cmssm.c 19.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

// This file is available under and governed by the GNU General Public
// License version 2 only, as published by the Free Software Foundation.
// However, the following notice accompanied the original version of this
// file:
//
//---------------------------------------------------------------------------------
//
//  Little Color Management System
//  Copyright (c) 1998-2010 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//

#include "lcms2_internal.h"


// ------------------------------------------------------------------------

// Gamut boundary description by using Jan Morovic's Segment maxima method
// Many thanks to Jan for allowing me to use his algorithm.

// r = C*
// alpha = Hab
// theta = L*

#define SECTORS 16      // number of divisions in alpha and theta

// Spherical coordinates
typedef struct {

    cmsFloat64Number r;
    cmsFloat64Number alpha;
    cmsFloat64Number theta;

} cmsSpherical;

typedef  enum {
        GP_EMPTY,
        GP_SPECIFIED,
        GP_MODELED

    } GDBPointType;


typedef struct {

    GDBPointType Type;
    cmsSpherical p;         // Keep also alpha & theta of maximum

} cmsGDBPoint;


typedef struct {

    cmsContext ContextID;
    cmsGDBPoint Gamut[SECTORS][SECTORS];

} cmsGDB;


// A line using the parametric form
// P = a + t*u
typedef struct {

    cmsVEC3 a;
    cmsVEC3 u;

} cmsLine;


// A plane using the parametric form
// Q = b + r*v + s*w
typedef struct {

    cmsVEC3 b;
    cmsVEC3 v;
    cmsVEC3 w;

} cmsPlane;



// --------------------------------------------------------------------------------------------

// ATAN2() which always returns degree positive numbers

static
cmsFloat64Number _cmsAtan2(cmsFloat64Number y, cmsFloat64Number x)
{
    cmsFloat64Number a;

    // Deal with undefined case
    if (x == 0.0 && y == 0.0) return 0;

    a = (atan2(y, x) * 180.0) / M_PI;

    while (a < 0) {
        a += 360;
    }

    return a;
}

// Convert to spherical coordinates
static
void ToSpherical(cmsSpherical* sp, const cmsVEC3* v)
{

    cmsFloat64Number L, a, b;

    L = v ->n[VX];
    a = v ->n[VY];
    b = v ->n[VZ];

    sp ->r = sqrt( L*L + a*a + b*b );

   if (sp ->r == 0) {
        sp ->alpha = sp ->theta = 0;
        return;
    }

    sp ->alpha = _cmsAtan2(a, b);
    sp ->theta = _cmsAtan2(sqrt(a*a + b*b), L);
}


// Convert to cartesian from spherical
static
void ToCartesian(cmsVEC3* v, const cmsSpherical* sp)
{
    cmsFloat64Number sin_alpha;
    cmsFloat64Number cos_alpha;
    cmsFloat64Number sin_theta;
    cmsFloat64Number cos_theta;
    cmsFloat64Number L, a, b;

    sin_alpha = sin((M_PI * sp ->alpha) / 180.0);
    cos_alpha = cos((M_PI * sp ->alpha) / 180.0);
    sin_theta = sin((M_PI * sp ->theta) / 180.0);
    cos_theta = cos((M_PI * sp ->theta) / 180.0);

    a = sp ->r * sin_theta * sin_alpha;
    b = sp ->r * sin_theta * cos_alpha;
    L = sp ->r * cos_theta;

    v ->n[VX] = L;
    v ->n[VY] = a;
    v ->n[VZ] = b;
}


// Quantize sector of a spherical coordinate. Saturate 360, 180 to last sector
// The limits are the centers of each sector, so
static
void QuantizeToSector(const cmsSpherical* sp, int* alpha, int* theta)
{
    *alpha = (int) floor(((sp->alpha * (SECTORS)) / 360.0) );
    *theta = (int) floor(((sp->theta * (SECTORS)) / 180.0) );

    if (*alpha >= SECTORS)
        *alpha = SECTORS-1;
    if (*theta >= SECTORS)
        *theta = SECTORS-1;
}


// Line determined by 2 points
static
void LineOf2Points(cmsLine* line, cmsVEC3* a, cmsVEC3* b)
{

    _cmsVEC3init(&line ->a, a ->n[VX], a ->n[VY], a ->n[VZ]);
    _cmsVEC3init(&line ->u, b ->n[VX] - a ->n[VX],
                            b ->n[VY] - a ->n[VY],
                            b ->n[VZ] - a ->n[VZ]);
}


// Evaluate parametric line
static
void GetPointOfLine(cmsVEC3* p, const cmsLine* line, cmsFloat64Number t)
{
    p ->n[VX] = line ->a.n[VX] + t * line->u.n[VX];
    p ->n[VY] = line ->a.n[VY] + t * line->u.n[VY];
    p ->n[VZ] = line ->a.n[VZ] + t * line->u.n[VZ];
}



/*
    Closest point in sector line1 to sector line2 (both are defined as 0 <=t <= 1)
    http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.htm

    Copyright 2001, softSurfer (www.softsurfer.com)
    This code may be freely used and modified for any purpose
    providing that this copyright notice is included with it.
    SoftSurfer makes no warranty for this code, and cannot be held
    liable for any real or imagined damage resulting from its use.
    Users of this code must verify correctness for their application.

*/

static
cmsBool ClosestLineToLine(cmsVEC3* r, const cmsLine* line1, const cmsLine* line2)
{
    cmsFloat64Number a, b, c, d, e, D;
    cmsFloat64Number sc, sN, sD;
    cmsFloat64Number tc, tN, tD;
    cmsVEC3 w0;

    _cmsVEC3minus(&w0, &line1 ->a, &line2 ->a);

    a  = _cmsVEC3dot(&line1 ->u, &line1 ->u);
    b  = _cmsVEC3dot(&line1 ->u, &line2 ->u);
    c  = _cmsVEC3dot(&line2 ->u, &line2 ->u);
    d  = _cmsVEC3dot(&line1 ->u, &w0);
    e  = _cmsVEC3dot(&line2 ->u, &w0);

    D  = a*c - b * b;      // Denominator
    sD = tD = D;           // default sD = D >= 0

    if (D <  MATRIX_DET_TOLERANCE) {   // the lines are almost parallel

        sN = 0.0;        // force using point P0 on segment S1
        sD = 1.0;        // to prevent possible division by 0.0 later
        tN = e;
        tD = c;
    }
    else {                // get the closest points on the infinite lines

        sN = (b*e - c*d);
        tN = (a*e - b*d);

        if (sN < 0.0) {       // sc < 0 => the s=0 edge is visible

            sN = 0.0;
            tN = e;
            tD = c;
        }
        else if (sN > sD) {   // sc > 1 => the s=1 edge is visible
            sN = sD;
            tN = e + b;
            tD = c;
        }
    }

    if (tN < 0.0) {           // tc < 0 => the t=0 edge is visible

        tN = 0.0;
        // recompute sc for this edge
        if (-d < 0.0)
            sN = 0.0;
        else if (-d > a)
            sN = sD;
        else {
            sN = -d;
            sD = a;
        }
    }
    else if (tN > tD) {      // tc > 1 => the t=1 edge is visible

        tN = tD;

        // recompute sc for this edge
        if ((-d + b) < 0.0)
            sN = 0;
        else if ((-d + b) > a)
            sN = sD;
        else {
            sN = (-d + b);
            sD = a;
        }
    }
    // finally do the division to get sc and tc
    sc = (fabs(sN) < MATRIX_DET_TOLERANCE ? 0.0 : sN / sD);
    tc = (fabs(tN) < MATRIX_DET_TOLERANCE ? 0.0 : tN / tD);

    GetPointOfLine(r, line1, sc);
    return TRUE;
}



// ------------------------------------------------------------------ Wrapper


// Allocate & free structure
cmsHANDLE  CMSEXPORT cmsGBDAlloc(cmsContext ContextID)
{
    cmsGDB* gbd = (cmsGDB*) _cmsMallocZero(ContextID, sizeof(cmsGDB));
    if (gbd == NULL) return NULL;

    gbd -> ContextID = ContextID;

    return (cmsHANDLE) gbd;
}


void CMSEXPORT cmsGBDFree(cmsHANDLE hGBD)
{
    cmsGDB* gbd = (cmsGDB*) hGBD;
    if (hGBD != NULL)
        _cmsFree(gbd->ContextID, (void*) gbd);
}


// Auxiliar to retrieve a pointer to the segmentr containing the Lab value
static
cmsGDBPoint* GetPoint(cmsGDB* gbd, const cmsCIELab* Lab, cmsSpherical* sp)
{
    cmsVEC3 v;
    int alpha, theta;

    // Housekeeping
    _cmsAssert(gbd != NULL);
    _cmsAssert(Lab != NULL);
    _cmsAssert(sp != NULL);

    // Center L* by substracting half of its domain, that's 50
    _cmsVEC3init(&v, Lab ->L - 50.0, Lab ->a, Lab ->b);

    // Convert to spherical coordinates
    ToSpherical(sp, &v);

    if (sp ->r < 0 || sp ->alpha < 0 || sp->theta < 0) {
         cmsSignalError(gbd ->ContextID, cmsERROR_RANGE, "spherical value out of range");
         return NULL;
    }

    // On which sector it falls?
    QuantizeToSector(sp, &alpha, &theta);

    if (alpha < 0 || theta < 0 || alpha >= SECTORS || theta >= SECTORS) {
         cmsSignalError(gbd ->ContextID, cmsERROR_RANGE, " quadrant out of range");
         return NULL;
    }

    // Get pointer to the sector
    return &gbd ->Gamut[theta][alpha];
}

// Add a point to gamut descriptor. Point to add is in Lab color space.
// GBD is centered on a=b=0 and L*=50
cmsBool CMSEXPORT cmsGDBAddPoint(cmsHANDLE hGBD, const cmsCIELab* Lab)
{
    cmsGDB* gbd = (cmsGDB*) hGBD;
    cmsGDBPoint* ptr;
    cmsSpherical sp;


    // Get pointer to the sector
    ptr = GetPoint(gbd, Lab, &sp);
    if (ptr == NULL) return FALSE;

    // If no samples at this sector, add it
    if (ptr ->Type == GP_EMPTY) {

        ptr -> Type = GP_SPECIFIED;
        ptr -> p    = sp;
    }
    else {


        // Substitute only if radius is greater
        if (sp.r > ptr -> p.r) {

                ptr -> Type = GP_SPECIFIED;
                ptr -> p    = sp;
        }
    }

    return TRUE;
}

// Check if a given point falls inside gamut
cmsBool CMSEXPORT cmsGDBCheckPoint(cmsHANDLE hGBD, const cmsCIELab* Lab)
{
    cmsGDB* gbd = (cmsGDB*) hGBD;
    cmsGDBPoint* ptr;
    cmsSpherical sp;

    // Get pointer to the sector
    ptr = GetPoint(gbd, Lab, &sp);
    if (ptr == NULL) return FALSE;

    // If no samples at this sector, return no data
    if (ptr ->Type == GP_EMPTY) return FALSE;

    // In gamut only if radius is greater

    return (sp.r <= ptr -> p.r);
}

// -----------------------------------------------------------------------------------------------------------------------

// Find near sectors. The list of sectors found is returned on Close[].
// The function returns the number of sectors as well.

// 24   9  10  11  12
// 23   8   1   2  13
// 22   7   *   3  14
// 21   6   5   4  15
// 20  19  18  17  16
//
// Those are the relative movements
// {-2,-2}, {-1, -2}, {0, -2}, {+1, -2}, {+2,  -2},
// {-2,-1}, {-1, -1}, {0, -1}, {+1, -1}, {+2,  -1},
// {-2, 0}, {-1,  0}, {0,  0}, {+1,  0}, {+2,   0},
// {-2,+1}, {-1, +1}, {0, +1}, {+1,  +1}, {+2,  +1},
// {-2,+2}, {-1, +2}, {0, +2}, {+1,  +2}, {+2,  +2}};


static
const struct _spiral {

    int AdvX, AdvY;

    } Spiral[] = { {0,  -1}, {+1, -1}, {+1,  0}, {+1, +1}, {0,  +1}, {-1, +1},
                   {-1,  0}, {-1, -1}, {-1, -2}, {0,  -2}, {+1, -2}, {+2, -2},
                   {+2, -1}, {+2,  0}, {+2, +1}, {+2, +2}, {+1, +2}, {0,  +2},
                   {-1, +2}, {-2, +2}, {-2, +1}, {-2, 0},  {-2, -1}, {-2, -2} };

#define NSTEPS (sizeof(Spiral) / sizeof(struct _spiral))

static
int FindNearSectors(cmsGDB* gbd, int alpha, int theta, cmsGDBPoint* Close[])
{
    int nSectors = 0;
    int i, a, t;
    cmsGDBPoint* pt;

    for (i=0; i < NSTEPS; i++) {

        a = alpha + Spiral[i].AdvX;
        t = theta + Spiral[i].AdvY;

        // Cycle at the end
        a %= SECTORS;
        t %= SECTORS;

        // Cycle at the begin
        if (a < 0) a = SECTORS + a;
        if (t < 0) t = SECTORS + t;

        pt = &gbd ->Gamut[t][a];

        if (pt -> Type != GP_EMPTY) {

            Close[nSectors++] = pt;
        }
    }

    return nSectors;
}


// Interpolate a missing sector. Method identifies whatever this is top, bottom or mid
static
cmsBool InterpolateMissingSector(cmsGDB* gbd, int alpha, int theta)
{
    cmsSpherical sp;
    cmsVEC3 Lab;
    cmsVEC3 Centre;
    cmsLine ray;
    int nCloseSectors;
    cmsGDBPoint* Close[NSTEPS];
    cmsSpherical closel, templ;
    cmsLine edge;
    int k, m;

    // Is that point already specified?
    if (gbd ->Gamut[theta][alpha].Type != GP_EMPTY) return TRUE;

    // Fill close points
    nCloseSectors = FindNearSectors(gbd, alpha, theta, Close);


    // Find a central point on the sector
    sp.alpha = (cmsFloat64Number) ((alpha + 0.5) * 360.0) / (SECTORS);
    sp.theta = (cmsFloat64Number) ((theta + 0.5) * 180.0) / (SECTORS);
    sp.r     = 50.0;

    // Convert to Cartesian
    ToCartesian(&Lab, &sp);

    // Create a ray line from centre to this point
    _cmsVEC3init(&Centre, 50.0, 0, 0);
    LineOf2Points(&ray, &Lab, &Centre);

    // For all close sectors
    closel.r = 0.0;
    closel.alpha = 0;
    closel.theta = 0;

    for (k=0; k < nCloseSectors; k++) {

        for(m = k+1; m < nCloseSectors; m++) {

            cmsVEC3 temp, a1, a2;

            // A line from sector to sector
            ToCartesian(&a1, &Close[k]->p);
            ToCartesian(&a2, &Close[m]->p);

            LineOf2Points(&edge, &a1, &a2);

            // Find a line
            ClosestLineToLine(&temp, &ray, &edge);

            // Convert to spherical
            ToSpherical(&templ, &temp);


            if ( templ.r > closel.r &&
                 templ.theta >= (theta*180.0/SECTORS) &&
                 templ.theta <= ((theta+1)*180.0/SECTORS) &&
                 templ.alpha >= (alpha*360.0/SECTORS) &&
                 templ.alpha <= ((alpha+1)*360.0/SECTORS)) {

                closel = templ;
            }
        }
    }

    gbd ->Gamut[theta][alpha].p = closel;
    gbd ->Gamut[theta][alpha].Type = GP_MODELED;

    return TRUE;

}


// Interpolate missing parts. The algorithm fist computes slices at
// theta=0 and theta=Max.
cmsBool CMSEXPORT cmsGDBCompute(cmsHANDLE hGBD, cmsUInt32Number dwFlags)
{
    int alpha, theta;
    cmsGDB* gbd = (cmsGDB*) hGBD;

    _cmsAssert(hGBD != NULL);

    // Interpolate black
    for (alpha = 0; alpha <= SECTORS; alpha++) {

        if (!InterpolateMissingSector(gbd, alpha, 0)) return FALSE;
    }

    // Interpolate white
    for (alpha = 0; alpha <= SECTORS; alpha++) {

        if (!InterpolateMissingSector(gbd, alpha, SECTORS-1)) return FALSE;
    }


    // Interpolate Mid
    for (theta = 1; theta < SECTORS; theta++) {
        for (alpha = 0; alpha <= SECTORS; alpha++) {

            if (!InterpolateMissingSector(gbd, alpha, theta)) return FALSE;
        }
    }

    // Done
    return TRUE;

    cmsUNUSED_PARAMETER(dwFlags);
}




// --------------------------------------------------------------------------------------------------------

// Great for debug, but not suitable for real use

#if 0
cmsBool cmsGBDdumpVRML(cmsHANDLE hGBD, const char* fname)
{
    FILE* fp;
    int   i, j;
    cmsGDB* gbd = (cmsGDB*) hGBD;
    cmsGDBPoint* pt;

    fp = fopen (fname, "wt");
    if (fp == NULL)
        return FALSE;

    fprintf (fp, "#VRML V2.0 utf8\n");

    // set the viewing orientation and distance
    fprintf (fp, "DEF CamTest Group {\n");
    fprintf (fp, "\tchildren [\n");
    fprintf (fp, "\t\tDEF Cameras Group {\n");
    fprintf (fp, "\t\t\tchildren [\n");
    fprintf (fp, "\t\t\t\tDEF DefaultView Viewpoint {\n");
    fprintf (fp, "\t\t\t\t\tposition 0 0 340\n");
    fprintf (fp, "\t\t\t\t\torientation 0 0 1 0\n");
    fprintf (fp, "\t\t\t\t\tdescription \"default view\"\n");
    fprintf (fp, "\t\t\t\t}\n");
    fprintf (fp, "\t\t\t]\n");
    fprintf (fp, "\t\t},\n");
    fprintf (fp, "\t]\n");
    fprintf (fp, "}\n");

    // Output the background stuff
    fprintf (fp, "Background {\n");
    fprintf (fp, "\tskyColor [\n");
    fprintf (fp, "\t\t.5 .5 .5\n");
    fprintf (fp, "\t]\n");
    fprintf (fp, "}\n");

    // Output the shape stuff
    fprintf (fp, "Transform {\n");
    fprintf (fp, "\tscale .3 .3 .3\n");
    fprintf (fp, "\tchildren [\n");

    // Draw the axes as a shape:
    fprintf (fp, "\t\tShape {\n");
    fprintf (fp, "\t\t\tappearance Appearance {\n");
    fprintf (fp, "\t\t\t\tmaterial Material {\n");
    fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n");
    fprintf (fp, "\t\t\t\t\temissiveColor 1.0 1.0 1.0\n");
    fprintf (fp, "\t\t\t\t\tshininess 0.8\n");
    fprintf (fp, "\t\t\t\t}\n");
    fprintf (fp, "\t\t\t}\n");
    fprintf (fp, "\t\t\tgeometry IndexedLineSet {\n");
    fprintf (fp, "\t\t\t\tcoord Coordinate {\n");
    fprintf (fp, "\t\t\t\t\tpoint [\n");
    fprintf (fp, "\t\t\t\t\t0.0 0.0 0.0,\n");
    fprintf (fp, "\t\t\t\t\t%f 0.0 0.0,\n",  255.0);
    fprintf (fp, "\t\t\t\t\t0.0 %f 0.0,\n",  255.0);
    fprintf (fp, "\t\t\t\t\t0.0 0.0 %f]\n",  255.0);
    fprintf (fp, "\t\t\t\t}\n");
    fprintf (fp, "\t\t\t\tcoordIndex [\n");
    fprintf (fp, "\t\t\t\t\t0, 1, -1\n");
    fprintf (fp, "\t\t\t\t\t0, 2, -1\n");
    fprintf (fp, "\t\t\t\t\t0, 3, -1]\n");
    fprintf (fp, "\t\t\t}\n");
    fprintf (fp, "\t\t}\n");


    fprintf (fp, "\t\tShape {\n");
    fprintf (fp, "\t\t\tappearance Appearance {\n");
    fprintf (fp, "\t\t\t\tmaterial Material {\n");
    fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n");
    fprintf (fp, "\t\t\t\t\temissiveColor 1 1 1\n");
    fprintf (fp, "\t\t\t\t\tshininess 0.8\n");
    fprintf (fp, "\t\t\t\t}\n");
    fprintf (fp, "\t\t\t}\n");
    fprintf (fp, "\t\t\tgeometry PointSet {\n");

    // fill in the points here
    fprintf (fp, "\t\t\t\tcoord Coordinate {\n");
    fprintf (fp, "\t\t\t\t\tpoint [\n");

    // We need to transverse all gamut hull.
    for (i=0; i < SECTORS; i++)
        for (j=0; j < SECTORS; j++) {

            cmsVEC3 v;

            pt = &gbd ->Gamut[i][j];
            ToCartesian(&v, &pt ->p);

            fprintf (fp, "\t\t\t\t\t%g %g %g", v.n[0]+50, v.n[1], v.n[2]);

            if ((j == SECTORS - 1) && (i == SECTORS - 1))
                fprintf (fp, "]\n");
            else
                fprintf (fp, ",\n");

        }

        fprintf (fp, "\t\t\t\t}\n");



    // fill in the face colors
    fprintf (fp, "\t\t\t\tcolor Color {\n");
    fprintf (fp, "\t\t\t\t\tcolor [\n");

    for (i=0; i < SECTORS; i++)
        for (j=0; j < SECTORS; j++) {

           cmsVEC3 v;

            pt = &gbd ->Gamut[i][j];


            ToCartesian(&v, &pt ->p);


        if (pt ->Type == GP_EMPTY)
            fprintf (fp, "\t\t\t\t\t%g %g %g", 0.0, 0.0, 0.0);
        else
            if (pt ->Type == GP_MODELED)
                fprintf (fp, "\t\t\t\t\t%g %g %g", 1.0, .5, .5);
            else {
                fprintf (fp, "\t\t\t\t\t%g %g %g", 1.0, 1.0, 1.0);

            }

        if ((j == SECTORS - 1) && (i == SECTORS - 1))
                fprintf (fp, "]\n");
            else
                fprintf (fp, ",\n");
    }
    fprintf (fp, "\t\t\t}\n");


    fprintf (fp, "\t\t\t}\n");
    fprintf (fp, "\t\t}\n");
    fprintf (fp, "\t]\n");
    fprintf (fp, "}\n");

    fclose (fp);

    return TRUE;
}
#endif