> peek(Consumer<? super P_OUT> tee) {
        Objects.requireNonNull(tee);
        return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
                                     0) {
            @Override
            Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
                return new Sink.ChainedReference<P_OUT>(sink) {
                    @Override
                    public void accept(P_OUT u) {
                        tee.accept(u);
                        downstream.accept(u);
                    }
                };
            }
        };
    }

    // Stateful intermediate operations from Stream

    @Override
    public final Stream<P_OUT> distinct() {
        return DistinctOps.makeRef(this);
    }

    @Override
    public final Stream<P_OUT> sorted() {
        return SortedOps.makeRef(this);
    }

    @Override
    public final Stream<P_OUT> sorted(Comparator<? super P_OUT> comparator) {
        return SortedOps.makeRef(this, comparator);
    }

    private Stream<P_OUT> slice(long skip, long limit) {
        return SliceOps.makeRef(this, skip, limit);
    }

    @Override
    public final Stream<P_OUT> limit(long maxSize) {
        if (maxSize < 0)
            throw new IllegalArgumentException(Long.toString(maxSize));
        return slice(0, maxSize);
    }

    @Override
    public final Stream<P_OUT> substream(long startingOffset) {
        if (startingOffset < 0)
            throw new IllegalArgumentException(Long.toString(startingOffset));
        if (startingOffset == 0)
            return this;
        else
            return slice(startingOffset, -1);
    }

    @Override
    public final Stream<P_OUT> substream(long startingOffset, long endingOffset) {
        if (startingOffset < 0 || endingOffset < startingOffset)
            throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset));
        return slice(startingOffset, endingOffset - startingOffset);
    }

    // Terminal operations from Stream

    @Override
    public void forEach(Consumer<? super P_OUT> action) {
        evaluate(ForEachOps.makeRef(action, false));
    }

    @Override
    public void forEachOrdered(Consumer<? super P_OUT> action) {
        evaluate(ForEachOps.makeRef(action, true));
    }

    @Override
    @SuppressWarnings("unchecked")
    public final <A> A[] toArray(IntFunction<A[]> generator) {
        // Since A has no relation to U (not possible to declare that A is an upper bound of U)
        // there will be no static type checking.
        // Therefore use a raw type and assume A == U rather than propagating the separation of A and U
        // throughout the code-base.
        // The runtime type of U is never checked for equality with the component type of the runtime type of A[].
        // Runtime checking will be performed when an element is stored in A[], thus if A is not a
        // super type of U an ArrayStoreException will be thrown.
        IntFunction rawGenerator = (IntFunction) generator;
        return (A[]) Nodes.flatten(evaluateToArrayNode(rawGenerator), rawGenerator)
                              .asArray(rawGenerator);
    }

    @Override
    public final Object[] toArray() {
        return toArray(Object[]::new);
    }

    @Override
    public final boolean anyMatch(Predicate<? super P_OUT> predicate) {
        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ANY));
    }

    @Override
    public final boolean allMatch(Predicate<? super P_OUT> predicate) {
        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ALL));
    }

    @Override
    public final boolean noneMatch(Predicate<? super P_OUT> predicate) {
        return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.NONE));
    }

    @Override
    public final Optional<P_OUT> findFirst() {
        return evaluate(FindOps.makeRef(true));
    }

    @Override
    public final Optional<P_OUT> findAny() {
        return evaluate(FindOps.makeRef(false));
    }

    @Override
    public final P_OUT reduce(final P_OUT identity, final BinaryOperator<P_OUT> accumulator) {
        return evaluate(ReduceOps.makeRef(identity, accumulator, accumulator));
    }

    @Override
    public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) {
        return evaluate(ReduceOps.makeRef(accumulator));
    }

    @Override
    public final <R> R reduce(R identity, BiFunction<R, ? super P_OUT, R> accumulator, BinaryOperator<R> combiner) {
        return evaluate(ReduceOps.makeRef(identity, accumulator, combiner));
    }

    @Override
    public final <R> R collect(Collector<? super P_OUT, R> collector) {
        if (isParallel()
                && (collector.characteristics().contains(Collector.Characteristics.CONCURRENT))
                && (!isOrdered() || collector.characteristics().contains(Collector.Characteristics.UNORDERED))) {
            R container = collector.resultSupplier().get();
            BiFunction<R, ? super P_OUT, R> accumulator = collector.accumulator();
            forEach(u -> accumulator.apply(container, u));
            return container;
        }
        return evaluate(ReduceOps.makeRef(collector));
    }

    @Override
    public final <R> R collect(Supplier<R> resultFactory,
                               BiConsumer<R, ? super P_OUT> accumulator,
                               BiConsumer<R, R> combiner) {
        return evaluate(ReduceOps.makeRef(resultFactory, accumulator, combiner));
    }

    @Override
    public final Optional<P_OUT> max(Comparator<? super P_OUT> comparator) {
        return reduce(Comparators.greaterOf(comparator));
    }

    @Override
    public final Optional<P_OUT> min(Comparator<? super P_OUT> comparator) {
        return reduce(Comparators.lesserOf(comparator));

    }

    @Override
    public final long count() {
        return mapToLong(e -> 1L).sum();
    }


    //

    /**
     * Source stage of a ReferencePipeline.
     *
     * @param <E_IN> type of elements in the upstream source
     * @param <E_OUT> type of elements in produced by this stage
     * @since 1.8
     */
    static class Head<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> {
        /**
         * Constructor for the source stage of a Stream.
         *
         * @param source {@code Supplier<Spliterator>} describing the stream
         *               source
         * @param sourceFlags the source flags for the stream source, described
         *                    in {@link StreamOpFlag}
         */
        Head(Supplier<? extends Spliterator<?>> source,
             int sourceFlags, boolean parallel) {
            super(source, sourceFlags, parallel);
        }

        /**
         * Constructor for the source stage of a Stream.
         *
         * @param source {@code Spliterator} describing the stream source
         * @param sourceFlags the source flags for the stream source, described
         *                    in {@link StreamOpFlag}
         */
        Head(Spliterator<?> source,
             int sourceFlags, boolean parallel) {
            super(source, sourceFlags, parallel);
        }

        @Override
        final boolean opIsStateful() {
            throw new UnsupportedOperationException();
        }

        @Override
        final Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink) {
            throw new UnsupportedOperationException();
        }

        // Optimized sequential terminal operations for the head of the pipeline

        @Override
        public void forEach(Consumer<? super E_OUT> action) {
            if (!isParallel()) {
                sourceStageSpliterator().forEachRemaining(action);
            }
            else {
                super.forEach(action);
            }
        }

        @Override
        public void forEachOrdered(Consumer<? super E_OUT> action) {
            if (!isParallel()) {
                sourceStageSpliterator().forEachRemaining(action);
            }
            else {
                super.forEachOrdered(action);
            }
        }
    }

    /**
     * Base class for a stateless intermediate stage of a Stream.
     *
     * @param <E_IN> type of elements in the upstream source
     * @param <E_OUT> type of elements in produced by this stage
     * @since 1.8
     */
    abstract static class StatelessOp<E_IN, E_OUT>
            extends ReferencePipeline<E_IN, E_OUT> {
        /**
         * Construct a new Stream by appending a stateless intermediate
         * operation to an existing stream.
         *
         * @param upstream The upstream pipeline stage
         * @param inputShape The stream shape for the upstream pipeline stage
         * @param opFlags Operation flags for the new stage
         */
        StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
                    StreamShape inputShape,
                    int opFlags) {
            super(upstream, opFlags);
            assert upstream.getOutputShape() == inputShape;
        }

        @Override
        final boolean opIsStateful() {
            return false;
        }
    }

    /**
     * Base class for a stateful intermediate stage of a Stream.
     *
     * @param <E_IN> type of elements in the upstream source
     * @param <E_OUT> type of elements in produced by this stage
     * @since 1.8
     */
    abstract static class StatefulOp<E_IN, E_OUT>
            extends ReferencePipeline<E_IN, E_OUT> {
        /**
         * Construct a new Stream by appending a stateful intermediate operation
         * to an existing stream.
         * @param upstream The upstream pipeline stage
         * @param inputShape The stream shape for the upstream pipeline stage
         * @param opFlags Operation flags for the new stage
         */
        StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
                   StreamShape inputShape,
                   int opFlags) {
            super(upstream, opFlags);
            assert upstream.getOutputShape() == inputShape;
        }

        @Override
        final boolean opIsStateful() {
            return true;
        }

        @Override
        abstract <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper,
                                                       Spliterator<P_IN> spliterator,
                                                       IntFunction<E_OUT[]> generator);
    }
}