MethodHandles.java 118.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
24 25 26 27
 */

package java.dyn;

28
import java.lang.reflect.*;
29 30 31
import sun.dyn.Access;
import sun.dyn.MemberName;
import sun.dyn.MethodHandleImpl;
32
import sun.dyn.WrapperInstance;
33
import sun.dyn.util.ValueConversions;
34 35
import sun.dyn.util.VerifyAccess;
import sun.dyn.util.Wrapper;
36
import java.util.List;
37 38 39 40 41 42 43 44 45
import java.util.ArrayList;
import java.util.Arrays;
import sun.dyn.Invokers;
import sun.dyn.MethodTypeImpl;
import sun.reflect.Reflection;
import static sun.dyn.MemberName.newIllegalArgumentException;
import static sun.dyn.MemberName.newNoAccessException;

/**
46 47
 * This class consists exclusively of static methods that operate on or return
 * method handles. They fall into several categories:
48
 * <ul>
49 50 51 52
 * <li>Lookup methods which help create method handles for methods and fields.
 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
 * <li>Wrapper methods which can convert between method handles and other function-like "SAM types".
53
 * </ul>
54 55 56 57 58 59 60 61 62 63 64 65 66 67
 * <p>
 * @author John Rose, JSR 292 EG
 */
public class MethodHandles {

    private MethodHandles() { }  // do not instantiate

    private static final Access IMPL_TOKEN = Access.getToken();
    private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(IMPL_TOKEN);
    static { MethodHandleImpl.initStatics(); }
    // See IMPL_LOOKUP below.

    //// Method handle creation from ordinary methods.

68 69 70 71 72 73
    /**
     * Return a {@link Lookup lookup object} on the caller,
     * which has the capability to access any method handle that the caller has access to,
     * including direct method handles to private fields and methods.
     * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
     * Do not store it in place where untrusted code can access it.
74
     */
75 76 77 78
    public static Lookup lookup() {
        return new Lookup();
    }

79 80 81 82
    /**
     * Return a {@link Lookup lookup object} which is trusted minimally.
     * It can only be used to create method handles to
     * publicly accessible fields and methods.
83 84 85 86 87 88 89 90
     * <p>
     * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
     * of this lookup object will be {@link java.lang.Object}.
     * <p>
     * The lookup class can be changed to any other class {@code C} using an expression of the form
     * {@linkplain Lookup#in <code>publicLookup().in(C.class)</code>}.
     * Since all classes have equal access to public names,
     * such a change would confer no new access rights.
91 92 93 94 95
     */
    public static Lookup publicLookup() {
        return Lookup.PUBLIC_LOOKUP;
    }

96
    /**
97 98 99
     * A <em>lookup object</em> is a factory for creating method handles,
     * when the creation requires access checking.
     * Method handles do not perform
100
     * access checks when they are called, but rather when they are created.
101 102
     * Therefore, method handle access
     * restrictions must be enforced when a method handle is created.
103
     * The caller class against which those restrictions are enforced
104
     * is known as the {@linkplain #lookupClass lookup class}.
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
     * <p>
     * A lookup class which needs to create method handles will call
     * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
     * When the {@code Lookup} factory object is created, the identity of the lookup class is
     * determined, and securely stored in the {@code Lookup} object.
     * The lookup class (or its delegates) may then use factory methods
     * on the {@code Lookup} object to create method handles for access-checked members.
     * This includes all methods, constructors, and fields which are allowed to the lookup class,
     * even private ones.
     * <p>
     * The factory methods on a {@code Lookup} object correspond to all major
     * use cases for methods, constructors, and fields.
     * Here is a summary of the correspondence between these factory methods and
     * the behavior the resulting method handles:
     * <code>
     * <table border=1 cellpadding=5 summary="lookup method behaviors">
     * <tr><th>lookup expression</th><th>member</th><th>behavior</th></tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
     *     <td>FT f;</td><td>(T) this.f;</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
     *     <td>static<br>FT f;</td><td>(T) C.f;</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
     *     <td>FT f;</td><td>this.f = x;</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
     *     <td>static<br>FT f;</td><td>C.f = arg;</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
     *     <td>T m(A*);</td><td>(T) this.m(arg*);</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
     *     <td>static<br>T m(A*);</td><td>(T) C.m(arg*);</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
     *     <td>T m(A*);</td><td>(T) super.m(arg*);</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
     *     <td>C(A*);</td><td>(T) new C(arg*);</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
     *     <td>(static)?<br>FT f;</td><td>(FT) aField.get(thisOrNull);</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
     *     <td>(static)?<br>FT f;</td><td>aField.set(thisOrNull, arg);</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
     *     <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
     *     <td>C(A*);</td><td>(C) aConstructor.newInstance(arg*);</td>
     * </tr>
     * <tr>
     *     <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
     *     <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td>
     * </tr>
     * </table>
     * </code>
     * Here, the type {@code C} is the class or interface being searched for a member,
     * documented as a parameter named {@code refc} in the lookup methods.
     * The method or constructor type {@code MT} is composed from the return type {@code T}
     * and the sequence of argument types {@code A*}.
     * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
     * The formal parameter {@code this} stands for the self-reference of type {@code C};
     * if it is present, it is always the leading argument to the method handle invocation.
     * The name {@code arg} stands for all the other method handle arguments.
     * In the code examples for the Core Reflection API, the name {@code thisOrNull}
     * stands for a null reference if the accessed method or field is static,
     * and {@code this} otherwise.
     * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
     * for reflective objects corresponding to the given members.
     * <p>
     * The equivalence between looked-up method handles and underlying
     * class members can break down in a few ways:
     * <ul>
     * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed, even when there is no equivalent
     * Java expression or bytecoded constant.
     * <li>Likewise, if {@code T} or {@code MT}
     * is not symbolically accessible from the lookup class's loader,
     * the lookup can still succeed.
     * For example, lookups for {@code MethodHandle.invokeExact} and
     * {@code MethodHandle.invokeGeneric} will always succeed, regardless of requested type.
201 202 203 204
     * <li>If there is a security manager installed, it can forbid the lookup
     * on various grounds (<a href="#secmgr">see below</a>).
     * By contrast, the {@code ldc} instruction is not subject to
     * security manager checks.
205 206 207 208 209 210 211 212 213 214 215 216 217
     * </ul>
     *
     * <h3><a name="access"></a>Access checking</h3>
     * Access checks are applied in the factory methods of {@code Lookup},
     * when a method handle is created.
     * This is a key difference from the Core Reflection API, since
     * {@link java.lang.reflect.Method#invoke Method.invoke}
     * performs access checking against every caller, on every call.
     * <p>
     * All access checks start from a {@code Lookup} object, which
     * compares its recorded lookup class against all requests to
     * create method handles.
     * A single {@code Lookup} object can be used to create any number
218 219 220
     * of access-checked method handles, all checked against a single
     * lookup class.
     * <p>
221 222 223 224 225 226 227
     * A {@code Lookup} object can be shared with other trusted code,
     * such as a metaobject protocol.
     * A shared {@code Lookup} object delegates the capability
     * to create method handles on private members of the lookup class.
     * Even if privileged code uses the {@code Lookup} object,
     * the access checking is confined to the privileges of the
     * original lookup class.
228
     * <p>
229
     * A lookup can fail, because
230 231 232
     * the containing class is not accessible to the lookup class, or
     * because the desired class member is missing, or because the
     * desired class member is not accessible to the lookup class.
233 234 235 236 237 238 239 240
     * In any of these cases, a {@code ReflectiveOperationException} will be
     * thrown from the attempted lookup.  The exact class will be one of
     * the following:
     * <ul>
     * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
     * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
     * <li>IllegalAccessException &mdash; if the member exists but an access check fails
     * </ul>
241
     * <p>
242
     * In general, the conditions under which a method handle may be
243 244 245 246
     * looked up for a method {@code M} are exactly equivalent to the conditions
     * under which the lookup class could have compiled and resolved a call to {@code M}.
     * And the effect of invoking the method handle resulting from the lookup
     * is exactly equivalent to executing the compiled and resolved call to {@code M}.
247
     * The same point is true of fields and constructors.
248
     * <p>
249
     * In some cases, access between nested classes is obtained by the Java compiler by creating
250 251
     * an wrapper method to access a private method of another class
     * in the same top-level declaration.
252
     * For example, a nested class {@code C.D}
253
     * can access private members within other related classes such as
254 255 256 257 258 259 260
     * {@code C}, {@code C.D.E}, or {@code C.B},
     * but the Java compiler may need to generate wrapper methods in
     * those related classes.  In such cases, a {@code Lookup} object on
     * {@code C.E} would be unable to those private members.
     * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
     * which can transform a lookup on {@code C.E} into one on any of those other
     * classes, without special elevation of privilege.
261
     * <p>
262 263 264 265 266 267 268 269 270 271 272 273
     * Although bytecode instructions can only refer to classes in
     * a related class loader, this API can search for methods in any
     * class, as long as a reference to its {@code Class} object is
     * available.  Such cross-loader references are also possible with the
     * Core Reflection API, and are impossible to bytecode instructions
     * such as {@code invokestatic} or {@code getfield}.
     * There is a {@linkplain java.lang.SecurityManager security manager API}
     * to allow applications to check such cross-loader references.
     * These checks apply to both the {@code MethodHandles.Lookup} API
     * and the Core Reflection API
     * (as found on {@link java.lang.Class Class}).
     * <p>
274 275 276 277 278 279 280
     * Access checks only apply to named and reflected methods,
     * constructors, and fields.
     * Other method handle creation methods, such as
     * {@link #convertArguments MethodHandles.convertArguments},
     * do not require any access checks, and are done
     * with static methods of {@link MethodHandles},
     * independently of any {@code Lookup} object.
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
     *
     * <h3>Security manager interactions</h3>
     * <a name="secmgr"></a>
     * If a security manager is present, member lookups are subject to
     * additional checks.
     * From one to four calls are made to the security manager.
     * Any of these calls can refuse access by throwing a
     * {@link java.lang.SecurityException SecurityException}.
     * Define {@code smgr} as the security manager,
     * {@code refc} as the containing class in which the member
     * is being sought, and {@code defc} as the class in which the
     * member is actually defined.
     * The calls are made according to the following rules:
     * <ul>
     * <li>In all cases, {@link SecurityManager#checkMemberAccess
     *     smgr.checkMemberAccess(refc, Member.PUBLIC)} is called.
     * <li>If the class loader of the lookup class is not
     *     the same as or an ancestor of the class loader of {@code refc},
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(refcPkg)} is called,
     *     where {@code refcPkg} is the package of {@code refc}.
     * <li>If the retrieved member is not public,
     *     {@link SecurityManager#checkMemberAccess
     *     smgr.checkMemberAccess(defc, Member.DECLARED)} is called.
     *     (Note that {@code defc} might be the same as {@code refc}.)
     * <li>If the retrieved member is not public,
     *     and if {@code defc} and {@code refc} are in different class loaders,
     *     and if the class loader of the lookup class is not
     *     the same as or an ancestor of the class loader of {@code defc},
     *     then {@link SecurityManager#checkPackageAccess
     *     smgr.checkPackageAccess(defcPkg)} is called,
     *     where {@code defcPkg} is the package of {@code defc}.
     * </ul>
     * In all cases, the requesting class presented to the security
     * manager will be the lookup class from the current {@code Lookup} object.
316 317 318
     */
    public static final
    class Lookup {
319
        /** The class on behalf of whom the lookup is being performed. */
320 321
        private final Class<?> lookupClass;

322
        /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
323 324
        private final int allowedModes;

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        /** A single-bit mask representing {@code public} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x01}, happens to be the same as the value of the
         *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
         */
        public static final int PUBLIC = Modifier.PUBLIC;

        /** A single-bit mask representing {@code private} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x02}, happens to be the same as the value of the
         *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
         */
        public static final int PRIVATE = Modifier.PRIVATE;

        /** A single-bit mask representing {@code protected} access,
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value, {@code 0x04}, happens to be the same as the value of the
         *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
         */
        public static final int PROTECTED = Modifier.PROTECTED;

        /** A single-bit mask representing {@code package} access (default access),
         *  which may contribute to the result of {@link #lookupModes lookupModes}.
         *  The value is {@code 0x08}, which does not correspond meaningfully to
         *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
         */
        public static final int PACKAGE = Modifier.STATIC;

        private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
        private static final int TRUSTED   = -1;
355 356 357 358 359 360

        private static int fixmods(int mods) {
            mods &= (ALL_MODES - PACKAGE);
            return (mods != 0) ? mods : PACKAGE;
        }

361
        /** Tells which class is performing the lookup.  It is this class against
362 363
         *  which checks are performed for visibility and access permissions.
         *  <p>
364 365
         *  The class implies a maximum level of access permission,
         *  but the permissions may be additionally limited by the bitmask
366
         *  {@link #lookupModes lookupModes}, which controls whether non-public members
367
         *  can be accessed.
368 369 370 371 372
         */
        public Class<?> lookupClass() {
            return lookupClass;
        }

373 374 375 376 377
        // This is just for calling out to MethodHandleImpl.
        private Class<?> lookupClassOrNull() {
            return (allowedModes == TRUSTED) ? null : lookupClass;
        }

378
        /** Tells which access-protection classes of members this lookup object can produce.
379 380 381 382 383
         *  The result is a bit-mask of the bits
         *  {@linkplain #PUBLIC PUBLIC (0x01)},
         *  {@linkplain #PRIVATE PRIVATE (0x02)},
         *  {@linkplain #PROTECTED PROTECTED (0x04)},
         *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
384 385 386 387 388 389 390 391 392 393
         *  <p>
         *  A freshly-created lookup object
         *  on the {@linkplain java.dyn.MethodHandles#lookup() caller's class}
         *  has all possible bits set, since the caller class can access all its own members.
         *  A lookup object on a new lookup class
         *  {@linkplain java.dyn.MethodHandles.Lookup#in created from a previous lookup object}
         *  may have some mode bits set to zero.
         *  The purpose of this is to restrict access via the new lookup object,
         *  so that it can access only names which can be reached by the original
         *  lookup object, and also by the new lookup class.
394
         */
395
        public int lookupModes() {
396 397 398
            return allowedModes & ALL_MODES;
        }

399 400 401 402
        /** Embody the current class (the lookupClass) as a lookup class
         * for method handle creation.
         * Must be called by from a method in this package,
         * which in turn is called by a method not in this package.
403
         * <p>
404 405 406 407
         * Also, don't make it private, lest javac interpose
         * an access$N method.
         */
        Lookup() {
408 409 410
            this(getCallerClassAtEntryPoint(), ALL_MODES);
            // make sure we haven't accidentally picked up a privileged class:
            checkUnprivilegedlookupClass(lookupClass);
411 412 413
        }

        Lookup(Access token, Class<?> lookupClass) {
414 415 416 417 418
            this(lookupClass, ALL_MODES);
            Access.check(token);
        }

        private Lookup(Class<?> lookupClass, int allowedModes) {
419
            this.lookupClass = lookupClass;
420
            this.allowedModes = allowedModes;
421 422 423
        }

        /**
424
         * Creates a lookup on the specified new lookup class.
425
         * The resulting object will report the specified
426
         * class as its own {@link #lookupClass lookupClass}.
427 428 429
         * <p>
         * However, the resulting {@code Lookup} object is guaranteed
         * to have no more access capabilities than the original.
430
         * In particular, access capabilities can be lost as follows:<ul>
431 432
         * <li>If the new lookup class differs from the old one,
         * protected members will not be accessible by virtue of inheritance.
433
         * (Protected members may continue to be accessible because of package sharing.)
434 435 436 437
         * <li>If the new lookup class is in a different package
         * than the old one, protected and default (package) members will not be accessible.
         * <li>If the new lookup class is not within the same package member
         * as the old one, private members will not be accessible.
438 439 440
         * <li>If the new lookup class is not accessible to the old lookup class,
         * then no members, not even public members, will be accessible.
         * (In all other cases, public members will continue to be accessible.)
441
         * </ul>
442 443 444 445
         *
         * @param requestedLookupClass the desired lookup class for the new lookup object
         * @return a lookup object which reports the desired lookup class
         * @throws NullPointerException if the argument is null
446
         */
447 448 449 450 451 452 453 454 455 456
        public Lookup in(Class<?> requestedLookupClass) {
            requestedLookupClass.getClass();  // null check
            if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
                return new Lookup(requestedLookupClass, ALL_MODES);
            if (requestedLookupClass == this.lookupClass)
                return this;  // keep same capabilities
            int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
            if ((newModes & PACKAGE) != 0
                && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
                newModes &= ~(PACKAGE|PRIVATE);
457
            }
458
            // Allow nestmate lookups to be created without special privilege:
459 460 461 462
            if ((newModes & PRIVATE) != 0
                && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
                newModes &= ~PRIVATE;
            }
463 464 465 466 467 468
            if (newModes == PUBLIC
                && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass)) {
                // The requested class it not accessible from the lookup class.
                // No permissions.
                newModes = 0;
            }
469 470
            checkUnprivilegedlookupClass(requestedLookupClass);
            return new Lookup(requestedLookupClass, newModes);
471 472
        }

473 474 475
        // Make sure outer class is initialized first.
        static { IMPL_TOKEN.getClass(); }

476 477 478 479
        /** Version of lookup which is trusted minimally.
         *  It can only be used to create method handles to
         *  publicly accessible members.
         */
480
        static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
481 482

        /** Package-private version of lookup which is trusted. */
483
        static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
484 485 486
        static { MethodHandleImpl.initLookup(IMPL_TOKEN, IMPL_LOOKUP); }

        private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
487 488
            String name = lookupClass.getName();
            if (name.startsWith("java.dyn.") || name.startsWith("sun.dyn."))
489 490 491
                throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
        }

492
        /**
493
         * Displays the name of the class from which lookups are to be made.
494 495 496
         * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
         * If there are restrictions on the access permitted to this lookup,
         * this is indicated by adding a suffix to the class name, consisting
497 498
         * of a slash and a keyword.  The keyword represents the strongest
         * allowed access, and is chosen as follows:
499 500 501 502 503 504 505 506 507 508
         * <ul>
         * <li>If no access is allowed, the suffix is "/noaccess".
         * <li>If only public access is allowed, the suffix is "/public".
         * <li>If only public and package access are allowed, the suffix is "/package".
         * <li>If only public, package, and private access are allowed, the suffix is "/private".
         * </ul>
         * If none of the above cases apply, it is the case that full
         * access (public, package, private, and protected) is allowed.
         * In this case, no suffix is added.
         * This is true only of an object obtained originally from
509 510
         * {@link java.dyn.MethodHandles#lookup MethodHandles.lookup}.
         * Objects created by {@link java.dyn.MethodHandles.Lookup#in Lookup.in}
511
         * always have restricted access, and will display a suffix.
512 513 514 515 516 517 518
         * <p>
         * (It may seem strange that protected access should be
         * stronger than private access.  Viewed independently from
         * package access, protected access is the first to be lost,
         * because it requires a direct subclass relationship between
         * caller and callee.)
         * @see #in
519
         */
520 521
        @Override
        public String toString() {
522 523
            String cname = lookupClass.getName();
            switch (allowedModes) {
524 525
            case 0:  // no privileges
                return cname + "/noaccess";
526
            case PUBLIC:
527
                return cname + "/public";
528 529
            case PUBLIC|PACKAGE:
                return cname + "/package";
530 531
            case ALL_MODES & ~PROTECTED:
                return cname + "/private";
532 533
            case ALL_MODES:
                return cname;
534 535 536 537 538 539
            case TRUSTED:
                return "/trusted";  // internal only; not exported
            default:  // Should not happen, but it's a bitfield...
                cname = cname + "/" + Integer.toHexString(allowedModes);
                assert(false) : cname;
                return cname;
540
            }
541 542 543 544 545 546 547 548
        }

        // call this from an entry point method in Lookup with extraFrames=0.
        private static Class<?> getCallerClassAtEntryPoint() {
            final int CALLER_DEPTH = 4;
            // 0: Reflection.getCC, 1: getCallerClassAtEntryPoint,
            // 2: Lookup.<init>, 3: MethodHandles.*, 4: caller
            // Note:  This should be the only use of getCallerClass in this file.
549
            assert(Reflection.getCallerClass(CALLER_DEPTH-1) == MethodHandles.class);
550 551 552 553
            return Reflection.getCallerClass(CALLER_DEPTH);
        }

        /**
554
         * Produces a method handle for a static method.
555
         * The type of the method handle will be that of the method.
556 557
         * (Since static methods do not take receivers, there is no
         * additional receiver argument inserted into the method handle type,
558
         * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
559 560 561
         * The method and all its argument types must be accessible to the lookup class.
         * If the method's class has not yet been initialized, that is done
         * immediately, before the method handle is returned.
562 563 564 565
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
566
         * @param refc the class from which the method is accessed
567 568 569
         * @param name the name of the method
         * @param type the type of the method
         * @return the desired method handle
570 571
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails, or if the method is not {@code static}
572 573
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
574
         * @throws NullPointerException if any argument is null
575 576
         */
        public
577
        MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
578 579 580
            MemberName method = resolveOrFail(refc, name, type, true);
            checkMethod(refc, method, true);
            return MethodHandleImpl.findMethod(IMPL_TOKEN, method, false, lookupClassOrNull());
581 582 583
        }

        /**
584
         * Produces a method handle for a virtual method.
585
         * The type of the method handle will be that of the method,
586
         * with the receiver type (usually {@code refc}) prepended.
587 588 589 590 591 592 593
         * The method and all its argument types must be accessible to the lookup class.
         * <p>
         * When called, the handle will treat the first argument as a receiver
         * and dispatch on the receiver's type to determine which method
         * implementation to enter.
         * (The dispatching action is identical with that performed by an
         * {@code invokevirtual} or {@code invokeinterface} instruction.)
594 595 596 597
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
598 599 600 601 602 603 604 605 606 607
         * <p>
         * Because of the general equivalence between {@code invokevirtual}
         * instructions and method handles produced by {@code findVirtual},
         * if the class is {@code MethodHandle} and the name string is
         * {@code invokeExact} or {@code invokeGeneric}, the resulting
         * method handle is equivalent to one produced by
         * {@link java.dyn.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
         * {@link java.dyn.MethodHandles#genericInvoker MethodHandles.genericInvoker}
         * with the same {@code type} argument.
         *
608
         * @param refc the class or interface from which the method is accessed
609 610 611
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
612 613
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails, or if the method is {@code static}
614 615
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
616
         * @throws NullPointerException if any argument is null
617
         */
618
        public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
619 620 621 622 623 624 625
            MemberName method = resolveOrFail(refc, name, type, false);
            checkMethod(refc, method, false);
            MethodHandle mh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, true, lookupClassOrNull());
            return restrictProtectedReceiver(method, mh);
        }

        /**
626
         * Produces a method handle which creates an object and initializes it, using
627 628 629 630 631 632 633 634
         * the constructor of the specified type.
         * The parameter types of the method handle will be those of the constructor,
         * while the return type will be a reference to the constructor's class.
         * The constructor and all its argument types must be accessible to the lookup class.
         * If the constructor's class has not yet been initialized, that is done
         * immediately, before the method handle is returned.
         * <p>
         * Note:  The requested type must have a return type of {@code void}.
635
         * This is consistent with the JVM's treatment of constructor type descriptors.
636 637 638 639
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
640 641 642
         * @param refc the class or interface from which the method is accessed
         * @param type the type of the method, with the receiver argument omitted, and a void return type
         * @return the desired method handle
643 644
         * @throws NoSuchMethodException if the constructor does not exist
         * @throws IllegalAccessException if access checking fails
645 646
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
647
         * @throws NullPointerException if any argument is null
648
         */
649
        public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
650 651 652 653 654
            String name = "<init>";
            MemberName ctor = resolveOrFail(refc, name, type, false, false, lookupClassOrNull());
            assert(ctor.isConstructor());
            checkAccess(refc, ctor);
            MethodHandle rawMH = MethodHandleImpl.findMethod(IMPL_TOKEN, ctor, false, lookupClassOrNull());
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
            MethodHandle allocMH = MethodHandleImpl.makeAllocator(IMPL_TOKEN, rawMH);
            return fixVarargs(allocMH, rawMH);
        }

        /** Return a version of MH which matches matchMH w.r.t. isVarargsCollector. */
        private static MethodHandle fixVarargs(MethodHandle mh, MethodHandle matchMH) {
            boolean va1 = mh.isVarargsCollector();
            boolean va2 = matchMH.isVarargsCollector();
            if (va1 == va2) {
                return mh;
            } else if (va2) {
                MethodType type = mh.type();
                int arity = type.parameterCount();
                return mh.asVarargsCollector(type.parameterType(arity-1));
            } else {
                throw new InternalError("already varargs, but template is not: "+mh);
            }
672 673 674
        }

        /**
675
         * Produces an early-bound method handle for a virtual method,
676
         * as if called from an {@code invokespecial}
677
         * instruction from {@code caller}.
678
         * The type of the method handle will be that of the method,
679
         * with a suitably restricted receiver type (such as {@code caller}) prepended.
680
         * The method and all its argument types must be accessible
681 682 683 684 685 686 687 688
         * to the caller.
         * <p>
         * When called, the handle will treat the first argument as a receiver,
         * but will not dispatch on the receiver's type.
         * (This direct invocation action is identical with that performed by an
         * {@code invokespecial} instruction.)
         * <p>
         * If the explicitly specified caller class is not identical with the
689 690
         * lookup class, or if this lookup object does not have private access
         * privileges, the access fails.
691 692 693 694
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
695 696
         * @param refc the class or interface from which the method is accessed
         * @param name the name of the method (which must not be "&lt;init&gt;")
697 698 699
         * @param type the type of the method, with the receiver argument omitted
         * @param specialCaller the proposed calling class to perform the {@code invokespecial}
         * @return the desired method handle
700 701
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
702 703
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
704
         * @throws NullPointerException if any argument is null
705
         */
706
        public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
707
                                        Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
708 709 710 711 712 713 714 715
            checkSpecialCaller(specialCaller);
            MemberName method = resolveOrFail(refc, name, type, false, false, specialCaller);
            checkMethod(refc, method, false);
            MethodHandle mh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, false, specialCaller);
            return restrictReceiver(method, mh, specialCaller);
        }

        /**
716
         * Produces a method handle giving read access to a non-static field.
717 718
         * The type of the method handle will have a return type of the field's
         * value type.
719
         * The method handle's single argument will be the instance containing
720 721
         * the field.
         * Access checking is performed immediately on behalf of the lookup class.
722
         * @param refc the class or interface from which the method is accessed
723 724 725
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
726 727
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
728 729
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
730
         * @throws NullPointerException if any argument is null
731
         */
732
        public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
733
            return makeAccessor(refc, name, type, false, false);
734 735 736
        }

        /**
737
         * Produces a method handle giving write access to a non-static field.
738
         * The type of the method handle will have a void return type.
739
         * The method handle will take two arguments, the instance containing
740
         * the field, and the value to be stored.
741 742
         * The second argument will be of the field's value type.
         * Access checking is performed immediately on behalf of the lookup class.
743
         * @param refc the class or interface from which the method is accessed
744 745 746
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can store values into the field
747 748
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
749 750
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
751
         * @throws NullPointerException if any argument is null
752
         */
753
        public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
754 755 756 757
            return makeAccessor(refc, name, type, false, true);
        }

        /**
758
         * Produces a method handle giving read access to a static field.
759 760 761 762
         * The type of the method handle will have a return type of the field's
         * value type.
         * The method handle will take no arguments.
         * Access checking is performed immediately on behalf of the lookup class.
763
         * @param refc the class or interface from which the method is accessed
764 765 766
         * @param name the field's name
         * @param type the field's type
         * @return a method handle which can load values from the field
767 768
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
769 770
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
771
         * @throws NullPointerException if any argument is null
772
         */
773
        public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
774 775 776 777
            return makeAccessor(refc, name, type, true, false);
        }

        /**
778
         * Produces a method handle giving write access to a static field.
779 780 781
         * The type of the method handle will have a void return type.
         * The method handle will take a single
         * argument, of the field's value type, the value to be stored.
782
         * Access checking is performed immediately on behalf of the lookup class.
783
         * @param refc the class or interface from which the method is accessed
784 785
         * @param name the field's name
         * @param type the field's type
786
         * @return a method handle which can store values into the field
787 788
         * @throws NoSuchFieldException if the field does not exist
         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
789 790
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
791
         * @throws NullPointerException if any argument is null
792
         */
793
        public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
794
            return makeAccessor(refc, name, type, true, true);
795 796 797
        }

        /**
798
         * Produces an early-bound method handle for a non-static method.
799 800 801
         * The receiver must have a supertype {@code defc} in which a method
         * of the given name and type is accessible to the lookup class.
         * The method and all its argument types must be accessible to the lookup class.
802 803 804 805 806
         * The type of the method handle will be that of the method,
         * without any insertion of an additional receiver parameter.
         * The given receiver will be bound into the method handle,
         * so that every call to the method handle will invoke the
         * requested method on the given receiver.
807
         * <p>
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set
         * <em>and</em> the trailing array argument is not the only argument.
         * (If the trailing array argument is the only argument,
         * the given receiver value will be bound to it.)
         * <p>
         * This is equivalent to the following code:
         * <blockquote><pre>
MethodHandle mh0 = {@link #findVirtual findVirtual}(defc, name, type);
MethodHandle mh1 = mh0.{@link MethodHandle#bindTo bindTo}(receiver);
MethodType mt1 = mh1.type();
if (mh0.isVarargsCollector() && mt1.parameterCount() > 0) {
  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
return mh1;
         * </pre></blockquote>
824 825 826
         * where {@code defc} is either {@code receiver.getClass()} or a super
         * type of that class, in which the requested method is accessible
         * to the lookup class.
827
         * (Note that {@code bindTo} does not preserve variable arity.)
828 829 830 831
         * @param receiver the object from which the method is accessed
         * @param name the name of the method
         * @param type the type of the method, with the receiver argument omitted
         * @return the desired method handle
832 833
         * @throws NoSuchMethodException if the method does not exist
         * @throws IllegalAccessException if access checking fails
834 835
         * @exception SecurityException if a security manager is present and it
         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
836
         * @throws NullPointerException if any argument is null
837
         */
838
        public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
839 840 841 842
            Class<? extends Object> refc = receiver.getClass(); // may get NPE
            MemberName method = resolveOrFail(refc, name, type, false);
            checkMethod(refc, method, false);
            MethodHandle dmh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, true, lookupClassOrNull());
843 844
            MethodHandle bmh = MethodHandleImpl.bindReceiver(IMPL_TOKEN, dmh, receiver);
            if (bmh == null)
845
                throw newNoAccessException(method, this);
846 847 848
            if (dmh.type().parameterCount() == 0)
                return dmh;  // bound the trailing parameter; no varargs possible
            return fixVarargs(bmh, dmh);
849 850 851 852 853 854 855 856 857 858 859 860
        }

        /**
         * Make a direct method handle to <i>m</i>, if the lookup class has permission.
         * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
         * If <i>m</i> is virtual, overriding is respected on every call.
         * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
         * The type of the method handle will be that of the method,
         * with the receiver type prepended (but only if it is non-static).
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class.
         * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
861 862 863 864
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
865 866
         * @param m the reflected method
         * @return a method handle which can invoke the reflected method
867 868
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
869
         */
870
        public MethodHandle unreflect(Method m) throws IllegalAccessException {
871 872 873 874 875 876
            MemberName method = new MemberName(m);
            assert(method.isMethod());
            if (!m.isAccessible())  checkMethod(method.getDeclaringClass(), method, method.isStatic());
            MethodHandle mh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, true, lookupClassOrNull());
            if (!m.isAccessible())  mh = restrictProtectedReceiver(method, mh);
            return mh;
877 878 879
        }

        /**
880
         * Produces a method handle for a reflected method.
881
         * It will bypass checks for overriding methods on the receiver,
882
         * as if by a {@code invokespecial} instruction from within the {@code specialCaller}.
883
         * The type of the method handle will be that of the method,
884
         * with the special caller type prepended (and <em>not</em> the receiver of the method).
885 886 887
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class,
         * as if {@code invokespecial} instruction were being linked.
888 889 890 891
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the method's variable arity modifier bit ({@code 0x0080}) is set.
892
         * @param m the reflected method
893
         * @param specialCaller the class nominally calling the method
894
         * @return a method handle which can invoke the reflected method
895 896
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if any argument is null
897
         */
898
        public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
899 900 901 902 903 904 905
            checkSpecialCaller(specialCaller);
            MemberName method = new MemberName(m);
            assert(method.isMethod());
            // ignore m.isAccessible:  this is a new kind of access
            checkMethod(m.getDeclaringClass(), method, false);
            MethodHandle mh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, false, lookupClassOrNull());
            return restrictReceiver(method, mh, specialCaller);
906 907 908
        }

        /**
909
         * Produces a method handle for a reflected constructor.
910 911
         * The type of the method handle will be that of the constructor,
         * with the return type changed to the declaring class.
912 913 914 915 916
         * The method handle will perform a {@code newInstance} operation,
         * creating a new instance of the constructor's class on the
         * arguments passed to the method handle.
         * <p>
         * If the constructor's {@code accessible} flag is not set,
917
         * access checking is performed immediately on behalf of the lookup class.
918 919 920 921
         * <p>
         * The returned method handle will have
         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
922
         * @param c the reflected constructor
923
         * @return a method handle which can invoke the reflected constructor
924 925
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
926
         */
927
        public MethodHandle unreflectConstructor(Constructor c) throws IllegalAccessException {
928 929 930 931
            MemberName ctor = new MemberName(c);
            assert(ctor.isConstructor());
            if (!c.isAccessible())  checkAccess(c.getDeclaringClass(), ctor);
            MethodHandle rawCtor = MethodHandleImpl.findMethod(IMPL_TOKEN, ctor, false, lookupClassOrNull());
932 933
            MethodHandle allocator = MethodHandleImpl.makeAllocator(IMPL_TOKEN, rawCtor);
            return fixVarargs(allocator, rawCtor);
934 935 936
        }

        /**
937
         * Produces a method handle giving read access to a reflected field.
938
         * The type of the method handle will have a return type of the field's
939 940 941 942
         * value type.
         * If the field is static, the method handle will take no arguments.
         * Otherwise, its single argument will be the instance containing
         * the field.
943 944 945 946
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class.
         * @param f the reflected field
         * @return a method handle which can load values from the reflected field
947 948
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
949
         */
950
        public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
951
            return makeAccessor(f.getDeclaringClass(), new MemberName(f), f.isAccessible(), false);
952 953 954
        }

        /**
955
         * Produces a method handle giving write access to a reflected field.
956
         * The type of the method handle will have a void return type.
957 958 959 960
         * If the field is static, the method handle will take a single
         * argument, of the field's value type, the value to be stored.
         * Otherwise, the two arguments will be the instance containing
         * the field, and the value to be stored.
961 962 963 964
         * If the method's {@code accessible} flag is not set,
         * access checking is performed immediately on behalf of the lookup class.
         * @param f the reflected field
         * @return a method handle which can store values into the reflected field
965 966
         * @throws IllegalAccessException if access checking fails
         * @throws NullPointerException if the argument is null
967
         */
968
        public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
969
            return makeAccessor(f.getDeclaringClass(), new MemberName(f), f.isAccessible(), true);
970 971
        }

972
        /// Helper methods, all package-private.
973

974
        MemberName resolveOrFail(Class<?> refc, String name, Class<?> type, boolean isStatic) throws NoSuchFieldException, IllegalAccessException {
975
            checkSymbolicClass(refc);  // do this before attempting to resolve
976
            name.getClass(); type.getClass();  // NPE
977
            int mods = (isStatic ? Modifier.STATIC : 0);
978 979
            return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), true, lookupClassOrNull(),
                                            NoSuchFieldException.class);
980
        }
981

982
        MemberName resolveOrFail(Class<?> refc, String name, MethodType type, boolean isStatic) throws NoSuchMethodException, IllegalAccessException {
983
            checkSymbolicClass(refc);  // do this before attempting to resolve
984
            name.getClass(); type.getClass();  // NPE
985
            int mods = (isStatic ? Modifier.STATIC : 0);
986 987
            return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), true, lookupClassOrNull(),
                                            NoSuchMethodException.class);
988 989
        }

990
        MemberName resolveOrFail(Class<?> refc, String name, MethodType type, boolean isStatic,
991
                                 boolean searchSupers, Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
992
            checkSymbolicClass(refc);  // do this before attempting to resolve
993
            name.getClass(); type.getClass();  // NPE
994
            int mods = (isStatic ? Modifier.STATIC : 0);
995 996
            return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), searchSupers, specialCaller,
                                            NoSuchMethodException.class);
997
        }
998

999
        void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
1000 1001
            Class<?> caller = lookupClassOrNull();
            if (caller != null && !VerifyAccess.isClassAccessible(refc, caller))
1002
                throw newNoAccessException("symbolic reference class is not public", new MemberName(refc), this);
1003 1004
        }

1005
        void checkMethod(Class<?> refc, MemberName m, boolean wantStatic) throws IllegalAccessException {
1006 1007 1008 1009 1010 1011 1012 1013 1014
            String message;
            if (m.isConstructor())
                message = "expected a method, not a constructor";
            else if (!m.isMethod())
                message = "expected a method";
            else if (wantStatic != m.isStatic())
                message = wantStatic ? "expected a static method" : "expected a non-static method";
            else
                { checkAccess(refc, m); return; }
1015
            throw newNoAccessException(message, m, this);
1016 1017
        }

1018
        void checkAccess(Class<?> refc, MemberName m) throws IllegalAccessException {
1019 1020 1021
            int allowedModes = this.allowedModes;
            if (allowedModes == TRUSTED)  return;
            int mods = m.getModifiers();
1022
            if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
                return;  // common case
            int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
            if ((requestedModes & allowedModes) != 0
                && VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
                                                   mods, lookupClass()))
                return;
            if (((requestedModes & ~allowedModes) & PROTECTED) != 0
                && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
                // Protected members can also be checked as if they were package-private.
                return;
1033
            throw newNoAccessException(accessFailedMessage(refc, m), m, this);
1034 1035 1036 1037 1038
        }

        String accessFailedMessage(Class<?> refc, MemberName m) {
            Class<?> defc = m.getDeclaringClass();
            int mods = m.getModifiers();
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
            // check the class first:
            boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
                               (defc == refc ||
                                Modifier.isPublic(refc.getModifiers())));
            if (!classOK && (allowedModes & PACKAGE) != 0) {
                classOK = (VerifyAccess.isClassAccessible(defc, lookupClass()) &&
                           (defc == refc ||
                            VerifyAccess.isClassAccessible(refc, lookupClass())));
            }
            if (!classOK)
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
                return "class is not public";
            if (Modifier.isPublic(mods))
                return "access to public member failed";  // (how?)
            if (Modifier.isPrivate(mods))
                return "member is private";
            if (Modifier.isProtected(mods))
                return "member is protected";
            return "member is private to package";
        }

1059 1060
        private static final boolean ALLOW_NESTMATE_ACCESS = false;

1061
        void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
1062
            if (allowedModes == TRUSTED)  return;
1063 1064 1065 1066
            if ((allowedModes & PRIVATE) == 0
                || (specialCaller != lookupClass()
                    && !(ALLOW_NESTMATE_ACCESS &&
                         VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
1067
                throw newNoAccessException("no private access for invokespecial",
1068
                                           new MemberName(specialCaller), this);
1069 1070
        }

1071
        MethodHandle restrictProtectedReceiver(MemberName method, MethodHandle mh) throws IllegalAccessException {
1072 1073 1074 1075
            // The accessing class only has the right to use a protected member
            // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
            if (!method.isProtected() || method.isStatic()
                || allowedModes == TRUSTED
1076 1077 1078
                || method.getDeclaringClass() == lookupClass()
                || (ALLOW_NESTMATE_ACCESS &&
                    VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
1079 1080 1081 1082
                return mh;
            else
                return restrictReceiver(method, mh, lookupClass());
        }
1083
        MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
1084 1085 1086 1087
            assert(!method.isStatic());
            Class<?> defc = method.getDeclaringClass();  // receiver type of mh is too wide
            if (defc.isInterface() || !defc.isAssignableFrom(caller)) {
                throw newNoAccessException("caller class must be a subclass below the method", method, caller);
1088
            }
1089 1090 1091
            MethodType rawType = mh.type();
            if (rawType.parameterType(0) == caller)  return mh;
            MethodType narrowType = rawType.changeParameterType(0, caller);
1092 1093
            MethodHandle narrowMH = MethodHandleImpl.convertArguments(IMPL_TOKEN, mh, narrowType, rawType, null);
            return fixVarargs(narrowMH, mh);
1094 1095 1096
        }

        MethodHandle makeAccessor(Class<?> refc, String name, Class<?> type,
1097
                                  boolean isStatic, boolean isSetter) throws NoSuchFieldException, IllegalAccessException {
1098 1099 1100 1101 1102
            MemberName field = resolveOrFail(refc, name, type, isStatic);
            if (isStatic != field.isStatic())
                throw newNoAccessException(isStatic
                                           ? "expected a static field"
                                           : "expected a non-static field",
1103
                                           field, this);
1104 1105 1106 1107
            return makeAccessor(refc, field, false, isSetter);
        }

        MethodHandle makeAccessor(Class<?> refc, MemberName field,
1108
                                  boolean trusted, boolean isSetter) throws IllegalAccessException {
1109 1110 1111 1112 1113 1114
            assert(field.isField());
            if (trusted)
                return MethodHandleImpl.accessField(IMPL_TOKEN, field, isSetter, lookupClassOrNull());
            checkAccess(refc, field);
            MethodHandle mh = MethodHandleImpl.accessField(IMPL_TOKEN, field, isSetter, lookupClassOrNull());
            return restrictProtectedReceiver(field, mh);
1115 1116 1117 1118
        }
    }

    /**
1119
     * Produces a method handle giving read access to elements of an array.
1120 1121 1122 1123 1124
     * The type of the method handle will have a return type of the array's
     * element type.  Its first argument will be the array type,
     * and the second will be {@code int}.
     * @param arrayClass an array type
     * @return a method handle which can load values from the given array type
1125
     * @throws NullPointerException if the argument is null
1126 1127 1128 1129 1130 1131 1132 1133
     * @throws  IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
        return MethodHandleImpl.accessArrayElement(IMPL_TOKEN, arrayClass, false);
    }

    /**
1134
     * Produces a method handle giving write access to elements of an array.
1135 1136 1137 1138
     * The type of the method handle will have a void return type.
     * Its last argument will be the array's element type.
     * The first and second arguments will be the array type and int.
     * @return a method handle which can store values into the array type
1139
     * @throws NullPointerException if the argument is null
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
     * @throws IllegalArgumentException if arrayClass is not an array type
     */
    public static
    MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
        return MethodHandleImpl.accessArrayElement(IMPL_TOKEN, arrayClass, true);
    }

    /// method handle invocation (reflective style)

    /**
1150
     * Produces a method handle which will invoke any method handle of the
1151
     * given {@code type} on a standard set of {@code Object} type arguments
1152 1153 1154 1155 1156 1157 1158 1159
     * and a single trailing {@code Object[]} array.
     * The resulting invoker will be a method handle with the following
     * arguments:
     * <ul>
     * <li>a single {@code MethodHandle} target
     * <li>zero or more {@code Object} values (counted by {@code objectArgCount})
     * <li>an {@code Object[]} array containing more arguments
     * </ul>
1160
     * <p>
1161
     * The invoker will behave like a call to {@link MethodHandle#invokeGeneric invokeGeneric} with
1162 1163
     * the indicated {@code type}.
     * That is, if the target is exactly of the given {@code type}, it will behave
1164
     * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
1165 1166 1167 1168 1169 1170 1171 1172
     * is used to convert the target to the required {@code type}.
     * <p>
     * The type of the returned invoker will not be the given {@code type}, but rather
     * will have all parameter and return types replaced by {@code Object}, except for
     * the last parameter type, which will be the array type {@code Object[]}.
     * <p>
     * Before invoking its target, the invoker will spread the varargs array, apply
     * reference casts as necessary, and unbox and widen primitive arguments.
1173 1174 1175 1176 1177 1178
     * The return value of the invoker will be an {@code Object} reference,
     * boxing a primitive value if the original type returns a primitive,
     * and always null if the original type returns void.
     * <p>
     * This method is equivalent to the following code (though it may be more efficient):
     * <p><blockquote><pre>
1179
MethodHandle invoker = MethodHandles.genericInvoker(type);
1180 1181 1182
int spreadArgCount = type.parameterCount - objectArgCount;
invoker = invoker.asSpreader(Object[].class, spreadArgCount);
return invoker;
1183
     * </pre></blockquote>
1184 1185
     * <p>
     * This method throws no reflective or security exceptions.
1186 1187 1188 1189 1190
     * @param type the desired target type
     * @param objectArgCount number of fixed (non-varargs) {@code Object} arguments
     * @return a method handle suitable for invoking any method handle of the given type
     */
    static public
1191
    MethodHandle spreadInvoker(MethodType type, int objectArgCount) {
1192 1193
        if (objectArgCount < 0 || objectArgCount > type.parameterCount())
            throw new IllegalArgumentException("bad argument count "+objectArgCount);
1194
        return invokers(type).spreadInvoker(objectArgCount);
1195 1196 1197
    }

    /**
1198 1199 1200
     * Produces a special <em>invoker method handle</em> which can be used to
     * invoke any method handle of the given type, as if by {@code invokeExact}.
     * The resulting invoker will have a type which is
1201 1202 1203
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
1204 1205
     * This method is equivalent to the following code (though it may be more efficient):
     * <p><blockquote><pre>
1206
publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)
1207
     * </pre></blockquote>
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
     *
     * <p style="font-size:smaller;">
     * <em>Discussion:</em>
     * Invoker method handles can be useful when working with variable method handles
     * of unknown types.
     * For example, to emulate an {@code invokeExact} call to a variable method
     * handle {@code M}, extract its type {@code T},
     * look up the invoker method {@code X} for {@code T},
     * and call the invoker method, as {@code X.invokeGeneric(T, A...)}.
     * (It would not work to call {@code X.invokeExact}, since the type {@code T}
     * is unknown.)
     * If spreading, collecting, or other argument transformations are required,
     * they can be applied once to the invoker {@code X} and reused on many {@code M}
     * method handle values, as long as they are compatible with the type of {@code X}.
     * <p>
     * <em>(Note:  The invoker method is not available via the Core Reflection API.
     * An attempt to call {@linkplain java.lang.reflect.Method#invoke Method.invoke}
     * on the declared {@code invokeExact} or {@code invokeGeneric} method will raise an
     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
     * <p>
     * This method throws no reflective or security exceptions.
1229 1230 1231 1232 1233 1234 1235 1236
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle of the given type
     */
    static public
    MethodHandle exactInvoker(MethodType type) {
        return invokers(type).exactInvoker();
    }

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    /**
     * Produces a special <em>invoker method handle</em> which can be used to
     * invoke any method handle of the given type, as if by {@code invokeGeneric}.
     * The resulting invoker will have a type which is
     * exactly equal to the desired type, except that it will accept
     * an additional leading argument of type {@code MethodHandle}.
     * <p>
     * Before invoking its target, the invoker will apply reference casts as
     * necessary and unbox and widen primitive arguments, as if by {@link #convertArguments convertArguments}.
     * The return value of the invoker will be an {@code Object} reference,
     * boxing a primitive value if the original type returns a primitive,
     * and always null if the original type returns void.
     * <p>
     * This method is equivalent to the following code (though it may be more efficient):
     * <p><blockquote><pre>
publicLookup().findVirtual(MethodHandle.class, "invokeGeneric", type)
     * </pre></blockquote>
     * <p>
     * This method throws no reflective or security exceptions.
     * @param type the desired target type
     * @return a method handle suitable for invoking any method handle convertible to the given type
     */
    static public
    MethodHandle genericInvoker(MethodType type) {
        return invokers(type).genericInvoker();
    }

1264
    static Invokers invokers(MethodType type) {
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
        return MethodTypeImpl.invokers(IMPL_TOKEN, type);
    }

    /**
     * Perform value checking, exactly as if for an adapted method handle.
     * It is assumed that the given value is either null, of type T0,
     * or (if T0 is primitive) of the wrapper type corresponding to T0.
     * The following checks and conversions are made:
     * <ul>
     * <li>If T0 and T1 are references, then a cast to T1 is applied.
     *     (The types do not need to be related in any particular way.)
     * <li>If T0 and T1 are primitives, then a widening or narrowing
     *     conversion is applied, if one exists.
     * <li>If T0 is a primitive and T1 a reference, and
     *     T0 has a wrapper type TW, a boxing conversion to TW is applied,
     *     possibly followed by a reference conversion.
     *     T1 must be TW or a supertype.
     * <li>If T0 is a reference and T1 a primitive, and
     *     T1 has a wrapper type TW, an unboxing conversion is applied,
     *     possibly preceded by a reference conversion.
     *     T0 must be TW or a supertype.
     * <li>If T1 is void, the return value is discarded
     * <li>If T0 is void and T1 a reference, a null value is introduced.
     * <li>If T0 is void and T1 a primitive, a zero value is introduced.
     * </ul>
     * If the value is discarded, null will be returned.
     * @param valueType
     * @param value
     * @return the value, converted if necessary
     * @throws java.lang.ClassCastException if a cast fails
     */
    static
    <T0, T1> T1 checkValue(Class<T0> t0, Class<T1> t1, Object value)
       throws ClassCastException
    {
        if (t0 == t1) {
            // no conversion needed; just reassert the same type
            if (t0.isPrimitive())
                return Wrapper.asPrimitiveType(t1).cast(value);
            else
1305
                return Wrapper.OBJECT.convert(value, t1);
1306 1307 1308 1309
        }
        boolean prim0 = t0.isPrimitive(), prim1 = t1.isPrimitive();
        if (!prim0) {
            // check contract with caller
1310
            Wrapper.OBJECT.convert(value, t0);
1311
            if (!prim1) {
1312
                return Wrapper.OBJECT.convert(value, t1);
1313 1314 1315
            }
            // convert reference to primitive by unboxing
            Wrapper w1 = Wrapper.forPrimitiveType(t1);
1316
            return w1.convert(value, t1);
1317 1318 1319 1320
        }
        // check contract with caller:
        Wrapper.asWrapperType(t0).cast(value);
        Wrapper w1 = Wrapper.forPrimitiveType(t1);
1321
        return w1.convert(value, t1);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    }

    static
    Object checkValue(Class<?> T1, Object value)
       throws ClassCastException
    {
        Class<?> T0;
        if (value == null)
            T0 = Object.class;
        else
            T0 = value.getClass();
        return checkValue(T0, T1, value);
    }

    /// method handle modification (creation from other method handles)

    /**
1339
     * Produces a method handle which adapts the type of the
1340 1341
     * given method handle to a new type by pairwise argument conversion.
     * The original type and new type must have the same number of arguments.
1342
     * The resulting method handle is guaranteed to report a type
1343
     * which is equal to the desired new type.
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
     * <p>
     * If the original type and new type are equal, returns target.
     * <p>
     * The following conversions are applied as needed both to
     * arguments and return types.  Let T0 and T1 be the differing
     * new and old parameter types (or old and new return types)
     * for corresponding values passed by the new and old method types.
     * Given those types T0, T1, one of the following conversions is applied
     * if possible:
     * <ul>
1354
     * <li>If T0 and T1 are references, then a cast to T1 is applied.
1355
     *     (The types do not need to be related in any particular way.)
1356 1357
     * <li>If T0 and T1 are primitives, then a Java method invocation
     *     conversion (JLS 5.3) is applied, if one exists.
1358 1359
     * <li>If T0 is a primitive and T1 a reference, a boxing
     *     conversion is applied if one exists, possibly followed by
1360
     *     a reference conversion to a superclass.
1361 1362
     *     T1 must be a wrapper class or a supertype of one.
     * <li>If T0 is a reference and T1 a primitive, an unboxing
1363 1364 1365
     *     conversion will be applied at runtime, possibly followed
     *     by a Java method invocation conversion (JLS 5.3)
     *     on the primitive value.  (These are the widening conversions.)
1366
     *     T0 must be a wrapper class or a supertype of one.
1367 1368
     *     (In the case where T0 is Object, these are the conversions
     *     allowed by java.lang.reflect.Method.invoke.)
1369 1370 1371
     * <li>If the return type T1 is void, any returned value is discarded
     * <li>If the return type T0 is void and T1 a reference, a null value is introduced.
     * <li>If the return type T0 is void and T1 a primitive, a zero value is introduced.
1372 1373 1374 1375 1376 1377
     * </ul>
     * @param target the method handle to invoke after arguments are retyped
     * @param newType the expected type of the new method handle
     * @return a method handle which delegates to {@code target} after performing
     *           any necessary argument conversions, and arranges for any
     *           necessary return value conversions
1378
     * @throws NullPointerException if either argument is null
1379
     * @throws WrongMethodTypeException if the conversion cannot be made
1380
     * @see MethodHandle#asType
1381
     * @see MethodHandles#explicitCastArguments
1382 1383 1384 1385 1386 1387
     */
    public static
    MethodHandle convertArguments(MethodHandle target, MethodType newType) {
        MethodType oldType = target.type();
        if (oldType.equals(newType))
            return target;
1388 1389 1390 1391 1392 1393
        MethodHandle res = null;
        try {
            res = MethodHandleImpl.convertArguments(IMPL_TOKEN, target,
                                                    newType, oldType, null);
        } catch (IllegalArgumentException ex) {
        }
1394
        if (res == null)
1395
            throw new WrongMethodTypeException("cannot convert to "+newType+": "+target);
1396 1397 1398 1399
        return res;
    }

    /**
1400
     * Produces a method handle which adapts the type of the
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
     * given method handle to a new type by pairwise argument conversion.
     * The original type and new type must have the same number of arguments.
     * The resulting method handle is guaranteed to report a type
     * which is equal to the desired new type.
     * <p>
     * If the original type and new type are equal, returns target.
     * <p>
     * The same conversions are allowed as for {@link #convertArguments convertArguments},
     * and some additional conversions are also applied if those conversions fail.
     * Given types T0, T1, one of the following conversions is applied
     * in addition, if the conversions specified for {@code convertArguments}
     * would be insufficient:
     * <ul>
     * <li>If T0 and T1 are references, and T1 is an interface type,
     *     then the value of type T0 is passed as a T1 without a cast.
     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
     * <li>If T0 and T1 are primitives and one is boolean,
     *     the boolean is treated as a one-bit unsigned integer.
     *     (This treatment follows the usage of the bytecode verifier.)
     *     A conversion from another primitive type behaves as if
     *     it first converts to byte, and then masks all but the low bit.
     * <li>If a primitive value would be converted by {@code convertArguments}
     *     using Java method invocation conversion (JLS 5.3),
     *     Java casting conversion (JLS 5.5) may be used also.
     *     This allows primitives to be narrowed as well as widened.
     * </ul>
     * @param target the method handle to invoke after arguments are retyped
     * @param newType the expected type of the new method handle
     * @return a method handle which delegates to {@code target} after performing
     *           any necessary argument conversions, and arranges for any
     *           necessary return value conversions
1432
     * @throws NullPointerException if either argument is null
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
     * @throws WrongMethodTypeException if the conversion cannot be made
     * @see MethodHandle#asType
     * @see MethodHandles#convertArguments
     */
    public static
    MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
        return convertArguments(target, newType);  // FIXME!
    }

    /*
      FIXME: Reconcile javadoc with 10/22/2010 EG notes on conversion:

      Both converters arrange for their method handles to convert arguments
      and return values.  The conversion rules are the same for arguments
      and return values, and depend only on source and target types, S and
      T.  The conversions allowed by castConvertArguments are a strict
      superset of those performed by convertArguments.

      In all cases, if S and T are references, a simple checkcast is done.
      If neither S nor T is a primitive, no attempt is made to unbox and
      box.  A failed conversion throws ClassCastException.

      If T is void, the value is dropped.

      For compatibility with reflection, if S is void and T is a reference,
      a null value is produced.

      For compatibility with reflection, if S is a reference and T is a
      primitive, S is first unboxed and then undergoes primitive conversion.
      In the case of 'convertArguments', only assignment conversion is
      performed (no narrowing primitive conversion).

      If S is a primitive, S is boxed, and then the above rules are applied.
      If S and T are both primitives, the boxing will be undetectable; only
      the primitive conversions will be apparent to the user.  The key point
      is that if S is a primitive type, the implementation may box it and
      treat is as Object, without loss of information, or it may use a "fast
      path" which does not use boxing.

      Notwithstanding the rules above, for compatibility with the verifier,
      if T is an interface, it is treated as if it were Object.  [KEEP THIS?]

      Also, for compatibility with the verifier, a boolean may be undergo
      widening or narrowing conversion to any other primitive type.  [KEEP THIS?]
    */

    /**
1480
     * Produces a method handle which adapts the calling sequence of the
1481
     * given method handle to a new type, by reordering the arguments.
1482
     * The resulting method handle is guaranteed to report a type
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
     * which is equal to the desired new type.
     * <p>
     * The given array controls the reordering.
     * Call {@code #I} the number of incoming parameters (the value
     * {@code newType.parameterCount()}, and call {@code #O} the number
     * of outgoing parameters (the value {@code target.type().parameterCount()}).
     * Then the length of the reordering array must be {@code #O},
     * and each element must be a non-negative number less than {@code #I}.
     * For every {@code N} less than {@code #O}, the {@code N}-th
     * outgoing argument will be taken from the {@code I}-th incoming
     * argument, where {@code I} is {@code reorder[N]}.
     * <p>
1495 1496 1497 1498 1499 1500 1501
     * No argument or return value conversions are applied.
     * The type of each incoming argument, as determined by {@code newType},
     * must be identical to the type of the corresponding outgoing argument
     * or arguments in the target method handle.
     * The return type of {@code newType} must be identical to the return
     * type of the original target.
     * <p>
1502 1503 1504 1505
     * The reordering array need not specify an actual permutation.
     * An incoming argument will be duplicated if its index appears
     * more than once in the array, and an incoming argument will be dropped
     * if its index does not appear in the array.
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
     * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
     * incoming arguments which are not mentioned in the reordering array
     * are may be any type, as determined only by {@code newType}.
     * <blockquote><pre>
MethodType intfn1 = MethodType.methodType(int.class, int.class);
MethodType intfn2 = MethodType.methodType(int.class, int.class, int.class);
MethodHandle sub = ... {int x, int y => x-y} ...;
assert(sub.type().equals(intfn2));
MethodHandle sub1 = MethodHandles.permuteArguments(sub, intfn2, 0, 1);
MethodHandle rsub = MethodHandles.permuteArguments(sub, intfn2, 1, 0);
assert((int)rsub.invokeExact(1, 100) == 99);
MethodHandle add = ... {int x, int y => x+y} ...;
assert(add.type().equals(intfn2));
MethodHandle twice = MethodHandles.permuteArguments(add, intfn1, 0, 0);
assert(twice.type().equals(intfn1));
assert((int)twice.invokeExact(21) == 42);
     * </pre></blockquote>
1523 1524 1525
     * @param target the method handle to invoke after arguments are reordered
     * @param newType the expected type of the new method handle
     * @param reorder a string which controls the reordering
1526 1527
     * @return a method handle which delegates to {@code target} after it
     *           drops unused arguments and moves and/or duplicates the other arguments
1528
     * @throws NullPointerException if any argument is null
1529 1530
     */
    public static
1531
    MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        MethodType oldType = target.type();
        checkReorder(reorder, newType, oldType);
        return MethodHandleImpl.convertArguments(IMPL_TOKEN, target,
                                                 newType, oldType,
                                                 reorder);
    }

    private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
        if (reorder.length == oldType.parameterCount()) {
            int limit = newType.parameterCount();
            boolean bad = false;
            for (int i : reorder) {
                if (i < 0 || i >= limit) {
                    bad = true; break;
                }
            }
            if (!bad)  return;
        }
        throw newIllegalArgumentException("bad reorder array");
    }

    /**
1554 1555 1556
     * Equivalent to the following code:
     * <p><blockquote><pre>
     * int spreadPos = newType.parameterCount() - 1;
1557
     * Class&lt;?&gt; spreadType = newType.parameterType(spreadPos);
1558 1559 1560 1561 1562 1563
     * int spreadCount = target.type().parameterCount() - spreadPos;
     * MethodHandle adapter = target.asSpreader(spreadType, spreadCount);
     * adapter = adapter.asType(newType);
     * return adapter;
     * </pre></blockquote>
     * @param target the method handle to invoke after argument spreading
1564
     * @param newType the expected type of the new method handle
1565
     * @return a method handle which spreads its final argument,
1566 1567
     *         before calling the original method handle
     */
1568
    /*non-public*/ static
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    MethodHandle spreadArguments(MethodHandle target, MethodType newType) {
        MethodType oldType = target.type();
        int inargs  = newType.parameterCount();
        int outargs = oldType.parameterCount();
        int spreadPos = inargs - 1;
        int numSpread = (outargs - spreadPos);
        MethodHandle res = null;
        if (spreadPos >= 0 && numSpread >= 0) {
            res = MethodHandleImpl.spreadArguments(IMPL_TOKEN, target, newType, spreadPos);
        }
        if (res == null) {
            throw newIllegalArgumentException("cannot spread "+newType+" to " +oldType);
        }
        return res;
    }

    /**
1586 1587 1588
     * Equivalent to the following code:
     * <p><blockquote><pre>
     * int collectPos = target.type().parameterCount() - 1;
1589
     * Class&lt;?&gt; collectType = target.type().parameterType(collectPos);
1590 1591 1592 1593 1594 1595 1596
     * if (!collectType.isArray())  collectType = Object[].class;
     * int collectCount = newType.parameterCount() - collectPos;
     * MethodHandle adapter = target.asCollector(collectType, collectCount);
     * adapter = adapter.asType(newType);
     * return adapter;
     * </pre></blockquote>
     * @param target the method handle to invoke after argument collection
1597
     * @param newType the expected type of the new method handle
1598
     * @return a method handle which collects some trailing argument
1599 1600
     *         into an array, before calling the original method handle
     */
1601
    /*non-public*/ static
1602 1603 1604 1605 1606 1607 1608 1609
    MethodHandle collectArguments(MethodHandle target, MethodType newType) {
        MethodType oldType = target.type();
        int inargs  = newType.parameterCount();
        int outargs = oldType.parameterCount();
        int collectPos = outargs - 1;
        int numCollect = (inargs - collectPos);
        if (collectPos < 0 || numCollect < 0)
            throw newIllegalArgumentException("wrong number of arguments");
1610 1611 1612 1613 1614
        MethodHandle res = MethodHandleImpl.collectArguments(IMPL_TOKEN, target, newType, collectPos, null);
        if (res == null) {
            throw newIllegalArgumentException("cannot collect from "+newType+" to " +oldType);
        }
        return res;
1615 1616 1617
    }

    /**
1618
     * Produces a method handle of the requested return type which returns the given
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
     * constant value every time it is invoked.
     * <p>
     * Before the method handle is returned, the passed-in value is converted to the requested type.
     * If the requested type is primitive, widening primitive conversions are attempted,
     * else reference conversions are attempted.
     * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)},
     * unless the type is {@code void}, in which case it is {@code identity(type)}.
     * @param type the return type of the desired method handle
     * @param value the value to return
     * @return a method handle of the given return type and no arguments, which always returns the given value
1629 1630 1631
     * @throws NullPointerException if the {@code type} argument is null
     * @throws ClassCastException if the value cannot be converted to the required return type
     * @throws IllegalArgumentException if the given type is {@code void.class}
1632 1633 1634 1635
     */
    public static
    MethodHandle constant(Class<?> type, Object value) {
        if (type.isPrimitive()) {
1636 1637
            if (type == void.class)
                throw newIllegalArgumentException("void type");
1638 1639 1640 1641 1642 1643 1644 1645
            Wrapper w = Wrapper.forPrimitiveType(type);
            return identity(type).bindTo(w.convert(value, type));
        } else {
            return identity(type).bindTo(type.cast(value));
        }
    }

    /**
1646 1647 1648 1649 1650 1651
     * Produces a method handle which returns its sole argument when invoked.
     * <p>The identity function for {@code void} takes no arguments and returns no values.
     * @param type the type of the sole parameter and return value of the desired method handle
     * @return a unary method handle which accepts and returns the given type
     * @throws NullPointerException if the argument is null
     * @throws IllegalArgumentException if the given type is {@code void.class}
1652 1653 1654
     */
    public static
    MethodHandle identity(Class<?> type) {
1655 1656
        if (type == void.class)
            throw newIllegalArgumentException("void type");
1657 1658 1659 1660
        return ValueConversions.identity(type);
    }

    /**
1661
     * Produces a method handle which calls the original method handle {@code target},
1662 1663 1664 1665 1666 1667 1668
     * after inserting the given argument(s) at the given position.
     * The formal parameters to {@code target} which will be supplied by those
     * arguments are called <em>bound parameters</em>, because the new method
     * will contain bindings for those parameters take from {@code values}.
     * The type of the new method handle will drop the types for the bound
     * parameters from the original target type, since the new method handle
     * will no longer require those arguments to be supplied by its callers.
1669
     * <p>
1670 1671 1672
     * Each given argument object must match the corresponding bound parameter type.
     * If a bound parameter type is a primitive, the argument object
     * must be a wrapper, and will be unboxed to produce the primitive value.
1673 1674
     * <p>
     * The  <i>pos</i> may range between zero and <i>N</i> (inclusively),
1675 1676
     * where <i>N</i> is the number of argument types in resulting method handle
     * (after bound parameter types are dropped).
1677 1678
     * @param target the method handle to invoke after the argument is inserted
     * @param pos where to insert the argument (zero for the first)
1679
     * @param values the series of arguments to insert
1680
     * @return a method handle which inserts an additional argument,
1681
     *         before calling the original method handle
1682
     * @throws NullPointerException if the {@code target} argument or the {@code values} array is null
1683
     * @see MethodHandle#bindTo
1684 1685
     */
    public static
1686 1687
    MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
        int insCount = values.length;
1688 1689 1690 1691
        MethodType oldType = target.type();
        ArrayList<Class<?>> ptypes =
                new ArrayList<Class<?>>(oldType.parameterList());
        int outargs = oldType.parameterCount();
1692 1693 1694 1695
        int inargs  = outargs - insCount;
        if (inargs < 0)
            throw newIllegalArgumentException("too many values to insert");
        if (pos < 0 || pos > inargs)
1696
            throw newIllegalArgumentException("no argument type to append");
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
        MethodHandle result = target;
        for (int i = 0; i < insCount; i++) {
            Object value = values[i];
            Class<?> valueType = oldType.parameterType(pos+i);
            value = checkValue(valueType, value);
            if (pos == 0 && !valueType.isPrimitive()) {
                // At least for now, make bound method handles a special case.
                MethodHandle bmh = MethodHandleImpl.bindReceiver(IMPL_TOKEN, result, value);
                if (bmh != null) {
                    result = bmh;
                    continue;
                }
                // else fall through to general adapter machinery
            }
            result = MethodHandleImpl.bindArgument(IMPL_TOKEN, result, pos, value);
1712
        }
1713 1714 1715
        return result;
    }

1716
    /**
1717
     * Produces a method handle which calls the original method handle,
1718 1719 1720 1721
     * after dropping the given argument(s) at the given position.
     * The type of the new method handle will insert the given argument
     * type(s), at that position, into the original handle's type.
     * <p>
1722
     * The <i>pos</i> may range between zero and <i>N</i>,
1723 1724 1725
     * where <i>N</i> is the number of argument types in <i>target</i>,
     * meaning to drop the first or last argument (respectively),
     * or an argument somewhere in between.
1726 1727 1728
     * <p>
     * <b>Example:</b>
     * <p><blockquote><pre>
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
import static java.dyn.MethodHandles.*;
import static java.dyn.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
assertEquals("xy", (String) cat.invokeExact("x", "y"));
MethodHandle d0 = dropArguments(cat, 0, String.class);
assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
MethodHandle d1 = dropArguments(cat, 1, String.class);
assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
MethodHandle d2 = dropArguments(cat, 2, String.class);
assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
1743
     * </pre></blockquote>
1744 1745 1746 1747
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
1748
     *         before calling the original method handle
1749 1750 1751
     * @throws NullPointerException if the {@code target} argument is null,
     *                              or if the {@code valueTypes} list or any of its elements is null
     * @throws IllegalArgumentException if any of the {@code valueTypes} is {@code void.class}
1752 1753
     */
    public static
1754 1755
    MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
        if (valueTypes.size() == 0)  return target;
1756 1757
        MethodType oldType = target.type();
        int outargs = oldType.parameterCount();
1758
        int inargs  = outargs + valueTypes.size();
1759 1760 1761 1762
        if (pos < 0 || pos >= inargs)
            throw newIllegalArgumentException("no argument type to remove");
        ArrayList<Class<?>> ptypes =
                new ArrayList<Class<?>>(oldType.parameterList());
1763 1764
        ptypes.addAll(pos, valueTypes);
        MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
1765 1766 1767
        return MethodHandleImpl.dropArguments(IMPL_TOKEN, target, newType, pos);
    }

1768
    /**
1769
     * Produces a method handle which calls the original method handle,
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
     * after dropping the given argument(s) at the given position.
     * The type of the new method handle will insert the given argument
     * type(s), at that position, into the original handle's type.
     * This method is equivalent to the following code:
     * <code>
     * {@link #dropArguments(MethodHandle,int,List) dropArguments}(target, pos, Arrays.asList(valueTypes))
     * </code>
     * @param target the method handle to invoke after the arguments are dropped
     * @param valueTypes the type(s) of the argument(s) to drop
     * @param pos position of first argument to drop (zero for the leftmost)
     * @return a method handle which drops arguments of the given types,
     *         before calling the original method handle
1782 1783 1784
     * @throws NullPointerException if the {@code target} argument is null,
     *                              or if the {@code valueTypes} array or any of its elements is null
     * @throws IllegalArgumentException if any of the {@code valueTypes} is {@code void.class}
1785
     */
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
    public static
    MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
        return dropArguments(target, pos, Arrays.asList(valueTypes));
    }

    /**
     * Adapt a target method handle {@code target} by pre-processing
     * one or more of its arguments, each with its own unary filter function,
     * and then calling the target with each pre-processed argument
     * replaced by the result of its corresponding filter function.
     * <p>
     * The pre-processing is performed by one or more method handles,
1798
     * specified in the elements of the {@code filters} array.
1799 1800
     * Null arguments in the array are ignored, and the corresponding arguments left unchanged.
     * (If there are no non-null elements in the array, the original target is returned.)
1801
     * Each filter is applied to the corresponding argument of the adapter.
1802 1803 1804 1805 1806 1807 1808 1809 1810
     * <p>
     * If a filter {@code F} applies to the {@code N}th argument of
     * the method handle, then {@code F} must be a method handle which
     * takes exactly one argument.  The type of {@code F}'s sole argument
     * replaces the corresponding argument type of the target
     * in the resulting adapted method handle.
     * The return type of {@code F} must be identical to the corresponding
     * parameter type of the target.
     * <p>
1811
     * It is an error if there are elements of {@code filters}
1812
     * which do not correspond to argument positions in the target.
1813 1814 1815 1816 1817 1818 1819 1820 1821
     * <b>Example:</b>
     * <p><blockquote><pre>
import static java.dyn.MethodHandles.*;
import static java.dyn.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle upcase = lookup().findVirtual(String.class,
  "toUpperCase", methodType(String.class));
1822
assertEquals("xy", (String) cat.invokeExact("x", "y"));
1823
MethodHandle f0 = filterArguments(cat, 0, upcase);
1824
assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
1825
MethodHandle f1 = filterArguments(cat, 1, upcase);
1826
assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
1827
MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
1828
assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
1829
     * </pre></blockquote>
1830
     *
1831
     * @param target the method handle to invoke after arguments are filtered
1832
     * @param pos the position of the first argument to filter
1833 1834
     * @param filters method handles to call initially on filtered arguments
     * @return method handle which incorporates the specified argument filtering logic
1835 1836 1837 1838 1839
     * @throws NullPointerException if the {@code target} argument is null
     *                              or if the {@code filters} array is null
     * @throws IllegalArgumentException if a non-null element of {@code filters}
     *          does not match a corresponding argument type of {@code target} as described above,
     *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}
1840 1841
     */
    public static
1842
    MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
1843 1844 1845
        MethodType targetType = target.type();
        MethodHandle adapter = target;
        MethodType adapterType = targetType;
1846
        int maxPos = targetType.parameterCount();
1847 1848 1849
        if (pos + filters.length > maxPos)
            throw newIllegalArgumentException("too many filters");
        int curPos = pos-1;  // pre-incremented
1850
        for (MethodHandle filter : filters) {
1851 1852
            curPos += 1;
            if (filter == null)  continue;  // ignore null elements of filters
1853 1854
            MethodType filterType = filter.type();
            if (filterType.parameterCount() != 1
1855
                || filterType.returnType() != targetType.parameterType(curPos))
1856
                throw newIllegalArgumentException("target and filter types do not match");
1857 1858
            adapterType = adapterType.changeParameterType(curPos, filterType.parameterType(0));
            adapter = MethodHandleImpl.filterArgument(IMPL_TOKEN, adapter, curPos, filter);
1859 1860 1861 1862 1863 1864 1865
        }
        MethodType midType = adapter.type();
        if (midType != adapterType)
            adapter = MethodHandleImpl.convertArguments(IMPL_TOKEN, adapter, adapterType, midType, null);
        return adapter;
    }

1866
    /**
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
     * Adapt a target method handle {@code target} by post-processing
     * its return value with a unary filter function.
     * <p>
     * If a filter {@code F} applies to the return value of
     * the target method handle, then {@code F} must be a method handle which
     * takes exactly one argument.  The return type of {@code F}
     * replaces the return type of the target
     * in the resulting adapted method handle.
     * The argument type of {@code F} must be identical to the
     * return type of the target.
     * <b>Example:</b>
     * <p><blockquote><pre>
import static java.dyn.MethodHandles.*;
import static java.dyn.MethodType.*;
...
MethodHandle cat = lookup().findVirtual(String.class,
  "concat", methodType(String.class, String.class));
MethodHandle length = lookup().findVirtual(String.class,
  "length", methodType(int.class));
System.out.println((String) cat.invokeExact("x", "y")); // xy
MethodHandle f0 = filterReturnValue(cat, length);
System.out.println((int) f0.invokeExact("x", "y")); // 2
     * </pre></blockquote>
     * @param target the method handle to invoke before filtering the return value
     * @param filter method handle to call on the return value
     * @return method handle which incorporates the specified return value filtering logic
1893 1894
     * @throws NullPointerException if either argument is null
     * @throws IllegalArgumentException if {@code filter}
1895
     *          does not match the return type of {@code target} as described above
1896
     */
1897
    public static
1898 1899 1900 1901 1902 1903
    MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
        MethodType targetType = target.type();
        MethodType filterType = filter.type();
        if (filterType.parameterCount() != 1
            || filterType.parameterType(0) != targetType.returnType())
            throw newIllegalArgumentException("target and filter types do not match");
1904 1905
        // result = fold( lambda(retval, arg...) { filter(retval) },
        //                lambda(        arg...) { target(arg...) } )
1906
        // FIXME: Too many nodes here.
1907 1908
        MethodHandle returner = dropArguments(filter, 1, targetType.parameterList());
        return foldArguments(returner, target);
1909 1910
    }

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
    /**
     * Adapt a target method handle {@code target} by pre-processing
     * some of its arguments, and then calling the target with
     * the result of the pre-processing, plus all original arguments.
     * <p>
     * The pre-processing is performed by a second method handle, the {@code combiner}.
     * The first {@code N} arguments passed to the adapter,
     * are copied to the combiner, which then produces a result.
     * (Here, {@code N} is defined as the parameter count of the adapter.)
     * After this, control passes to the {@code target}, with both the result
     * of the combiner, and all the original incoming arguments.
     * <p>
     * The first argument type of the target must be identical with the
     * return type of the combiner.
     * The resulting adapter is the same type as the target, except that the
     * initial argument type of the target is dropped.
     * <p>
1928
     * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
1929 1930
     * that either the {@code combiner} or {@code target} does not wish to receive.
     * If some of the incoming arguments are destined only for the combiner,
1931
     * consider using {@link MethodHandle#asCollector asCollector} instead, since those
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
     * arguments will not need to be live on the stack on entry to the
     * target.)
     * <p>
     * The first argument of the target must be identical with the
     * return value of the combiner.
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
     * // there are N arguments in the A sequence
     * T target(V, A[N]..., B...);
     * V combiner(A...);
     * T adapter(A... a, B... b) {
     *   V v = combiner(a...);
     *   return target(v, a..., b...);
     * }
     * </pre></blockquote>
     * @param target the method handle to invoke after arguments are combined
     * @param combiner method handle to call initially on the incoming arguments
     * @return method handle which incorporates the specified argument folding logic
1950
     * @throws NullPointerException if either argument is null
1951 1952
     * @throws IllegalArgumentException if the first argument type of
     *          {@code target} is not the same as {@code combiner}'s return type,
1953
     *          or if the following argument types of {@code target}
1954 1955 1956 1957 1958 1959 1960 1961
     *          are not identical with the argument types of {@code combiner}
     */
    public static
    MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
        MethodType targetType = target.type();
        MethodType combinerType = combiner.type();
        int foldArgs = combinerType.parameterCount();
        boolean ok = (targetType.parameterCount() >= 1 + foldArgs);
1962 1963 1964 1965
        if (ok && !combinerType.parameterList().equals(targetType.parameterList().subList(1, foldArgs+1)))
            ok = false;
        if (ok && !combinerType.returnType().equals(targetType.parameterType(0)))
            ok = false;
1966 1967 1968 1969 1970 1971
        if (!ok)
            throw misMatchedTypes("target and combiner types", targetType, combinerType);
        MethodType newType = targetType.dropParameterTypes(0, 1);
        return MethodHandleImpl.foldArguments(IMPL_TOKEN, target, newType, combiner);
    }

1972 1973 1974 1975 1976 1977
    /**
     * Make a method handle which adapts a target method handle,
     * by guarding it with a test, a boolean-valued method handle.
     * If the guard fails, a fallback handle is called instead.
     * All three method handles must have the same corresponding
     * argument and return types, except that the return type
1978 1979
     * of the test must be boolean, and the test is allowed
     * to have fewer arguments than the other two method handles.
1980 1981 1982
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
     * boolean test(A...);
1983 1984 1985
     * T target(A...,B...);
     * T fallback(A...,B...);
     * T adapter(A... a,B... b) {
1986
     *   if (test(a...))
1987
     *     return target(a..., b...);
1988
     *   else
1989
     *     return fallback(a..., b...);
1990 1991
     * }
     * </pre></blockquote>
1992 1993 1994
     * Note that the test arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the test, and so are passed unchanged
     * from the caller to the target or fallback as appropriate.
1995 1996 1997 1998
     * @param test method handle used for test, must return boolean
     * @param target method handle to call if test passes
     * @param fallback method handle to call if test fails
     * @return method handle which incorporates the specified if/then/else logic
1999
     * @throws NullPointerException if any argument is null
2000 2001 2002 2003 2004 2005 2006 2007
     * @throws IllegalArgumentException if {@code test} does not return boolean,
     *          or if all three method types do not match (with the return
     *          type of {@code test} changed to match that of {@code target}).
     */
    public static
    MethodHandle guardWithTest(MethodHandle test,
                               MethodHandle target,
                               MethodHandle fallback) {
2008 2009 2010
        MethodType gtype = test.type();
        MethodType ttype = target.type();
        MethodType ftype = fallback.type();
2011
        if (!ttype.equals(ftype))
2012
            throw misMatchedTypes("target and fallback types", ttype, ftype);
2013 2014 2015 2016 2017 2018 2019
        if (gtype.returnType() != boolean.class)
            throw newIllegalArgumentException("guard type is not a predicate "+gtype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> gargs = gtype.parameterList();
        if (!targs.equals(gargs)) {
            int gpc = gargs.size(), tpc = targs.size();
            if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
2020
                throw misMatchedTypes("target and test types", ttype, gtype);
2021 2022
            test = dropArguments(test, gpc, targs.subList(gpc, tpc));
            gtype = test.type();
2023
        }
2024 2025 2026
        return MethodHandleImpl.makeGuardWithTest(IMPL_TOKEN, test, target, fallback);
    }

2027 2028 2029 2030
    static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
        return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
    }

2031
    /**
2032 2033 2034 2035 2036
     * Make a method handle which adapts a target method handle,
     * by running it inside an exception handler.
     * If the target returns normally, the adapter returns that value.
     * If an exception matching the specified type is thrown, the fallback
     * handle is called instead on the exception, plus the original arguments.
2037
     * <p>
2038 2039 2040 2041
     * The target and handler must have the same corresponding
     * argument and return types, except that handler may omit trailing arguments
     * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
     * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
2042 2043
     * <p> Here is pseudocode for the resulting adapter:
     * <blockquote><pre>
2044
     * T target(A..., B...);
2045
     * T handler(ExType, A...);
2046
     * T adapter(A... a, B... b) {
2047
     *   try {
2048
     *     return target(a..., b...);
2049 2050 2051
     *   } catch (ExType ex) {
     *     return handler(ex, a...);
     *   }
2052 2053
     * }
     * </pre></blockquote>
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
     * be modified by execution of the target, and so are passed unchanged
     * from the caller to the handler, if the handler is invoked.
     * <p>
     * The target and handler must return the same type, even if the handler
     * always throws.  (This might happen, for instance, because the handler
     * is simulating a {@code finally} clause).
     * To create such a throwing handler, compose the handler creation logic
     * with {@link #throwException throwException},
     * in order to create a method handle of the correct return type.
2064 2065 2066 2067
     * @param target method handle to call
     * @param exType the type of exception which the handler will catch
     * @param handler method handle to call if a matching exception is thrown
     * @return method handle which incorporates the specified try/catch logic
2068
     * @throws NullPointerException if any argument is null
2069 2070 2071 2072
     * @throws IllegalArgumentException if {@code handler} does not accept
     *          the given exception type, or if the method handle types do
     *          not match in their return types and their
     *          corresponding parameters
2073 2074
     */
    public static
2075 2076 2077
    MethodHandle catchException(MethodHandle target,
                                Class<? extends Throwable> exType,
                                MethodHandle handler) {
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        MethodType ttype = target.type();
        MethodType htype = handler.type();
        if (htype.parameterCount() < 1 ||
            !htype.parameterType(0).isAssignableFrom(exType))
            throw newIllegalArgumentException("handler does not accept exception type "+exType);
        if (htype.returnType() != ttype.returnType())
            throw misMatchedTypes("target and handler return types", ttype, htype);
        List<Class<?>> targs = ttype.parameterList();
        List<Class<?>> hargs = htype.parameterList();
        hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
        if (!targs.equals(hargs)) {
            int hpc = hargs.size(), tpc = targs.size();
            if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
                throw misMatchedTypes("target and handler types", ttype, htype);
            handler = dropArguments(handler, hpc, hargs.subList(hpc, tpc));
            htype = handler.type();
        }
2095
        return MethodHandleImpl.makeGuardWithCatch(IMPL_TOKEN, target, exType, handler);
2096 2097
    }

2098
    /**
2099
     * Produces a method handle which will throw exceptions of the given {@code exType}.
2100 2101 2102 2103 2104
     * The method handle will accept a single argument of {@code exType},
     * and immediately throw it as an exception.
     * The method type will nominally specify a return of {@code returnType}.
     * The return type may be anything convenient:  It doesn't matter to the
     * method handle's behavior, since it will never return normally.
2105 2106
     * @return method handle which can throw the given exceptions
     * @throws NullPointerException if either argument is null
2107 2108 2109 2110 2111
     */
    public static
    MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
        return MethodHandleImpl.throwException(IMPL_TOKEN, MethodType.methodType(returnType, exType));
    }
2112 2113

    /**
2114
     * Produces an instance of the given "SAM" interface which redirects
2115
     * its calls to the given method handle.
2116
     * <p>
2117
     * A SAM interface is an interface which declares a single abstract method.
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
     * When determining the unique abstract method of a SAM interface,
     * the public {@code Object} methods ({@code toString}, {@code equals}, {@code hashCode})
     * are disregarded.  For example, {@link java.util.Comparator} is a SAM interface,
     * even though it re-declares the {@code Object.equals} method.
     * Also, if the SAM interface has a supertype,
     * the SAM interface may override an inherited method.
     * Any such overrides are respected, and the method handle will be accessible
     * by either the inherited method or the SAM method.
     * In particular, a {@linkplain java.lang.reflect.Method#isBridge bridge method}
     * may be created if the methods have different return types.
     * <p>
     * The type must be public.  No additional access checks are performed.
2130 2131 2132 2133 2134 2135
     * <p>
     * The resulting instance of the required SAM type will respond to
     * invocation of the SAM type's single abstract method by calling
     * the given {@code target} on the incoming arguments,
     * and returning or throwing whatever the {@code target}
     * returns or throws.  The invocation will be as if by
2136 2137 2138 2139
     * {@code target.invokeGeneric}.
     * The target's type will be checked before the SAM
     * instance is created, as if by a call to {@code asType},
     * which may result in a {@code WrongMethodTypeException}.
2140
     * <p>
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
     * The wrapper instance will implement the requested SAM interface
     * and its super-types, but no other SAM types.
     * This means that the SAM instance will not unexpectedly
     * pass an {@code instanceof} test for any unrequested type.
     * <p style="font-size:smaller;">
     * <em>Implementation Note:</em>
     * Therefore, each SAM instance must implement a unique SAM type.
     * Implementations may not bundle together
     * multiple SAM types onto single implementation classes
     * in the style of {@link java.awt.AWTEventMulticaster}.
     * <p>
2152 2153 2154
     * The method handle may throw an <em>undeclared exception</em>,
     * which means any checked exception (or other checked throwable)
     * not declared by the SAM type's single abstract method.
2155 2156 2157
     * If this happens, the throwable will be wrapped in an instance of
     * {@link java.lang.reflect.UndeclaredThrowableException UndeclaredThrowableException}
     * and thrown in that wrapped form.
2158
     * <p>
2159 2160 2161 2162
     * Like {@link java.lang.Integer#valueOf Integer.valueOf},
     * {@code asInstance} is a factory method whose results are defined
     * by their behavior.
     * It is not guaranteed to return a new instance for every call.
2163 2164 2165
     * <p>
     * Future versions of this API may accept additional types,
     * such as abstract classes with single abstract methods.
2166 2167 2168
     * Future versions of this API may also equip wrapper instances
     * with one or more additional public "marker" interfaces.
     *
2169 2170 2171
     * @param target the method handle to invoke from the wrapper
     * @param samType the desired type of the wrapper, a SAM type
     * @return a correctly-typed wrapper for the given {@code target}
2172
     * @throws NullPointerException if either argument is null
2173 2174 2175 2176
     * @throws IllegalArgumentException if the {@code samType} is not a
     *         valid argument to this method
     * @throws WrongMethodTypeException if the {@code target} cannot
     *         be converted to the type required by the SAM type
2177
     */
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
    // Other notes to implementors:
    // <p>
    // No stable mapping is promised between the SAM type and
    // the implementation class C.  Over time, several implementation
    // classes might be used for the same SAM type.
    // <p>
    // If the implementation is able
    // to prove that a wrapper of the required SAM type
    // has already been created for a given
    // method handle, or for another method handle with the
    // same behavior, the implementation may return that wrapper in place of
    // a new wrapper.
    // <p>
    // This method is designed to apply to common use cases
    // where a single method handle must interoperate with
    // an interface that implements a function-like
    // API.  Additional variations, such as SAM classes with
    // private constructors, or interfaces with multiple but related
    // entry points, must be covered by hand-written or automatically
    // generated adapter classes.
    //
2199
    public static
2200
    <T> T asInstance(final MethodHandle target, final Class<T> samType) {
2201 2202 2203 2204 2205
        // POC implementation only; violates the above contract several ways
        final Method sam = getSamMethod(samType);
        if (sam == null)
            throw new IllegalArgumentException("not a SAM type: "+samType.getName());
        MethodType samMT = MethodType.methodType(sam.getReturnType(), sam.getParameterTypes());
2206 2207 2208
        MethodHandle checkTarget = target.asType(samMT);  // make throw WMT
        checkTarget = checkTarget.asType(checkTarget.type().changeReturnType(Object.class));
        final MethodHandle vaTarget = checkTarget.asSpreader(Object[].class, samMT.parameterCount());
2209 2210
        return samType.cast(Proxy.newProxyInstance(
                samType.getClassLoader(),
2211
                new Class[]{ samType, WrapperInstance.class },
2212
                new InvocationHandler() {
2213
                    private Object getArg(String name) {
2214 2215
                        if ((Object)name == "getWrapperInstanceTarget")  return target;
                        if ((Object)name == "getWrapperInstanceType")    return samType;
2216 2217
                        throw new AssertionError();
                    }
2218
                    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
2219
                        if (method.getDeclaringClass() == WrapperInstance.class)
2220
                            return getArg(method.getName());
2221
                        if (method.equals(sam))
2222
                            return vaTarget.invokeExact(args);
2223 2224 2225
                        if (isObjectMethod(method))
                            return callObjectMethod(this, method, args);
                        throw new InternalError();
2226 2227 2228 2229
                    }
                }));
    }

2230
    /**
2231 2232 2233
     * Determine if the given object was produced by a call to {@link #asInstance asInstance}.
     * @param x any reference
     * @return true if the reference is not null and points to an object produced by {@code asInstance}
2234
     */
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
    public static
    boolean isWrapperInstance(Object x) {
        return x instanceof WrapperInstance;
    }

    private static WrapperInstance asWrapperInstance(Object x) {
        try {
            if (x != null)
                return (WrapperInstance) x;
        } catch (ClassCastException ex) {
        }
        throw new IllegalArgumentException("not a wrapper instance");
    }

    /**
     * Produces or recovers a target method handle which is behaviorally
     * equivalent to the SAM method of this wrapper instance.
     * The object {@code x} must have been produced by a call to {@link #asInstance asInstance}.
     * This requirement may be tested via {@link #isWrapperInstance isWrapperInstance}.
     * @param x any reference
     * @return a method handle implementing the SAM method
     * @throws IllegalArgumentException if the reference x is not to a wrapper instance
     */
    public static
    MethodHandle wrapperInstanceTarget(Object x) {
        return asWrapperInstance(x).getWrapperInstanceTarget();
    }

    /**
     * Recover the SAM type for which this wrapper instance was created.
     * The object {@code x} must have been produced by a call to {@link #asInstance asInstance}.
     * This requirement may be tested via {@link #isWrapperInstance isWrapperInstance}.
     * @param x any reference
     * @return the SAM type for which the wrapper was created
     * @throws IllegalArgumentException if the reference x is not to a wrapper instance
     */
    public static
    Class<?> wrapperInstanceType(Object x) {
        return asWrapperInstance(x).getWrapperInstanceType();
2274 2275
    }

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
    private static
    boolean isObjectMethod(Method m) {
        switch (m.getName()) {
        case "toString":
            return (m.getReturnType() == String.class
                    && m.getParameterTypes().length == 0);
        case "hashCode":
            return (m.getReturnType() == int.class
                    && m.getParameterTypes().length == 0);
        case "equals":
            return (m.getReturnType() == boolean.class
                    && m.getParameterTypes().length == 1
                    && m.getParameterTypes()[0] == Object.class);
        }
        return false;
    }

    private static
    Object callObjectMethod(Object self, Method m, Object[] args) {
        assert(isObjectMethod(m)) : m;
        switch (m.getName()) {
        case "toString":
            return self.getClass().getName() + "@" + Integer.toHexString(self.hashCode());
        case "hashCode":
            return System.identityHashCode(self);
        case "equals":
            return (self == args[0]);
        }
        return null;
    }

2307 2308 2309 2310 2311 2312
    private static
    Method getSamMethod(Class<?> samType) {
        Method sam = null;
        for (Method m : samType.getMethods()) {
            int mod = m.getModifiers();
            if (Modifier.isAbstract(mod)) {
2313
                if (sam != null && !isObjectMethod(sam))
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
                    return null;  // too many abstract methods
                sam = m;
            }
        }
        if (!samType.isInterface() && getSamConstructor(samType) == null)
            return null;  // wrong kind of constructor
        return sam;
    }

    private static
    Constructor getSamConstructor(Class<?> samType) {
        for (Constructor c : samType.getDeclaredConstructors()) {
            if (c.getParameterTypes().length == 0) {
                int mod = c.getModifiers();
                if (Modifier.isPublic(mod) || Modifier.isProtected(mod))
                    return c;
            }
        }
        return null;
    }
2334 2335

    /*non-public*/
2336 2337
    static MethodHandle asVarargsCollector(MethodHandle target, Class<?> arrayType) {
        return MethodHandleImpl.asVarargsCollector(IMPL_TOKEN, target, arrayType);
2338
    }
2339
}