ForkJoinPool.java 68.7 KB
Newer Older
D
dl 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Sun designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Sun in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

package java.util.concurrent;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

/**
 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
 * A {@code ForkJoinPool} provides the entry point for submissions
 * from non-{@code ForkJoinTask}s, as well as management and
 * monitoring operations.
 *
 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
 * ExecutorService} mainly by virtue of employing
 * <em>work-stealing</em>: all threads in the pool attempt to find and
 * execute subtasks created by other active tasks (eventually blocking
 * waiting for work if none exist). This enables efficient processing
 * when most tasks spawn other subtasks (as do most {@code
 * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
 * execution of some plain {@code Runnable}- or {@code Callable}-
 * based activities along with {@code ForkJoinTask}s. When setting
 * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
 * also be appropriate for use with fine-grained tasks of any form
 * that are never joined. Otherwise, other {@code ExecutorService}
 * implementations are typically more appropriate choices.
 *
 * <p>A {@code ForkJoinPool} is constructed with a given target
 * parallelism level; by default, equal to the number of available
 * processors. Unless configured otherwise via {@link
 * #setMaintainsParallelism}, the pool attempts to maintain this
 * number of active (or available) threads by dynamically adding,
 * suspending, or resuming internal worker threads, even if some tasks
 * are stalled waiting to join others. However, no such adjustments
 * are performed in the face of blocked IO or other unmanaged
 * synchronization. The nested {@link ManagedBlocker} interface
 * enables extension of the kinds of synchronization accommodated.
 * The target parallelism level may also be changed dynamically
 * ({@link #setParallelism}). The total number of threads may be
 * limited using method {@link #setMaximumPoolSize}, in which case it
 * may become possible for the activities of a pool to stall due to
 * the lack of available threads to process new tasks.
 *
 * <p>In addition to execution and lifecycle control methods, this
 * class provides status check methods (for example
 * {@link #getStealCount}) that are intended to aid in developing,
 * tuning, and monitoring fork/join applications. Also, method
 * {@link #toString} returns indications of pool state in a
 * convenient form for informal monitoring.
 *
 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
 * used for all parallel task execution in a program or subsystem.
 * Otherwise, use would not usually outweigh the construction and
 * bookkeeping overhead of creating a large set of threads. For
 * example, a common pool could be used for the {@code SortTasks}
 * illustrated in {@link RecursiveAction}. Because {@code
 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
 * daemon} mode, there is typically no need to explicitly {@link
 * #shutdown} such a pool upon program exit.
 *
 * <pre>
 * static final ForkJoinPool mainPool = new ForkJoinPool();
 * ...
 * public void sort(long[] array) {
 *   mainPool.invoke(new SortTask(array, 0, array.length));
 * }
 * </pre>
 *
 * <p><b>Implementation notes</b>: This implementation restricts the
 * maximum number of running threads to 32767. Attempts to create
 * pools with greater than the maximum number result in
 * {@code IllegalArgumentException}.
 *
 * <p>This implementation rejects submitted tasks (that is, by throwing
 * {@link RejectedExecutionException}) only when the pool is shut down.
 *
 * @since 1.7
 * @author Doug Lea
 */
public class ForkJoinPool extends AbstractExecutorService {

    /*
     * See the extended comments interspersed below for design,
     * rationale, and walkthroughs.
     */

    /** Mask for packing and unpacking shorts */
    private static final int  shortMask = 0xffff;

    /** Max pool size -- must be a power of two minus 1 */
    private static final int MAX_THREADS =  0x7FFF;

    /**
     * Factory for creating new {@link ForkJoinWorkerThread}s.
     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
     * for {@code ForkJoinWorkerThread} subclasses that extend base
     * functionality or initialize threads with different contexts.
     */
    public static interface ForkJoinWorkerThreadFactory {
        /**
         * Returns a new worker thread operating in the given pool.
         *
         * @param pool the pool this thread works in
         * @throws NullPointerException if the pool is null
         */
        public ForkJoinWorkerThread newThread(ForkJoinPool pool);
    }

    /**
     * Default ForkJoinWorkerThreadFactory implementation; creates a
     * new ForkJoinWorkerThread.
     */
    static class  DefaultForkJoinWorkerThreadFactory
        implements ForkJoinWorkerThreadFactory {
        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
            try {
                return new ForkJoinWorkerThread(pool);
            } catch (OutOfMemoryError oom)  {
                return null;
            }
        }
    }

    /**
     * Creates a new ForkJoinWorkerThread. This factory is used unless
     * overridden in ForkJoinPool constructors.
     */
    public static final ForkJoinWorkerThreadFactory
        defaultForkJoinWorkerThreadFactory =
        new DefaultForkJoinWorkerThreadFactory();

    /**
     * Permission required for callers of methods that may start or
     * kill threads.
     */
    private static final RuntimePermission modifyThreadPermission =
        new RuntimePermission("modifyThread");

    /**
     * If there is a security manager, makes sure caller has
     * permission to modify threads.
     */
    private static void checkPermission() {
        SecurityManager security = System.getSecurityManager();
        if (security != null)
            security.checkPermission(modifyThreadPermission);
    }

    /**
     * Generator for assigning sequence numbers as pool names.
     */
    private static final AtomicInteger poolNumberGenerator =
        new AtomicInteger();

    /**
     * Array holding all worker threads in the pool. Initialized upon
     * first use. Array size must be a power of two.  Updates and
     * replacements are protected by workerLock, but it is always kept
     * in a consistent enough state to be randomly accessed without
     * locking by workers performing work-stealing.
     */
    volatile ForkJoinWorkerThread[] workers;

    /**
     * Lock protecting access to workers.
     */
    private final ReentrantLock workerLock;

    /**
     * Condition for awaitTermination.
     */
    private final Condition termination;

    /**
     * The uncaught exception handler used when any worker
     * abruptly terminates
     */
    private Thread.UncaughtExceptionHandler ueh;

    /**
     * Creation factory for worker threads.
     */
    private final ForkJoinWorkerThreadFactory factory;

    /**
     * Head of stack of threads that were created to maintain
     * parallelism when other threads blocked, but have since
     * suspended when the parallelism level rose.
     */
    private volatile WaitQueueNode spareStack;

    /**
     * Sum of per-thread steal counts, updated only when threads are
     * idle or terminating.
     */
    private final AtomicLong stealCount;

    /**
     * Queue for external submissions.
     */
    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;

    /**
     * Head of Treiber stack for barrier sync. See below for explanation.
     */
    private volatile WaitQueueNode syncStack;

    /**
     * The count for event barrier
     */
    private volatile long eventCount;

    /**
     * Pool number, just for assigning useful names to worker threads
     */
    private final int poolNumber;

    /**
     * The maximum allowed pool size
     */
    private volatile int maxPoolSize;

    /**
     * The desired parallelism level, updated only under workerLock.
     */
    private volatile int parallelism;

    /**
     * True if use local fifo, not default lifo, for local polling
     */
    private volatile boolean locallyFifo;

    /**
     * Holds number of total (i.e., created and not yet terminated)
     * and running (i.e., not blocked on joins or other managed sync)
     * threads, packed into one int to ensure consistent snapshot when
     * making decisions about creating and suspending spare
     * threads. Updated only by CAS.  Note: CASes in
     * updateRunningCount and preJoin assume that running active count
     * is in low word, so need to be modified if this changes.
     */
    private volatile int workerCounts;

    private static int totalCountOf(int s)           { return s >>> 16;  }
    private static int runningCountOf(int s)         { return s & shortMask; }
    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }

    /**
     * Adds delta (which may be negative) to running count.  This must
     * be called before (with negative arg) and after (with positive)
     * any managed synchronization (i.e., mainly, joins).
     *
     * @param delta the number to add
     */
    final void updateRunningCount(int delta) {
        int s;
        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
    }

    /**
     * Adds delta (which may be negative) to both total and running
     * count.  This must be called upon creation and termination of
     * worker threads.
     *
     * @param delta the number to add
     */
    private void updateWorkerCount(int delta) {
        int d = delta + (delta << 16); // add to both lo and hi parts
        int s;
        do {} while (!casWorkerCounts(s = workerCounts, s + d));
    }

    /**
     * Lifecycle control. High word contains runState, low word
     * contains the number of workers that are (probably) executing
     * tasks. This value is atomically incremented before a worker
     * gets a task to run, and decremented when worker has no tasks
     * and cannot find any. These two fields are bundled together to
     * support correct termination triggering.  Note: activeCount
     * CAS'es cheat by assuming active count is in low word, so need
     * to be modified if this changes
     */
    private volatile int runControl;

    // RunState values. Order among values matters
    private static final int RUNNING     = 0;
    private static final int SHUTDOWN    = 1;
    private static final int TERMINATING = 2;
    private static final int TERMINATED  = 3;

    private static int runStateOf(int c)             { return c >>> 16; }
    private static int activeCountOf(int c)          { return c & shortMask; }
    private static int runControlFor(int r, int a)   { return (r << 16) + a; }

    /**
     * Tries incrementing active count; fails on contention.
     * Called by workers before/during executing tasks.
     *
     * @return true on success
     */
    final boolean tryIncrementActiveCount() {
        int c = runControl;
        return casRunControl(c, c+1);
    }

    /**
     * Tries decrementing active count; fails on contention.
     * Possibly triggers termination on success.
     * Called by workers when they can't find tasks.
     *
     * @return true on success
     */
    final boolean tryDecrementActiveCount() {
        int c = runControl;
        int nextc = c - 1;
        if (!casRunControl(c, nextc))
            return false;
        if (canTerminateOnShutdown(nextc))
            terminateOnShutdown();
        return true;
    }

    /**
     * Returns {@code true} if argument represents zero active count
     * and nonzero runstate, which is the triggering condition for
     * terminating on shutdown.
     */
    private static boolean canTerminateOnShutdown(int c) {
        // i.e. least bit is nonzero runState bit
        return ((c & -c) >>> 16) != 0;
    }

    /**
     * Transition run state to at least the given state. Return true
     * if not already at least given state.
     */
    private boolean transitionRunStateTo(int state) {
        for (;;) {
            int c = runControl;
            if (runStateOf(c) >= state)
                return false;
            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
                return true;
        }
    }

    /**
     * Controls whether to add spares to maintain parallelism
     */
    private volatile boolean maintainsParallelism;

    // Constructors

    /**
     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
     * #defaultForkJoinWorkerThreadFactory default thread factory}.
     *
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public ForkJoinPool() {
        this(Runtime.getRuntime().availableProcessors(),
             defaultForkJoinWorkerThreadFactory);
    }

    /**
     * Creates a {@code ForkJoinPool} with the indicated parallelism
     * level and using the {@linkplain
     * #defaultForkJoinWorkerThreadFactory default thread factory}.
     *
     * @param parallelism the parallelism level
     * @throws IllegalArgumentException if parallelism less than or
     *         equal to zero, or greater than implementation limit
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public ForkJoinPool(int parallelism) {
        this(parallelism, defaultForkJoinWorkerThreadFactory);
    }

    /**
     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
     * java.lang.Runtime#availableProcessors}, and using the given
     * thread factory.
     *
     * @param factory the factory for creating new threads
     * @throws NullPointerException if the factory is null
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
        this(Runtime.getRuntime().availableProcessors(), factory);
    }

    /**
     * Creates a {@code ForkJoinPool} with the given parallelism and
     * thread factory.
     *
     * @param parallelism the parallelism level
     * @param factory the factory for creating new threads
     * @throws IllegalArgumentException if parallelism less than or
     *         equal to zero, or greater than implementation limit
     * @throws NullPointerException if the factory is null
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
        if (parallelism <= 0 || parallelism > MAX_THREADS)
            throw new IllegalArgumentException();
        if (factory == null)
            throw new NullPointerException();
        checkPermission();
        this.factory = factory;
        this.parallelism = parallelism;
        this.maxPoolSize = MAX_THREADS;
        this.maintainsParallelism = true;
        this.poolNumber = poolNumberGenerator.incrementAndGet();
        this.workerLock = new ReentrantLock();
        this.termination = workerLock.newCondition();
        this.stealCount = new AtomicLong();
        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
        // worker array and workers are lazily constructed
    }

    /**
     * Creates a new worker thread using factory.
     *
     * @param index the index to assign worker
     * @return new worker, or null if factory failed
     */
    private ForkJoinWorkerThread createWorker(int index) {
        Thread.UncaughtExceptionHandler h = ueh;
        ForkJoinWorkerThread w = factory.newThread(this);
        if (w != null) {
            w.poolIndex = index;
            w.setDaemon(true);
            w.setAsyncMode(locallyFifo);
            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
            if (h != null)
                w.setUncaughtExceptionHandler(h);
        }
        return w;
    }

    /**
     * Returns a good size for worker array given pool size.
     * Currently requires size to be a power of two.
     */
    private static int arraySizeFor(int poolSize) {
        if (poolSize <= 1)
            return 1;
        // See Hackers Delight, sec 3.2
        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
        c |= c >>>  1;
        c |= c >>>  2;
        c |= c >>>  4;
        c |= c >>>  8;
        c |= c >>> 16;
        return c + 1;
    }

    /**
     * Creates or resizes array if necessary to hold newLength.
     * Call only under exclusion.
     *
     * @return the array
     */
    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
        ForkJoinWorkerThread[] ws = workers;
        if (ws == null)
            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
        else if (newLength > ws.length)
            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
        else
            return ws;
    }

    /**
     * Tries to shrink workers into smaller array after one or more terminate.
     */
    private void tryShrinkWorkerArray() {
        ForkJoinWorkerThread[] ws = workers;
        if (ws != null) {
            int len = ws.length;
            int last = len - 1;
            while (last >= 0 && ws[last] == null)
                --last;
            int newLength = arraySizeFor(last+1);
            if (newLength < len)
                workers = Arrays.copyOf(ws, newLength);
        }
    }

    /**
     * Initializes workers if necessary.
     */
    final void ensureWorkerInitialization() {
        ForkJoinWorkerThread[] ws = workers;
        if (ws == null) {
            final ReentrantLock lock = this.workerLock;
            lock.lock();
            try {
                ws = workers;
                if (ws == null) {
                    int ps = parallelism;
                    ws = ensureWorkerArrayCapacity(ps);
                    for (int i = 0; i < ps; ++i) {
                        ForkJoinWorkerThread w = createWorker(i);
                        if (w != null) {
                            ws[i] = w;
                            w.start();
                            updateWorkerCount(1);
                        }
                    }
                }
            } finally {
                lock.unlock();
            }
        }
    }

    /**
     * Worker creation and startup for threads added via setParallelism.
     */
    private void createAndStartAddedWorkers() {
        resumeAllSpares();  // Allow spares to convert to nonspare
        int ps = parallelism;
        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
        int len = ws.length;
        // Sweep through slots, to keep lowest indices most populated
        int k = 0;
        while (k < len) {
            if (ws[k] != null) {
                ++k;
                continue;
            }
            int s = workerCounts;
            int tc = totalCountOf(s);
            int rc = runningCountOf(s);
            if (rc >= ps || tc >= ps)
                break;
            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
                ForkJoinWorkerThread w = createWorker(k);
                if (w != null) {
                    ws[k++] = w;
                    w.start();
                }
                else {
                    updateWorkerCount(-1); // back out on failed creation
                    break;
                }
            }
        }
    }

    // Execution methods

    /**
     * Common code for execute, invoke and submit
     */
    private <T> void doSubmit(ForkJoinTask<T> task) {
        if (task == null)
            throw new NullPointerException();
        if (isShutdown())
            throw new RejectedExecutionException();
        if (workers == null)
            ensureWorkerInitialization();
        submissionQueue.offer(task);
        signalIdleWorkers();
    }

    /**
     * Performs the given task, returning its result upon completion.
     *
     * @param task the task
     * @return the task's result
     * @throws NullPointerException if the task is null
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     */
    public <T> T invoke(ForkJoinTask<T> task) {
        doSubmit(task);
        return task.join();
    }

    /**
     * Arranges for (asynchronous) execution of the given task.
     *
     * @param task the task
     * @throws NullPointerException if the task is null
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     */
    public void execute(ForkJoinTask<?> task) {
        doSubmit(task);
    }

    // AbstractExecutorService methods

    /**
     * @throws NullPointerException if the task is null
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     */
    public void execute(Runnable task) {
        ForkJoinTask<?> job;
        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
            job = (ForkJoinTask<?>) task;
        else
            job = ForkJoinTask.adapt(task, null);
        doSubmit(job);
    }

    /**
     * @throws NullPointerException if the task is null
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     */
    public <T> ForkJoinTask<T> submit(Callable<T> task) {
        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
        doSubmit(job);
        return job;
    }

    /**
     * @throws NullPointerException if the task is null
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     */
    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
        doSubmit(job);
        return job;
    }

    /**
     * @throws NullPointerException if the task is null
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     */
    public ForkJoinTask<?> submit(Runnable task) {
        ForkJoinTask<?> job;
        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
            job = (ForkJoinTask<?>) task;
        else
            job = ForkJoinTask.adapt(task, null);
        doSubmit(job);
        return job;
    }

    /**
     * Submits a ForkJoinTask for execution.
     *
     * @param task the task to submit
     * @return the task
     * @throws NullPointerException if the task is null
     * @throws RejectedExecutionException if the task cannot be
     *         scheduled for execution
     */
    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
        doSubmit(task);
        return task;
    }


    /**
     * @throws NullPointerException       {@inheritDoc}
     * @throws RejectedExecutionException {@inheritDoc}
     */
    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
        ArrayList<ForkJoinTask<T>> forkJoinTasks =
            new ArrayList<ForkJoinTask<T>>(tasks.size());
        for (Callable<T> task : tasks)
            forkJoinTasks.add(ForkJoinTask.adapt(task));
        invoke(new InvokeAll<T>(forkJoinTasks));

        @SuppressWarnings({"unchecked", "rawtypes"})
        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
        return futures;
    }

    static final class InvokeAll<T> extends RecursiveAction {
        final ArrayList<ForkJoinTask<T>> tasks;
        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
        public void compute() {
            try { invokeAll(tasks); }
            catch (Exception ignore) {}
        }
        private static final long serialVersionUID = -7914297376763021607L;
    }

    // Configuration and status settings and queries

    /**
     * Returns the factory used for constructing new workers.
     *
     * @return the factory used for constructing new workers
     */
    public ForkJoinWorkerThreadFactory getFactory() {
        return factory;
    }

    /**
     * Returns the handler for internal worker threads that terminate
     * due to unrecoverable errors encountered while executing tasks.
     *
     * @return the handler, or {@code null} if none
     */
    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
        Thread.UncaughtExceptionHandler h;
        final ReentrantLock lock = this.workerLock;
        lock.lock();
        try {
            h = ueh;
        } finally {
            lock.unlock();
        }
        return h;
    }

    /**
     * Sets the handler for internal worker threads that terminate due
     * to unrecoverable errors encountered while executing tasks.
     * Unless set, the current default or ThreadGroup handler is used
     * as handler.
     *
     * @param h the new handler
     * @return the old handler, or {@code null} if none
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public Thread.UncaughtExceptionHandler
        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
        checkPermission();
        Thread.UncaughtExceptionHandler old = null;
        final ReentrantLock lock = this.workerLock;
        lock.lock();
        try {
            old = ueh;
            ueh = h;
            ForkJoinWorkerThread[] ws = workers;
            if (ws != null) {
                for (int i = 0; i < ws.length; ++i) {
                    ForkJoinWorkerThread w = ws[i];
                    if (w != null)
                        w.setUncaughtExceptionHandler(h);
                }
            }
        } finally {
            lock.unlock();
        }
        return old;
    }


    /**
     * Sets the target parallelism level of this pool.
     *
     * @param parallelism the target parallelism
     * @throws IllegalArgumentException if parallelism less than or
     * equal to zero or greater than maximum size bounds
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public void setParallelism(int parallelism) {
        checkPermission();
        if (parallelism <= 0 || parallelism > maxPoolSize)
            throw new IllegalArgumentException();
        final ReentrantLock lock = this.workerLock;
        lock.lock();
        try {
            if (isProcessingTasks()) {
                int p = this.parallelism;
                this.parallelism = parallelism;
                if (parallelism > p)
                    createAndStartAddedWorkers();
                else
                    trimSpares();
            }
        } finally {
            lock.unlock();
        }
        signalIdleWorkers();
    }

    /**
     * Returns the targeted parallelism level of this pool.
     *
     * @return the targeted parallelism level of this pool
     */
    public int getParallelism() {
        return parallelism;
    }

    /**
     * Returns the number of worker threads that have started but not
     * yet terminated.  This result returned by this method may differ
     * from {@link #getParallelism} when threads are created to
     * maintain parallelism when others are cooperatively blocked.
     *
     * @return the number of worker threads
     */
    public int getPoolSize() {
        return totalCountOf(workerCounts);
    }

    /**
     * Returns the maximum number of threads allowed to exist in the
     * pool. Unless set using {@link #setMaximumPoolSize}, the
     * maximum is an implementation-defined value designed only to
     * prevent runaway growth.
     *
     * @return the maximum
     */
    public int getMaximumPoolSize() {
        return maxPoolSize;
    }

    /**
     * Sets the maximum number of threads allowed to exist in the
     * pool. The given value should normally be greater than or equal
     * to the {@link #getParallelism parallelism} level. Setting this
     * value has no effect on current pool size. It controls
     * construction of new threads.
     *
     * @throws IllegalArgumentException if negative or greater than
     * internal implementation limit
     */
    public void setMaximumPoolSize(int newMax) {
        if (newMax < 0 || newMax > MAX_THREADS)
            throw new IllegalArgumentException();
        maxPoolSize = newMax;
    }


    /**
     * Returns {@code true} if this pool dynamically maintains its
     * target parallelism level. If false, new threads are added only
     * to avoid possible starvation.  This setting is by default true.
     *
     * @return {@code true} if maintains parallelism
     */
    public boolean getMaintainsParallelism() {
        return maintainsParallelism;
    }

    /**
     * Sets whether this pool dynamically maintains its target
     * parallelism level. If false, new threads are added only to
     * avoid possible starvation.
     *
     * @param enable {@code true} to maintain parallelism
     */
    public void setMaintainsParallelism(boolean enable) {
        maintainsParallelism = enable;
    }

    /**
     * Establishes local first-in-first-out scheduling mode for forked
     * tasks that are never joined. This mode may be more appropriate
     * than default locally stack-based mode in applications in which
     * worker threads only process asynchronous tasks.  This method is
     * designed to be invoked only when the pool is quiescent, and
     * typically only before any tasks are submitted. The effects of
     * invocations at other times may be unpredictable.
     *
     * @param async if {@code true}, use locally FIFO scheduling
     * @return the previous mode
     * @see #getAsyncMode
     */
    public boolean setAsyncMode(boolean async) {
        boolean oldMode = locallyFifo;
        locallyFifo = async;
        ForkJoinWorkerThread[] ws = workers;
        if (ws != null) {
            for (int i = 0; i < ws.length; ++i) {
                ForkJoinWorkerThread t = ws[i];
                if (t != null)
                    t.setAsyncMode(async);
            }
        }
        return oldMode;
    }

    /**
     * Returns {@code true} if this pool uses local first-in-first-out
     * scheduling mode for forked tasks that are never joined.
     *
     * @return {@code true} if this pool uses async mode
     * @see #setAsyncMode
     */
    public boolean getAsyncMode() {
        return locallyFifo;
    }

    /**
     * Returns an estimate of the number of worker threads that are
     * not blocked waiting to join tasks or for other managed
     * synchronization.
     *
     * @return the number of worker threads
     */
    public int getRunningThreadCount() {
        return runningCountOf(workerCounts);
    }

    /**
     * Returns an estimate of the number of threads that are currently
     * stealing or executing tasks. This method may overestimate the
     * number of active threads.
     *
     * @return the number of active threads
     */
    public int getActiveThreadCount() {
        return activeCountOf(runControl);
    }

    /**
     * Returns an estimate of the number of threads that are currently
     * idle waiting for tasks. This method may underestimate the
     * number of idle threads.
     *
     * @return the number of idle threads
     */
    final int getIdleThreadCount() {
        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
        return (c <= 0) ? 0 : c;
    }

    /**
     * Returns {@code true} if all worker threads are currently idle.
     * An idle worker is one that cannot obtain a task to execute
     * because none are available to steal from other threads, and
     * there are no pending submissions to the pool. This method is
     * conservative; it might not return {@code true} immediately upon
     * idleness of all threads, but will eventually become true if
     * threads remain inactive.
     *
     * @return {@code true} if all threads are currently idle
     */
    public boolean isQuiescent() {
        return activeCountOf(runControl) == 0;
    }

    /**
     * Returns an estimate of the total number of tasks stolen from
     * one thread's work queue by another. The reported value
     * underestimates the actual total number of steals when the pool
     * is not quiescent. This value may be useful for monitoring and
     * tuning fork/join programs: in general, steal counts should be
     * high enough to keep threads busy, but low enough to avoid
     * overhead and contention across threads.
     *
     * @return the number of steals
     */
    public long getStealCount() {
        return stealCount.get();
    }

    /**
     * Accumulates steal count from a worker.
     * Call only when worker known to be idle.
     */
    private void updateStealCount(ForkJoinWorkerThread w) {
        int sc = w.getAndClearStealCount();
        if (sc != 0)
            stealCount.addAndGet(sc);
    }

    /**
     * Returns an estimate of the total number of tasks currently held
     * in queues by worker threads (but not including tasks submitted
     * to the pool that have not begun executing). This value is only
     * an approximation, obtained by iterating across all threads in
     * the pool. This method may be useful for tuning task
     * granularities.
     *
     * @return the number of queued tasks
     */
    public long getQueuedTaskCount() {
        long count = 0;
        ForkJoinWorkerThread[] ws = workers;
        if (ws != null) {
            for (int i = 0; i < ws.length; ++i) {
                ForkJoinWorkerThread t = ws[i];
                if (t != null)
                    count += t.getQueueSize();
            }
        }
        return count;
    }

    /**
     * Returns an estimate of the number of tasks submitted to this
     * pool that have not yet begun executing.  This method takes time
     * proportional to the number of submissions.
     *
     * @return the number of queued submissions
     */
    public int getQueuedSubmissionCount() {
        return submissionQueue.size();
    }

    /**
     * Returns {@code true} if there are any tasks submitted to this
     * pool that have not yet begun executing.
     *
     * @return {@code true} if there are any queued submissions
     */
    public boolean hasQueuedSubmissions() {
        return !submissionQueue.isEmpty();
    }

    /**
     * Removes and returns the next unexecuted submission if one is
     * available.  This method may be useful in extensions to this
     * class that re-assign work in systems with multiple pools.
     *
     * @return the next submission, or {@code null} if none
     */
    protected ForkJoinTask<?> pollSubmission() {
        return submissionQueue.poll();
    }

    /**
     * Removes all available unexecuted submitted and forked tasks
     * from scheduling queues and adds them to the given collection,
     * without altering their execution status. These may include
     * artificially generated or wrapped tasks. This method is
     * designed to be invoked only when the pool is known to be
     * quiescent. Invocations at other times may not remove all
     * tasks. A failure encountered while attempting to add elements
     * to collection {@code c} may result in elements being in
     * neither, either or both collections when the associated
     * exception is thrown.  The behavior of this operation is
     * undefined if the specified collection is modified while the
     * operation is in progress.
     *
     * @param c the collection to transfer elements into
     * @return the number of elements transferred
     */
    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
        int n = submissionQueue.drainTo(c);
        ForkJoinWorkerThread[] ws = workers;
        if (ws != null) {
            for (int i = 0; i < ws.length; ++i) {
                ForkJoinWorkerThread w = ws[i];
                if (w != null)
                    n += w.drainTasksTo(c);
            }
        }
        return n;
    }

    /**
     * Returns a string identifying this pool, as well as its state,
     * including indications of run state, parallelism level, and
     * worker and task counts.
     *
     * @return a string identifying this pool, as well as its state
     */
    public String toString() {
        int ps = parallelism;
        int wc = workerCounts;
        int rc = runControl;
        long st = getStealCount();
        long qt = getQueuedTaskCount();
        long qs = getQueuedSubmissionCount();
        return super.toString() +
            "[" + runStateToString(runStateOf(rc)) +
            ", parallelism = " + ps +
            ", size = " + totalCountOf(wc) +
            ", active = " + activeCountOf(rc) +
            ", running = " + runningCountOf(wc) +
            ", steals = " + st +
            ", tasks = " + qt +
            ", submissions = " + qs +
            "]";
    }

    private static String runStateToString(int rs) {
        switch(rs) {
        case RUNNING: return "Running";
        case SHUTDOWN: return "Shutting down";
        case TERMINATING: return "Terminating";
        case TERMINATED: return "Terminated";
        default: throw new Error("Unknown run state");
        }
    }

    // lifecycle control

    /**
     * Initiates an orderly shutdown in which previously submitted
     * tasks are executed, but no new tasks will be accepted.
     * Invocation has no additional effect if already shut down.
     * Tasks that are in the process of being submitted concurrently
     * during the course of this method may or may not be rejected.
     *
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public void shutdown() {
        checkPermission();
        transitionRunStateTo(SHUTDOWN);
        if (canTerminateOnShutdown(runControl)) {
            if (workers == null) { // shutting down before workers created
                final ReentrantLock lock = this.workerLock;
                lock.lock();
                try {
                    if (workers == null) {
                        terminate();
                        transitionRunStateTo(TERMINATED);
                        termination.signalAll();
                    }
                } finally {
                    lock.unlock();
                }
            }
            terminateOnShutdown();
        }
    }

    /**
     * Attempts to cancel and/or stop all tasks, and reject all
     * subsequently submitted tasks.  Tasks that are in the process of
     * being submitted or executed concurrently during the course of
     * this method may or may not be rejected. This method cancels
     * both existing and unexecuted tasks, in order to permit
     * termination in the presence of task dependencies. So the method
     * always returns an empty list (unlike the case for some other
     * Executors).
     *
     * @return an empty list
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public List<Runnable> shutdownNow() {
        checkPermission();
        terminate();
        return Collections.emptyList();
    }

    /**
     * Returns {@code true} if all tasks have completed following shut down.
     *
     * @return {@code true} if all tasks have completed following shut down
     */
    public boolean isTerminated() {
        return runStateOf(runControl) == TERMINATED;
    }

    /**
     * Returns {@code true} if the process of termination has
     * commenced but not yet completed.  This method may be useful for
     * debugging. A return of {@code true} reported a sufficient
     * period after shutdown may indicate that submitted tasks have
     * ignored or suppressed interruption, causing this executor not
     * to properly terminate.
     *
     * @return {@code true} if terminating but not yet terminated
     */
    public boolean isTerminating() {
        return runStateOf(runControl) == TERMINATING;
    }

    /**
     * Returns {@code true} if this pool has been shut down.
     *
     * @return {@code true} if this pool has been shut down
     */
    public boolean isShutdown() {
        return runStateOf(runControl) >= SHUTDOWN;
    }

    /**
     * Returns true if pool is not terminating or terminated.
     * Used internally to suppress execution when terminating.
     */
    final boolean isProcessingTasks() {
        return runStateOf(runControl) < TERMINATING;
    }

    /**
     * Blocks until all tasks have completed execution after a shutdown
     * request, or the timeout occurs, or the current thread is
     * interrupted, whichever happens first.
     *
     * @param timeout the maximum time to wait
     * @param unit the time unit of the timeout argument
     * @return {@code true} if this executor terminated and
     *         {@code false} if the timeout elapsed before termination
     * @throws InterruptedException if interrupted while waiting
     */
    public boolean awaitTermination(long timeout, TimeUnit unit)
        throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.workerLock;
        lock.lock();
        try {
            for (;;) {
                if (isTerminated())
                    return true;
                if (nanos <= 0)
                    return false;
                nanos = termination.awaitNanos(nanos);
            }
        } finally {
            lock.unlock();
        }
    }

    // Shutdown and termination support

    /**
     * Callback from terminating worker. Nulls out the corresponding
     * workers slot, and if terminating, tries to terminate; else
     * tries to shrink workers array.
     *
     * @param w the worker
     */
    final void workerTerminated(ForkJoinWorkerThread w) {
        updateStealCount(w);
        updateWorkerCount(-1);
        final ReentrantLock lock = this.workerLock;
        lock.lock();
        try {
            ForkJoinWorkerThread[] ws = workers;
            if (ws != null) {
                int idx = w.poolIndex;
                if (idx >= 0 && idx < ws.length && ws[idx] == w)
                    ws[idx] = null;
                if (totalCountOf(workerCounts) == 0) {
                    terminate(); // no-op if already terminating
                    transitionRunStateTo(TERMINATED);
                    termination.signalAll();
                }
                else if (isProcessingTasks()) {
                    tryShrinkWorkerArray();
                    tryResumeSpare(true); // allow replacement
                }
            }
        } finally {
            lock.unlock();
        }
        signalIdleWorkers();
    }

    /**
     * Initiates termination.
     */
    private void terminate() {
        if (transitionRunStateTo(TERMINATING)) {
            stopAllWorkers();
            resumeAllSpares();
            signalIdleWorkers();
            cancelQueuedSubmissions();
            cancelQueuedWorkerTasks();
            interruptUnterminatedWorkers();
            signalIdleWorkers(); // resignal after interrupt
        }
    }

    /**
     * Possibly terminates when on shutdown state.
     */
    private void terminateOnShutdown() {
        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
            terminate();
    }

    /**
     * Clears out and cancels submissions.
     */
    private void cancelQueuedSubmissions() {
        ForkJoinTask<?> task;
        while ((task = pollSubmission()) != null)
            task.cancel(false);
    }

    /**
     * Cleans out worker queues.
     */
    private void cancelQueuedWorkerTasks() {
        final ReentrantLock lock = this.workerLock;
        lock.lock();
        try {
            ForkJoinWorkerThread[] ws = workers;
            if (ws != null) {
                for (int i = 0; i < ws.length; ++i) {
                    ForkJoinWorkerThread t = ws[i];
                    if (t != null)
                        t.cancelTasks();
                }
            }
        } finally {
            lock.unlock();
        }
    }

    /**
     * Sets each worker's status to terminating. Requires lock to avoid
     * conflicts with add/remove.
     */
    private void stopAllWorkers() {
        final ReentrantLock lock = this.workerLock;
        lock.lock();
        try {
            ForkJoinWorkerThread[] ws = workers;
            if (ws != null) {
                for (int i = 0; i < ws.length; ++i) {
                    ForkJoinWorkerThread t = ws[i];
                    if (t != null)
                        t.shutdownNow();
                }
            }
        } finally {
            lock.unlock();
        }
    }

    /**
     * Interrupts all unterminated workers.  This is not required for
     * sake of internal control, but may help unstick user code during
     * shutdown.
     */
    private void interruptUnterminatedWorkers() {
        final ReentrantLock lock = this.workerLock;
        lock.lock();
        try {
            ForkJoinWorkerThread[] ws = workers;
            if (ws != null) {
                for (int i = 0; i < ws.length; ++i) {
                    ForkJoinWorkerThread t = ws[i];
                    if (t != null && !t.isTerminated()) {
                        try {
                            t.interrupt();
                        } catch (SecurityException ignore) {
                        }
                    }
                }
            }
        } finally {
            lock.unlock();
        }
    }


    /*
     * Nodes for event barrier to manage idle threads.  Queue nodes
     * are basic Treiber stack nodes, also used for spare stack.
     *
     * The event barrier has an event count and a wait queue (actually
     * a Treiber stack).  Workers are enabled to look for work when
     * the eventCount is incremented. If they fail to find work, they
     * may wait for next count. Upon release, threads help others wake
     * up.
     *
     * Synchronization events occur only in enough contexts to
     * maintain overall liveness:
     *
     *   - Submission of a new task to the pool
     *   - Resizes or other changes to the workers array
     *   - pool termination
     *   - A worker pushing a task on an empty queue
     *
     * The case of pushing a task occurs often enough, and is heavy
     * enough compared to simple stack pushes, to require special
     * handling: Method signalWork returns without advancing count if
     * the queue appears to be empty.  This would ordinarily result in
     * races causing some queued waiters not to be woken up. To avoid
     * this, the first worker enqueued in method sync (see
     * syncIsReleasable) rescans for tasks after being enqueued, and
     * helps signal if any are found. This works well because the
     * worker has nothing better to do, and so might as well help
     * alleviate the overhead and contention on the threads actually
     * doing work.  Also, since event counts increments on task
     * availability exist to maintain liveness (rather than to force
     * refreshes etc), it is OK for callers to exit early if
     * contending with another signaller.
     */
    static final class WaitQueueNode {
        WaitQueueNode next; // only written before enqueued
        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
        final long count; // unused for spare stack

        WaitQueueNode(long c, ForkJoinWorkerThread w) {
            count = c;
            thread = w;
        }

        /**
         * Wakes up waiter, returning false if known to already
         */
        boolean signal() {
            ForkJoinWorkerThread t = thread;
            if (t == null)
                return false;
            thread = null;
            LockSupport.unpark(t);
            return true;
        }

        /**
         * Awaits release on sync.
         */
        void awaitSyncRelease(ForkJoinPool p) {
            while (thread != null && !p.syncIsReleasable(this))
                LockSupport.park(this);
        }

        /**
         * Awaits resumption as spare.
         */
        void awaitSpareRelease() {
            while (thread != null) {
                if (!Thread.interrupted())
                    LockSupport.park(this);
            }
        }
    }

    /**
     * Ensures that no thread is waiting for count to advance from the
     * current value of eventCount read on entry to this method, by
     * releasing waiting threads if necessary.
     *
     * @return the count
     */
    final long ensureSync() {
        long c = eventCount;
        WaitQueueNode q;
        while ((q = syncStack) != null && q.count < c) {
            if (casBarrierStack(q, null)) {
                do {
                    q.signal();
                } while ((q = q.next) != null);
                break;
            }
        }
        return c;
    }

    /**
     * Increments event count and releases waiting threads.
     */
    private void signalIdleWorkers() {
        long c;
        do {} while (!casEventCount(c = eventCount, c+1));
        ensureSync();
    }

    /**
     * Signals threads waiting to poll a task. Because method sync
     * rechecks availability, it is OK to only proceed if queue
     * appears to be non-empty, and OK to skip under contention to
     * increment count (since some other thread succeeded).
     */
    final void signalWork() {
        long c;
        WaitQueueNode q;
        if (syncStack != null &&
            casEventCount(c = eventCount, c+1) &&
            (((q = syncStack) != null && q.count <= c) &&
             (!casBarrierStack(q, q.next) || !q.signal())))
            ensureSync();
    }

    /**
     * Waits until event count advances from last value held by
     * caller, or if excess threads, caller is resumed as spare, or
     * caller or pool is terminating. Updates caller's event on exit.
     *
     * @param w the calling worker thread
     */
    final void sync(ForkJoinWorkerThread w) {
        updateStealCount(w); // Transfer w's count while it is idle

        while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
            long prev = w.lastEventCount;
            WaitQueueNode node = null;
            WaitQueueNode h;
            while (eventCount == prev &&
                   ((h = syncStack) == null || h.count == prev)) {
                if (node == null)
                    node = new WaitQueueNode(prev, w);
                if (casBarrierStack(node.next = h, node)) {
                    node.awaitSyncRelease(this);
                    break;
                }
            }
            long ec = ensureSync();
            if (ec != prev) {
                w.lastEventCount = ec;
                break;
            }
        }
    }

    /**
     * Returns {@code true} if worker waiting on sync can proceed:
     *  - on signal (thread == null)
     *  - on event count advance (winning race to notify vs signaller)
     *  - on interrupt
     *  - if the first queued node, we find work available
     * If node was not signalled and event count not advanced on exit,
     * then we also help advance event count.
     *
     * @return {@code true} if node can be released
     */
    final boolean syncIsReleasable(WaitQueueNode node) {
        long prev = node.count;
        if (!Thread.interrupted() && node.thread != null &&
            (node.next != null ||
             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
            eventCount == prev)
            return false;
        if (node.thread != null) {
            node.thread = null;
            long ec = eventCount;
            if (prev <= ec) // help signal
                casEventCount(ec, ec+1);
        }
        return true;
    }

    /**
     * Returns {@code true} if a new sync event occurred since last
     * call to sync or this method, if so, updating caller's count.
     */
    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
        long lc = w.lastEventCount;
        long ec = ensureSync();
        if (ec == lc)
            return false;
        w.lastEventCount = ec;
        return true;
    }

    //  Parallelism maintenance

    /**
     * Decrements running count; if too low, adds spare.
     *
     * Conceptually, all we need to do here is add or resume a
     * spare thread when one is about to block (and remove or
     * suspend it later when unblocked -- see suspendIfSpare).
     * However, implementing this idea requires coping with
     * several problems: we have imperfect information about the
     * states of threads. Some count updates can and usually do
     * lag run state changes, despite arrangements to keep them
     * accurate (for example, when possible, updating counts
     * before signalling or resuming), especially when running on
     * dynamic JVMs that don't optimize the infrequent paths that
     * update counts. Generating too many threads can make these
     * problems become worse, because excess threads are more
     * likely to be context-switched with others, slowing them all
     * down, especially if there is no work available, so all are
     * busy scanning or idling.  Also, excess spare threads can
     * only be suspended or removed when they are idle, not
     * immediately when they aren't needed. So adding threads will
     * raise parallelism level for longer than necessary.  Also,
     * FJ applications often encounter highly transient peaks when
     * many threads are blocked joining, but for less time than it
     * takes to create or resume spares.
     *
     * @param joinMe if non-null, return early if done
     * @param maintainParallelism if true, try to stay within
     * target counts, else create only to avoid starvation
     * @return true if joinMe known to be done
     */
    final boolean preJoin(ForkJoinTask<?> joinMe,
                          boolean maintainParallelism) {
        maintainParallelism &= maintainsParallelism; // overrride
        boolean dec = false;  // true when running count decremented
        while (spareStack == null || !tryResumeSpare(dec)) {
            int counts = workerCounts;
            if (dec || (dec = casWorkerCounts(counts, --counts))) {
                if (!needSpare(counts, maintainParallelism))
                    break;
                if (joinMe.status < 0)
                    return true;
                if (tryAddSpare(counts))
                    break;
            }
        }
        return false;
    }

    /**
     * Same idea as preJoin
     */
    final boolean preBlock(ManagedBlocker blocker,
                           boolean maintainParallelism) {
        maintainParallelism &= maintainsParallelism;
        boolean dec = false;
        while (spareStack == null || !tryResumeSpare(dec)) {
            int counts = workerCounts;
            if (dec || (dec = casWorkerCounts(counts, --counts))) {
                if (!needSpare(counts, maintainParallelism))
                    break;
                if (blocker.isReleasable())
                    return true;
                if (tryAddSpare(counts))
                    break;
            }
        }
        return false;
    }

    /**
     * Returns {@code true} if a spare thread appears to be needed.
     * If maintaining parallelism, returns true when the deficit in
     * running threads is more than the surplus of total threads, and
     * there is apparently some work to do.  This self-limiting rule
     * means that the more threads that have already been added, the
     * less parallelism we will tolerate before adding another.
     *
     * @param counts current worker counts
     * @param maintainParallelism try to maintain parallelism
     */
    private boolean needSpare(int counts, boolean maintainParallelism) {
        int ps = parallelism;
        int rc = runningCountOf(counts);
        int tc = totalCountOf(counts);
        int runningDeficit = ps - rc;
        int totalSurplus = tc - ps;
        return (tc < maxPoolSize &&
                (rc == 0 || totalSurplus < 0 ||
                 (maintainParallelism &&
                  runningDeficit > totalSurplus &&
                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
    }

    /**
     * Adds a spare worker if lock available and no more than the
     * expected numbers of threads exist.
     *
     * @return true if successful
     */
    private boolean tryAddSpare(int expectedCounts) {
        final ReentrantLock lock = this.workerLock;
        int expectedRunning = runningCountOf(expectedCounts);
        int expectedTotal = totalCountOf(expectedCounts);
        boolean success = false;
        boolean locked = false;
        // confirm counts while locking; CAS after obtaining lock
        try {
            for (;;) {
                int s = workerCounts;
                int tc = totalCountOf(s);
                int rc = runningCountOf(s);
                if (rc > expectedRunning || tc > expectedTotal)
                    break;
                if (!locked && !(locked = lock.tryLock()))
                    break;
                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
                    createAndStartSpare(tc);
                    success = true;
                    break;
                }
            }
        } finally {
            if (locked)
                lock.unlock();
        }
        return success;
    }

    /**
     * Adds the kth spare worker. On entry, pool counts are already
     * adjusted to reflect addition.
     */
    private void createAndStartSpare(int k) {
        ForkJoinWorkerThread w = null;
        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
        int len = ws.length;
        // Probably, we can place at slot k. If not, find empty slot
        if (k < len && ws[k] != null) {
            for (k = 0; k < len && ws[k] != null; ++k)
                ;
        }
        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
            ws[k] = w;
            w.start();
        }
        else
            updateWorkerCount(-1); // adjust on failure
        signalIdleWorkers();
    }

    /**
     * Suspends calling thread w if there are excess threads.  Called
     * only from sync.  Spares are enqueued in a Treiber stack using
     * the same WaitQueueNodes as barriers.  They are resumed mainly
     * in preJoin, but are also woken on pool events that require all
     * threads to check run state.
     *
     * @param w the caller
     */
    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
        WaitQueueNode node = null;
        int s;
        while (parallelism < runningCountOf(s = workerCounts)) {
            if (node == null)
                node = new WaitQueueNode(0, w);
            if (casWorkerCounts(s, s-1)) { // representation-dependent
                // push onto stack
                do {} while (!casSpareStack(node.next = spareStack, node));
                // block until released by resumeSpare
                node.awaitSpareRelease();
                return true;
            }
        }
        return false;
    }

    /**
     * Tries to pop and resume a spare thread.
     *
     * @param updateCount if true, increment running count on success
     * @return true if successful
     */
    private boolean tryResumeSpare(boolean updateCount) {
        WaitQueueNode q;
        while ((q = spareStack) != null) {
            if (casSpareStack(q, q.next)) {
                if (updateCount)
                    updateRunningCount(1);
                q.signal();
                return true;
            }
        }
        return false;
    }

    /**
     * Pops and resumes all spare threads. Same idea as ensureSync.
     *
     * @return true if any spares released
     */
    private boolean resumeAllSpares() {
        WaitQueueNode q;
        while ( (q = spareStack) != null) {
            if (casSpareStack(q, null)) {
                do {
                    updateRunningCount(1);
                    q.signal();
                } while ((q = q.next) != null);
                return true;
            }
        }
        return false;
    }

    /**
     * Pops and shuts down excessive spare threads. Call only while
     * holding lock. This is not guaranteed to eliminate all excess
     * threads, only those suspended as spares, which are the ones
     * unlikely to be needed in the future.
     */
    private void trimSpares() {
        int surplus = totalCountOf(workerCounts) - parallelism;
        WaitQueueNode q;
        while (surplus > 0 && (q = spareStack) != null) {
            if (casSpareStack(q, null)) {
                do {
                    updateRunningCount(1);
                    ForkJoinWorkerThread w = q.thread;
                    if (w != null && surplus > 0 &&
                        runningCountOf(workerCounts) > 0 && w.shutdown())
                        --surplus;
                    q.signal();
                } while ((q = q.next) != null);
            }
        }
    }

    /**
     * Interface for extending managed parallelism for tasks running
     * in {@link ForkJoinPool}s.
     *
     * <p>A {@code ManagedBlocker} provides two methods.
     * Method {@code isReleasable} must return {@code true} if
     * blocking is not necessary. Method {@code block} blocks the
     * current thread if necessary (perhaps internally invoking
     * {@code isReleasable} before actually blocking).
     *
     * <p>For example, here is a ManagedBlocker based on a
     * ReentrantLock:
     *  <pre> {@code
     * class ManagedLocker implements ManagedBlocker {
     *   final ReentrantLock lock;
     *   boolean hasLock = false;
     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
     *   public boolean block() {
     *     if (!hasLock)
     *       lock.lock();
     *     return true;
     *   }
     *   public boolean isReleasable() {
     *     return hasLock || (hasLock = lock.tryLock());
     *   }
     * }}</pre>
     */
    public static interface ManagedBlocker {
        /**
         * Possibly blocks the current thread, for example waiting for
         * a lock or condition.
         *
         * @return {@code true} if no additional blocking is necessary
         * (i.e., if isReleasable would return true)
         * @throws InterruptedException if interrupted while waiting
         * (the method is not required to do so, but is allowed to)
         */
        boolean block() throws InterruptedException;

        /**
         * Returns {@code true} if blocking is unnecessary.
         */
        boolean isReleasable();
    }

    /**
     * Blocks in accord with the given blocker.  If the current thread
     * is a {@link ForkJoinWorkerThread}, this method possibly
     * arranges for a spare thread to be activated if necessary to
     * ensure parallelism while the current thread is blocked.
     *
     * <p>If {@code maintainParallelism} is {@code true} and the pool
     * supports it ({@link #getMaintainsParallelism}), this method
     * attempts to maintain the pool's nominal parallelism. Otherwise
     * it activates a thread only if necessary to avoid complete
     * starvation. This option may be preferable when blockages use
     * timeouts, or are almost always brief.
     *
     * <p>If the caller is not a {@link ForkJoinTask}, this method is
     * behaviorally equivalent to
     *  <pre> {@code
     * while (!blocker.isReleasable())
     *   if (blocker.block())
     *     return;
     * }</pre>
     *
     * If the caller is a {@code ForkJoinTask}, then the pool may
     * first be expanded to ensure parallelism, and later adjusted.
     *
     * @param blocker the blocker
     * @param maintainParallelism if {@code true} and supported by
     * this pool, attempt to maintain the pool's nominal parallelism;
     * otherwise activate a thread only if necessary to avoid
     * complete starvation.
     * @throws InterruptedException if blocker.block did so
     */
    public static void managedBlock(ManagedBlocker blocker,
                                    boolean maintainParallelism)
        throws InterruptedException {
        Thread t = Thread.currentThread();
        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
                             ((ForkJoinWorkerThread) t).pool : null);
        if (!blocker.isReleasable()) {
            try {
                if (pool == null ||
                    !pool.preBlock(blocker, maintainParallelism))
                    awaitBlocker(blocker);
            } finally {
                if (pool != null)
                    pool.updateRunningCount(1);
            }
        }
    }

    private static void awaitBlocker(ManagedBlocker blocker)
        throws InterruptedException {
        do {} while (!blocker.isReleasable() && !blocker.block());
    }

    // AbstractExecutorService overrides.  These rely on undocumented
    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
    // implement RunnableFuture.

    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
    }

    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
    }

    // Unsafe mechanics

    private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
    private static final long eventCountOffset =
        objectFieldOffset("eventCount", ForkJoinPool.class);
    private static final long workerCountsOffset =
        objectFieldOffset("workerCounts", ForkJoinPool.class);
    private static final long runControlOffset =
        objectFieldOffset("runControl", ForkJoinPool.class);
    private static final long syncStackOffset =
        objectFieldOffset("syncStack",ForkJoinPool.class);
    private static final long spareStackOffset =
        objectFieldOffset("spareStack", ForkJoinPool.class);

    private boolean casEventCount(long cmp, long val) {
        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
    }
    private boolean casWorkerCounts(int cmp, int val) {
        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
    }
    private boolean casRunControl(int cmp, int val) {
        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
    }
    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
    }
    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
    }

    private static long objectFieldOffset(String field, Class<?> klazz) {
        try {
            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
        } catch (NoSuchFieldException e) {
            // Convert Exception to corresponding Error
            NoSuchFieldError error = new NoSuchFieldError(field);
            error.initCause(e);
            throw error;
        }
    }
}