FloatMath.java 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/*
 * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package sun.java2d.marlin;

import sun.misc.DoubleConsts;
import sun.misc.FloatConsts;

/**
 * Faster Math ceil / floor routines derived from StrictMath
 */
public final class FloatMath implements MarlinConst {

    // overflow / NaN handling enabled:
    static final boolean CHECK_OVERFLOW = true;
    static final boolean CHECK_NAN = true;

    private FloatMath() {
        // utility class
    }

    // faster inlined min/max functions in the branch prediction is high
    static float max(final float a, final float b) {
        // no NaN handling
        return (a >= b) ? a : b;
    }

    static int max(final int a, final int b) {
        return (a >= b) ? a : b;
    }

    static int min(final int a, final int b) {
        return (a <= b) ? a : b;
    }

    /**
     * Returns the smallest (closest to negative infinity) {@code float} value
     * that is greater than or equal to the argument and is equal to a
     * mathematical integer. Special cases:
     * <ul><li>If the argument value is already equal to a mathematical integer,
     * then the result is the same as the argument.  <li>If the argument is NaN
     * or an infinity or positive zero or negative zero, then the result is the
     * same as the argument.  <li>If the argument value is less than zero but
     * greater than -1.0, then the result is negative zero.</ul> Note that the
     * value of {@code StrictMath.ceil(x)} is exactly the value of
     * {@code -StrictMath.floor(-x)}.
     *
     * @param a a value.
     * @return the smallest (closest to negative infinity) floating-point value
     * that is greater than or equal to the argument and is equal to a
     * mathematical integer.
     */
    public static float ceil_f(final float a) {
        // Derived from StrictMath.ceil(double):

        // Inline call to Math.getExponent(a) to
        // compute only once Float.floatToRawIntBits(a)
        final int doppel = Float.floatToRawIntBits(a);

        final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK)
                >> (FloatConsts.SIGNIFICAND_WIDTH - 1))
                - FloatConsts.EXP_BIAS;

        if (exponent < 0) {
            /*
             * Absolute value of argument is less than 1.
             * floorOrceil(-0.0) => -0.0
             * floorOrceil(+0.0) => +0.0
             */
            return ((a == 0) ? a :
                    ( (a < 0f) ? -0f : 1f) );
        }
        if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double
            /*
             * Infinity, NaN, or a value so large it must be integral.
             */
            return a;
        }
        // Else the argument is either an integral value already XOR it
        // has to be rounded to one.
        assert exponent >= 0 && exponent <= 22; // 51 for double

        final int intpart = doppel
                & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent));

        if (intpart == doppel) {
            return a; // integral value (including 0)
        }

        // 0 handled above as an integer
        // sign: 1 for negative, 0 for positive numbers
        // add : 0 for negative and 1 for positive numbers
        return Float.intBitsToFloat(intpart) + ((~intpart) >>> 31);
    }

    /**
     * Returns the largest (closest to positive infinity) {@code float} value
     * that is less than or equal to the argument and is equal to a mathematical
     * integer. Special cases:
     * <ul><li>If the argument value is already equal to a mathematical integer,
     * then the result is the same as the argument.  <li>If the argument is NaN
     * or an infinity or positive zero or negative zero, then the result is the
     * same as the argument.</ul>
     *
     * @param a a value.
     * @return the largest (closest to positive infinity) floating-point value
     * that less than or equal to the argument and is equal to a mathematical
     * integer.
     */
    public static float floor_f(final float a) {
        // Derived from StrictMath.floor(double):

        // Inline call to Math.getExponent(a) to
        // compute only once Float.floatToRawIntBits(a)
        final int doppel = Float.floatToRawIntBits(a);

        final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK)
                >> (FloatConsts.SIGNIFICAND_WIDTH - 1))
                - FloatConsts.EXP_BIAS;

        if (exponent < 0) {
            /*
             * Absolute value of argument is less than 1.
             * floorOrceil(-0.0) => -0.0
             * floorOrceil(+0.0) => +0.0
             */
            return ((a == 0) ? a :
                    ( (a < 0f) ? -1f : 0f) );
        }
        if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double
            /*
             * Infinity, NaN, or a value so large it must be integral.
             */
            return a;
        }
        // Else the argument is either an integral value already XOR it
        // has to be rounded to one.
        assert exponent >= 0 && exponent <= 22; // 51 for double

        final int intpart = doppel
                & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent));

        if (intpart == doppel) {
            return a; // integral value (including 0)
        }

        // 0 handled above as an integer
        // sign: 1 for negative, 0 for positive numbers
        // add : -1 for negative and 0 for positive numbers
        return Float.intBitsToFloat(intpart) + (intpart >> 31);
    }

    /**
     * Faster alternative to ceil(float) optimized for the integer domain
     * and supporting NaN and +/-Infinity.
     *
     * @param a a value.
     * @return the largest (closest to positive infinity) integer value
     * that less than or equal to the argument and is equal to a mathematical
     * integer.
     */
    public static int ceil_int(final float a) {
        final int intpart = (int) a;

        if (a <= intpart
                || (CHECK_OVERFLOW && intpart == Integer.MAX_VALUE)
                || CHECK_NAN && Float.isNaN(a)) {
            return intpart;
        }
        return intpart + 1;
    }

    /**
     * Faster alternative to floor(float) optimized for the integer domain
     * and supporting NaN and +/-Infinity.
     *
     * @param a a value.
     * @return the largest (closest to positive infinity) floating-point value
     * that less than or equal to the argument and is equal to a mathematical
     * integer.
     */
    public static int floor_int(final float a) {
        final int intpart = (int) a;

        if (a >= intpart
                || (CHECK_OVERFLOW && intpart == Integer.MIN_VALUE)
                || CHECK_NAN && Float.isNaN(a)) {
            return intpart;
        }
        return intpart - 1;
    }
}