Double.java 38.8 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1994, 2009, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
D
duke 已提交
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
D
duke 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
 */

package java.lang;

import sun.misc.FloatingDecimal;
import sun.misc.FpUtils;
import sun.misc.DoubleConsts;

/**
 * The {@code Double} class wraps a value of the primitive type
 * {@code double} in an object. An object of type
 * {@code Double} contains a single field whose type is
 * {@code double}.
 *
 * <p>In addition, this class provides several methods for converting a
 * {@code double} to a {@code String} and a
 * {@code String} to a {@code double}, as well as other
 * constants and methods useful when dealing with a
 * {@code double}.
 *
 * @author  Lee Boynton
 * @author  Arthur van Hoff
 * @author  Joseph D. Darcy
 * @since JDK1.0
 */
public final class Double extends Number implements Comparable<Double> {
    /**
     * A constant holding the positive infinity of type
     * {@code double}. It is equal to the value returned by
     * {@code Double.longBitsToDouble(0x7ff0000000000000L)}.
     */
    public static final double POSITIVE_INFINITY = 1.0 / 0.0;

    /**
     * A constant holding the negative infinity of type
     * {@code double}. It is equal to the value returned by
     * {@code Double.longBitsToDouble(0xfff0000000000000L)}.
     */
    public static final double NEGATIVE_INFINITY = -1.0 / 0.0;

    /**
     * A constant holding a Not-a-Number (NaN) value of type
     * {@code double}. It is equivalent to the value returned by
     * {@code Double.longBitsToDouble(0x7ff8000000000000L)}.
     */
    public static final double NaN = 0.0d / 0.0;

    /**
     * A constant holding the largest positive finite value of type
     * {@code double},
     * (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.  It is equal to
     * the hexadecimal floating-point literal
     * {@code 0x1.fffffffffffffP+1023} and also equal to
     * {@code Double.longBitsToDouble(0x7fefffffffffffffL)}.
     */
    public static final double MAX_VALUE = 0x1.fffffffffffffP+1023; // 1.7976931348623157e+308

    /**
     * A constant holding the smallest positive normal value of type
     * {@code double}, 2<sup>-1022</sup>.  It is equal to the
     * hexadecimal floating-point literal {@code 0x1.0p-1022} and also
     * equal to {@code Double.longBitsToDouble(0x0010000000000000L)}.
     *
     * @since 1.6
     */
    public static final double MIN_NORMAL = 0x1.0p-1022; // 2.2250738585072014E-308

    /**
     * A constant holding the smallest positive nonzero value of type
     * {@code double}, 2<sup>-1074</sup>. It is equal to the
     * hexadecimal floating-point literal
     * {@code 0x0.0000000000001P-1022} and also equal to
     * {@code Double.longBitsToDouble(0x1L)}.
     */
    public static final double MIN_VALUE = 0x0.0000000000001P-1022; // 4.9e-324

    /**
     * Maximum exponent a finite {@code double} variable may have.
     * It is equal to the value returned by
     * {@code Math.getExponent(Double.MAX_VALUE)}.
     *
     * @since 1.6
     */
    public static final int MAX_EXPONENT = 1023;

    /**
     * Minimum exponent a normalized {@code double} variable may
     * have.  It is equal to the value returned by
     * {@code Math.getExponent(Double.MIN_NORMAL)}.
     *
     * @since 1.6
     */
    public static final int MIN_EXPONENT = -1022;

    /**
     * The number of bits used to represent a {@code double} value.
     *
     * @since 1.5
     */
    public static final int SIZE = 64;

    /**
     * The {@code Class} instance representing the primitive type
     * {@code double}.
     *
     * @since JDK1.1
     */
    public static final Class<Double>   TYPE = (Class<Double>) Class.getPrimitiveClass("double");

    /**
     * Returns a string representation of the {@code double}
     * argument. All characters mentioned below are ASCII characters.
     * <ul>
     * <li>If the argument is NaN, the result is the string
     *     "{@code NaN}".
     * <li>Otherwise, the result is a string that represents the sign and
     * magnitude (absolute value) of the argument. If the sign is negative,
     * the first character of the result is '{@code -}'
     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
     * appears in the result. As for the magnitude <i>m</i>:
     * <ul>
     * <li>If <i>m</i> is infinity, it is represented by the characters
     * {@code "Infinity"}; thus, positive infinity produces the result
     * {@code "Infinity"} and negative infinity produces the result
     * {@code "-Infinity"}.
     *
     * <li>If <i>m</i> is zero, it is represented by the characters
     * {@code "0.0"}; thus, negative zero produces the result
     * {@code "-0.0"} and positive zero produces the result
     * {@code "0.0"}.
     *
     * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
     * than 10<sup>7</sup>, then it is represented as the integer part of
     * <i>m</i>, in decimal form with no leading zeroes, followed by
     * '{@code .}' (<code>'&#92;u002E'</code>), followed by one or
     * more decimal digits representing the fractional part of <i>m</i>.
     *
     * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
     * equal to 10<sup>7</sup>, then it is represented in so-called
     * "computerized scientific notation." Let <i>n</i> be the unique
     * integer such that 10<sup><i>n</i></sup> &le; <i>m</i> {@literal <}
     * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
     * mathematically exact quotient of <i>m</i> and
     * 10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10. The
     * magnitude is then represented as the integer part of <i>a</i>,
     * as a single decimal digit, followed by '{@code .}'
     * (<code>'&#92;u002E'</code>), followed by decimal digits
     * representing the fractional part of <i>a</i>, followed by the
     * letter '{@code E}' (<code>'&#92;u0045'</code>), followed
     * by a representation of <i>n</i> as a decimal integer, as
     * produced by the method {@link Integer#toString(int)}.
     * </ul>
     * </ul>
     * How many digits must be printed for the fractional part of
     * <i>m</i> or <i>a</i>? There must be at least one digit to represent
     * the fractional part, and beyond that as many, but only as many, more
     * digits as are needed to uniquely distinguish the argument value from
     * adjacent values of type {@code double}. That is, suppose that
     * <i>x</i> is the exact mathematical value represented by the decimal
     * representation produced by this method for a finite nonzero argument
     * <i>d</i>. Then <i>d</i> must be the {@code double} value nearest
     * to <i>x</i>; or if two {@code double} values are equally close
     * to <i>x</i>, then <i>d</i> must be one of them and the least
     * significant bit of the significand of <i>d</i> must be {@code 0}.
     *
     * <p>To create localized string representations of a floating-point
     * value, use subclasses of {@link java.text.NumberFormat}.
     *
     * @param   d   the {@code double} to be converted.
     * @return a string representation of the argument.
     */
    public static String toString(double d) {
        return new FloatingDecimal(d).toJavaFormatString();
    }

    /**
     * Returns a hexadecimal string representation of the
     * {@code double} argument. All characters mentioned below
     * are ASCII characters.
     *
     * <ul>
     * <li>If the argument is NaN, the result is the string
     *     "{@code NaN}".
     * <li>Otherwise, the result is a string that represents the sign
     * and magnitude of the argument. If the sign is negative, the
     * first character of the result is '{@code -}'
     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign
     * character appears in the result. As for the magnitude <i>m</i>:
     *
     * <ul>
     * <li>If <i>m</i> is infinity, it is represented by the string
     * {@code "Infinity"}; thus, positive infinity produces the
     * result {@code "Infinity"} and negative infinity produces
     * the result {@code "-Infinity"}.
     *
     * <li>If <i>m</i> is zero, it is represented by the string
     * {@code "0x0.0p0"}; thus, negative zero produces the result
     * {@code "-0x0.0p0"} and positive zero produces the result
     * {@code "0x0.0p0"}.
     *
     * <li>If <i>m</i> is a {@code double} value with a
     * normalized representation, substrings are used to represent the
     * significand and exponent fields.  The significand is
     * represented by the characters {@code "0x1."}
     * followed by a lowercase hexadecimal representation of the rest
     * of the significand as a fraction.  Trailing zeros in the
     * hexadecimal representation are removed unless all the digits
     * are zero, in which case a single zero is used. Next, the
     * exponent is represented by {@code "p"} followed
     * by a decimal string of the unbiased exponent as if produced by
     * a call to {@link Integer#toString(int) Integer.toString} on the
     * exponent value.
     *
     * <li>If <i>m</i> is a {@code double} value with a subnormal
     * representation, the significand is represented by the
     * characters {@code "0x0."} followed by a
     * hexadecimal representation of the rest of the significand as a
     * fraction.  Trailing zeros in the hexadecimal representation are
     * removed. Next, the exponent is represented by
     * {@code "p-1022"}.  Note that there must be at
     * least one nonzero digit in a subnormal significand.
     *
     * </ul>
     *
     * </ul>
     *
     * <table border>
     * <caption><h3>Examples</h3></caption>
     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
     * <tr><td>{@code Double.MAX_VALUE}</td>
     *     <td>{@code 0x1.fffffffffffffp1023}</td>
     * <tr><td>{@code Minimum Normal Value}</td>
     *     <td>{@code 0x1.0p-1022}</td>
     * <tr><td>{@code Maximum Subnormal Value}</td>
     *     <td>{@code 0x0.fffffffffffffp-1022}</td>
     * <tr><td>{@code Double.MIN_VALUE}</td>
     *     <td>{@code 0x0.0000000000001p-1022}</td>
     * </table>
     * @param   d   the {@code double} to be converted.
     * @return a hex string representation of the argument.
     * @since 1.5
     * @author Joseph D. Darcy
     */
    public static String toHexString(double d) {
        /*
         * Modeled after the "a" conversion specifier in C99, section
         * 7.19.6.1; however, the output of this method is more
         * tightly specified.
         */
        if (!FpUtils.isFinite(d) )
            // For infinity and NaN, use the decimal output.
            return Double.toString(d);
        else {
            // Initialized to maximum size of output.
            StringBuffer answer = new StringBuffer(24);

            if (FpUtils.rawCopySign(1.0, d) == -1.0) // value is negative,
                answer.append("-");                  // so append sign info

            answer.append("0x");

            d = Math.abs(d);

            if(d == 0.0) {
                answer.append("0.0p0");
            }
            else {
                boolean subnormal = (d < DoubleConsts.MIN_NORMAL);

                // Isolate significand bits and OR in a high-order bit
                // so that the string representation has a known
                // length.
                long signifBits = (Double.doubleToLongBits(d)
                                   & DoubleConsts.SIGNIF_BIT_MASK) |
                    0x1000000000000000L;

                // Subnormal values have a 0 implicit bit; normal
                // values have a 1 implicit bit.
                answer.append(subnormal ? "0." : "1.");

                // Isolate the low-order 13 digits of the hex
                // representation.  If all the digits are zero,
                // replace with a single 0; otherwise, remove all
                // trailing zeros.
                String signif = Long.toHexString(signifBits).substring(3,16);
                answer.append(signif.equals("0000000000000") ? // 13 zeros
                              "0":
                              signif.replaceFirst("0{1,12}$", ""));

                // If the value is subnormal, use the E_min exponent
                // value for double; otherwise, extract and report d's
                // exponent (the representation of a subnormal uses
                // E_min -1).
                answer.append("p" + (subnormal ?
                               DoubleConsts.MIN_EXPONENT:
                               FpUtils.getExponent(d) ));
            }
            return answer.toString();
        }
    }

    /**
     * Returns a {@code Double} object holding the
     * {@code double} value represented by the argument string
     * {@code s}.
     *
     * <p>If {@code s} is {@code null}, then a
     * {@code NullPointerException} is thrown.
     *
     * <p>Leading and trailing whitespace characters in {@code s}
     * are ignored.  Whitespace is removed as if by the {@link
     * String#trim} method; that is, both ASCII space and control
     * characters are removed. The rest of {@code s} should
     * constitute a <i>FloatValue</i> as described by the lexical
     * syntax rules:
     *
     * <blockquote>
     * <dl>
     * <dt><i>FloatValue:</i>
     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
     * <dd><i>SignedInteger</i>
     * </dl>
     *
     * <p>
     *
     * <dl>
     * <dt><i>HexFloatingPointLiteral</i>:
     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
     * </dl>
     *
     * <p>
     *
     * <dl>
     * <dt><i>HexSignificand:</i>
     * <dd><i>HexNumeral</i>
     * <dd><i>HexNumeral</i> {@code .}
     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
     *     </i>{@code .}<i> HexDigits</i>
     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
     *     </i>{@code .} <i>HexDigits</i>
     * </dl>
     *
     * <p>
     *
     * <dl>
     * <dt><i>BinaryExponent:</i>
     * <dd><i>BinaryExponentIndicator SignedInteger</i>
     * </dl>
     *
     * <p>
     *
     * <dl>
     * <dt><i>BinaryExponentIndicator:</i>
     * <dd>{@code p}
     * <dd>{@code P}
     * </dl>
     *
     * </blockquote>
     *
     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
     * sections of the <a
     * href="http://java.sun.com/docs/books/jls/html/">Java Language
     * Specification</a>. If {@code s} does not have the form of
     * a <i>FloatValue</i>, then a {@code NumberFormatException}
     * is thrown. Otherwise, {@code s} is regarded as
     * representing an exact decimal value in the usual
     * "computerized scientific notation" or as an exact
     * hexadecimal value; this exact numerical value is then
     * conceptually converted to an "infinitely precise"
     * binary value that is then rounded to type {@code double}
     * by the usual round-to-nearest rule of IEEE 754 floating-point
     * arithmetic, which includes preserving the sign of a zero
407 408 409 410 411 412 413 414 415 416 417 418 419
     * value.
     *
     * Note that the round-to-nearest rule also implies overflow and
     * underflow behaviour; if the exact value of {@code s} is large
     * enough in magnitude (greater than or equal to ({@link
     * #MAX_VALUE} + {@link Math#ulp(double) ulp(MAX_VALUE)}/2),
     * rounding to {@code double} will result in an infinity and if the
     * exact value of {@code s} is small enough in magnitude (less
     * than or equal to {@link #MIN_VALUE}/2), rounding to float will
     * result in a zero.
     *
     * Finally, after rounding a {@code Double} object representing
     * this {@code double} value is returned.
D
duke 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
     *
     * <p> To interpret localized string representations of a
     * floating-point value, use subclasses of {@link
     * java.text.NumberFormat}.
     *
     * <p>Note that trailing format specifiers, specifiers that
     * determine the type of a floating-point literal
     * ({@code 1.0f} is a {@code float} value;
     * {@code 1.0d} is a {@code double} value), do
     * <em>not</em> influence the results of this method.  In other
     * words, the numerical value of the input string is converted
     * directly to the target floating-point type.  The two-step
     * sequence of conversions, string to {@code float} followed
     * by {@code float} to {@code double}, is <em>not</em>
     * equivalent to converting a string directly to
     * {@code double}. For example, the {@code float}
     * literal {@code 0.1f} is equal to the {@code double}
     * value {@code 0.10000000149011612}; the {@code float}
     * literal {@code 0.1f} represents a different numerical
     * value than the {@code double} literal
     * {@code 0.1}. (The numerical value 0.1 cannot be exactly
     * represented in a binary floating-point number.)
     *
     * <p>To avoid calling this method on an invalid string and having
     * a {@code NumberFormatException} be thrown, the regular
     * expression below can be used to screen the input string:
     *
     * <code>
     * <pre>
     *  final String Digits     = "(\\p{Digit}+)";
     *  final String HexDigits  = "(\\p{XDigit}+)";
     *  // an exponent is 'e' or 'E' followed by an optionally
     *  // signed decimal integer.
     *  final String Exp        = "[eE][+-]?"+Digits;
     *  final String fpRegex    =
     *      ("[\\x00-\\x20]*"+  // Optional leading "whitespace"
     *       "[+-]?(" + // Optional sign character
     *       "NaN|" +           // "NaN" string
     *       "Infinity|" +      // "Infinity" string
     *
     *       // A decimal floating-point string representing a finite positive
     *       // number without a leading sign has at most five basic pieces:
     *       // Digits . Digits ExponentPart FloatTypeSuffix
     *       //
     *       // Since this method allows integer-only strings as input
     *       // in addition to strings of floating-point literals, the
     *       // two sub-patterns below are simplifications of the grammar
     *       // productions from the Java Language Specification, 2nd
     *       // edition, section 3.10.2.
     *
     *       // Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
     *       "((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
     *
     *       // . Digits ExponentPart_opt FloatTypeSuffix_opt
     *       "(\\.("+Digits+")("+Exp+")?)|"+
     *
     *       // Hexadecimal strings
     *       "((" +
     *        // 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
     *        "(0[xX]" + HexDigits + "(\\.)?)|" +
     *
     *        // 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
     *        "(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
     *
     *        ")[pP][+-]?" + Digits + "))" +
     *       "[fFdD]?))" +
     *       "[\\x00-\\x20]*");// Optional trailing "whitespace"
     *
     *  if (Pattern.matches(fpRegex, myString))
     *      Double.valueOf(myString); // Will not throw NumberFormatException
     *  else {
     *      // Perform suitable alternative action
     *  }
     * </pre>
     * </code>
     *
     * @param      s   the string to be parsed.
     * @return     a {@code Double} object holding the value
     *             represented by the {@code String} argument.
     * @throws     NumberFormatException  if the string does not contain a
     *             parsable number.
     */
    public static Double valueOf(String s) throws NumberFormatException {
        return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
    }

    /**
     * Returns a {@code Double} instance representing the specified
     * {@code double} value.
     * If a new {@code Double} instance is not required, this method
     * should generally be used in preference to the constructor
     * {@link #Double(double)}, as this method is likely to yield
     * significantly better space and time performance by caching
     * frequently requested values.
     *
     * @param  d a double value.
     * @return a {@code Double} instance representing {@code d}.
     * @since  1.5
     */
    public static Double valueOf(double d) {
        return new Double(d);
    }

    /**
     * Returns a new {@code double} initialized to the value
     * represented by the specified {@code String}, as performed
     * by the {@code valueOf} method of class
     * {@code Double}.
     *
     * @param  s   the string to be parsed.
     * @return the {@code double} value represented by the string
     *         argument.
532
     * @throws NullPointerException  if the string is null
D
duke 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
     * @throws NumberFormatException if the string does not contain
     *         a parsable {@code double}.
     * @see    java.lang.Double#valueOf(String)
     * @since 1.2
     */
    public static double parseDouble(String s) throws NumberFormatException {
        return FloatingDecimal.readJavaFormatString(s).doubleValue();
    }

    /**
     * Returns {@code true} if the specified number is a
     * Not-a-Number (NaN) value, {@code false} otherwise.
     *
     * @param   v   the value to be tested.
     * @return  {@code true} if the value of the argument is NaN;
     *          {@code false} otherwise.
     */
    static public boolean isNaN(double v) {
        return (v != v);
    }

    /**
     * Returns {@code true} if the specified number is infinitely
     * large in magnitude, {@code false} otherwise.
     *
     * @param   v   the value to be tested.
     * @return  {@code true} if the value of the argument is positive
     *          infinity or negative infinity; {@code false} otherwise.
     */
    static public boolean isInfinite(double v) {
        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
    }

    /**
     * The value of the Double.
     *
     * @serial
     */
    private final double value;

    /**
     * Constructs a newly allocated {@code Double} object that
     * represents the primitive {@code double} argument.
     *
     * @param   value   the value to be represented by the {@code Double}.
     */
    public Double(double value) {
        this.value = value;
    }

    /**
     * Constructs a newly allocated {@code Double} object that
     * represents the floating-point value of type {@code double}
     * represented by the string. The string is converted to a
     * {@code double} value as if by the {@code valueOf} method.
     *
     * @param  s  a string to be converted to a {@code Double}.
     * @throws    NumberFormatException  if the string does not contain a
     *            parsable number.
     * @see       java.lang.Double#valueOf(java.lang.String)
     */
    public Double(String s) throws NumberFormatException {
        // REMIND: this is inefficient
        this(valueOf(s).doubleValue());
    }

    /**
     * Returns {@code true} if this {@code Double} value is
     * a Not-a-Number (NaN), {@code false} otherwise.
     *
     * @return  {@code true} if the value represented by this object is
     *          NaN; {@code false} otherwise.
     */
    public boolean isNaN() {
        return isNaN(value);
    }

    /**
     * Returns {@code true} if this {@code Double} value is
     * infinitely large in magnitude, {@code false} otherwise.
     *
     * @return  {@code true} if the value represented by this object is
     *          positive infinity or negative infinity;
     *          {@code false} otherwise.
     */
    public boolean isInfinite() {
        return isInfinite(value);
    }

    /**
     * Returns a string representation of this {@code Double} object.
     * The primitive {@code double} value represented by this
     * object is converted to a string exactly as if by the method
     * {@code toString} of one argument.
     *
     * @return  a {@code String} representation of this object.
     * @see java.lang.Double#toString(double)
     */
    public String toString() {
632
        return toString(value);
D
duke 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
    }

    /**
     * Returns the value of this {@code Double} as a {@code byte} (by
     * casting to a {@code byte}).
     *
     * @return  the {@code double} value represented by this object
     *          converted to type {@code byte}
     * @since JDK1.1
     */
    public byte byteValue() {
        return (byte)value;
    }

    /**
     * Returns the value of this {@code Double} as a
     * {@code short} (by casting to a {@code short}).
     *
     * @return  the {@code double} value represented by this object
     *          converted to type {@code short}
     * @since JDK1.1
     */
    public short shortValue() {
        return (short)value;
    }

    /**
     * Returns the value of this {@code Double} as an
     * {@code int} (by casting to type {@code int}).
     *
     * @return  the {@code double} value represented by this object
     *          converted to type {@code int}
     */
    public int intValue() {
        return (int)value;
    }

    /**
     * Returns the value of this {@code Double} as a
     * {@code long} (by casting to type {@code long}).
     *
     * @return  the {@code double} value represented by this object
     *          converted to type {@code long}
     */
    public long longValue() {
        return (long)value;
    }

    /**
     * Returns the {@code float} value of this
     * {@code Double} object.
     *
     * @return  the {@code double} value represented by this object
     *          converted to type {@code float}
     * @since JDK1.0
     */
    public float floatValue() {
        return (float)value;
    }

    /**
     * Returns the {@code double} value of this
     * {@code Double} object.
     *
     * @return the {@code double} value represented by this object
     */
    public double doubleValue() {
        return (double)value;
    }

    /**
     * Returns a hash code for this {@code Double} object. The
     * result is the exclusive OR of the two halves of the
     * {@code long} integer bit representation, exactly as
     * produced by the method {@link #doubleToLongBits(double)}, of
     * the primitive {@code double} value represented by this
     * {@code Double} object. That is, the hash code is the value
     * of the expression:
     *
     * <blockquote>
     *  {@code (int)(v^(v>>>32))}
     * </blockquote>
     *
     * where {@code v} is defined by:
     *
     * <blockquote>
     *  {@code long v = Double.doubleToLongBits(this.doubleValue());}
     * </blockquote>
     *
     * @return  a {@code hash code} value for this object.
     */
    public int hashCode() {
        long bits = doubleToLongBits(value);
        return (int)(bits ^ (bits >>> 32));
    }

    /**
     * Compares this object against the specified object.  The result
     * is {@code true} if and only if the argument is not
     * {@code null} and is a {@code Double} object that
     * represents a {@code double} that has the same value as the
     * {@code double} represented by this object. For this
     * purpose, two {@code double} values are considered to be
     * the same if and only if the method {@link
     * #doubleToLongBits(double)} returns the identical
     * {@code long} value when applied to each.
     *
     * <p>Note that in most cases, for two instances of class
     * {@code Double}, {@code d1} and {@code d2}, the
     * value of {@code d1.equals(d2)} is {@code true} if and
     * only if
     *
     * <blockquote>
     *  {@code d1.doubleValue() == d2.doubleValue()}
     * </blockquote>
     *
     * <p>also has the value {@code true}. However, there are two
     * exceptions:
     * <ul>
     * <li>If {@code d1} and {@code d2} both represent
     *     {@code Double.NaN}, then the {@code equals} method
     *     returns {@code true}, even though
     *     {@code Double.NaN==Double.NaN} has the value
     *     {@code false}.
     * <li>If {@code d1} represents {@code +0.0} while
     *     {@code d2} represents {@code -0.0}, or vice versa,
     *     the {@code equal} test has the value {@code false},
     *     even though {@code +0.0==-0.0} has the value {@code true}.
     * </ul>
     * This definition allows hash tables to operate properly.
     * @param   obj   the object to compare with.
     * @return  {@code true} if the objects are the same;
     *          {@code false} otherwise.
     * @see java.lang.Double#doubleToLongBits(double)
     */
    public boolean equals(Object obj) {
        return (obj instanceof Double)
               && (doubleToLongBits(((Double)obj).value) ==
                      doubleToLongBits(value));
    }

    /**
     * Returns a representation of the specified floating-point value
     * according to the IEEE 754 floating-point "double
     * format" bit layout.
     *
     * <p>Bit 63 (the bit that is selected by the mask
     * {@code 0x8000000000000000L}) represents the sign of the
     * floating-point number. Bits
     * 62-52 (the bits that are selected by the mask
     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
     * (the bits that are selected by the mask
     * {@code 0x000fffffffffffffL}) represent the significand
     * (sometimes called the mantissa) of the floating-point number.
     *
     * <p>If the argument is positive infinity, the result is
     * {@code 0x7ff0000000000000L}.
     *
     * <p>If the argument is negative infinity, the result is
     * {@code 0xfff0000000000000L}.
     *
     * <p>If the argument is NaN, the result is
     * {@code 0x7ff8000000000000L}.
     *
     * <p>In all cases, the result is a {@code long} integer that, when
     * given to the {@link #longBitsToDouble(long)} method, will produce a
     * floating-point value the same as the argument to
     * {@code doubleToLongBits} (except all NaN values are
     * collapsed to a single "canonical" NaN value).
     *
     * @param   value   a {@code double} precision floating-point number.
     * @return the bits that represent the floating-point number.
     */
    public static long doubleToLongBits(double value) {
        long result = doubleToRawLongBits(value);
        // Check for NaN based on values of bit fields, maximum
        // exponent and nonzero significand.
        if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
              DoubleConsts.EXP_BIT_MASK) &&
             (result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
            result = 0x7ff8000000000000L;
        return result;
    }

    /**
     * Returns a representation of the specified floating-point value
     * according to the IEEE 754 floating-point "double
     * format" bit layout, preserving Not-a-Number (NaN) values.
     *
     * <p>Bit 63 (the bit that is selected by the mask
     * {@code 0x8000000000000000L}) represents the sign of the
     * floating-point number. Bits
     * 62-52 (the bits that are selected by the mask
     * {@code 0x7ff0000000000000L}) represent the exponent. Bits 51-0
     * (the bits that are selected by the mask
     * {@code 0x000fffffffffffffL}) represent the significand
     * (sometimes called the mantissa) of the floating-point number.
     *
     * <p>If the argument is positive infinity, the result is
     * {@code 0x7ff0000000000000L}.
     *
     * <p>If the argument is negative infinity, the result is
     * {@code 0xfff0000000000000L}.
     *
     * <p>If the argument is NaN, the result is the {@code long}
     * integer representing the actual NaN value.  Unlike the
     * {@code doubleToLongBits} method,
     * {@code doubleToRawLongBits} does not collapse all the bit
     * patterns encoding a NaN to a single "canonical" NaN
     * value.
     *
     * <p>In all cases, the result is a {@code long} integer that,
     * when given to the {@link #longBitsToDouble(long)} method, will
     * produce a floating-point value the same as the argument to
     * {@code doubleToRawLongBits}.
     *
     * @param   value   a {@code double} precision floating-point number.
     * @return the bits that represent the floating-point number.
     * @since 1.3
     */
    public static native long doubleToRawLongBits(double value);

    /**
     * Returns the {@code double} value corresponding to a given
     * bit representation.
     * The argument is considered to be a representation of a
     * floating-point value according to the IEEE 754 floating-point
     * "double format" bit layout.
     *
     * <p>If the argument is {@code 0x7ff0000000000000L}, the result
     * is positive infinity.
     *
     * <p>If the argument is {@code 0xfff0000000000000L}, the result
     * is negative infinity.
     *
     * <p>If the argument is any value in the range
     * {@code 0x7ff0000000000001L} through
     * {@code 0x7fffffffffffffffL} or in the range
     * {@code 0xfff0000000000001L} through
     * {@code 0xffffffffffffffffL}, the result is a NaN.  No IEEE
     * 754 floating-point operation provided by Java can distinguish
     * between two NaN values of the same type with different bit
     * patterns.  Distinct values of NaN are only distinguishable by
     * use of the {@code Double.doubleToRawLongBits} method.
     *
     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
     * values that can be computed from the argument:
     *
     * <blockquote><pre>
     * int s = ((bits &gt;&gt; 63) == 0) ? 1 : -1;
     * int e = (int)((bits &gt;&gt; 52) & 0x7ffL);
     * long m = (e == 0) ?
     *                 (bits & 0xfffffffffffffL) &lt;&lt; 1 :
     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
     * </pre></blockquote>
     *
     * Then the floating-point result equals the value of the mathematical
     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
     *
     * <p>Note that this method may not be able to return a
     * {@code double} NaN with exactly same bit pattern as the
     * {@code long} argument.  IEEE 754 distinguishes between two
     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
     * differences between the two kinds of NaN are generally not
     * visible in Java.  Arithmetic operations on signaling NaNs turn
     * them into quiet NaNs with a different, but often similar, bit
     * pattern.  However, on some processors merely copying a
     * signaling NaN also performs that conversion.  In particular,
     * copying a signaling NaN to return it to the calling method
     * may perform this conversion.  So {@code longBitsToDouble}
     * may not be able to return a {@code double} with a
     * signaling NaN bit pattern.  Consequently, for some
     * {@code long} values,
     * {@code doubleToRawLongBits(longBitsToDouble(start))} may
     * <i>not</i> equal {@code start}.  Moreover, which
     * particular bit patterns represent signaling NaNs is platform
     * dependent; although all NaN bit patterns, quiet or signaling,
     * must be in the NaN range identified above.
     *
     * @param   bits   any {@code long} integer.
     * @return  the {@code double} floating-point value with the same
     *          bit pattern.
     */
    public static native double longBitsToDouble(long bits);

    /**
     * Compares two {@code Double} objects numerically.  There
     * are two ways in which comparisons performed by this method
     * differ from those performed by the Java language numerical
     * comparison operators ({@code <, <=, ==, >=, >})
     * when applied to primitive {@code double} values:
     * <ul><li>
     *          {@code Double.NaN} is considered by this method
     *          to be equal to itself and greater than all other
     *          {@code double} values (including
     *          {@code Double.POSITIVE_INFINITY}).
     * <li>
     *          {@code 0.0d} is considered by this method to be greater
     *          than {@code -0.0d}.
     * </ul>
     * This ensures that the <i>natural ordering</i> of
     * {@code Double} objects imposed by this method is <i>consistent
     * with equals</i>.
     *
     * @param   anotherDouble   the {@code Double} to be compared.
     * @return  the value {@code 0} if {@code anotherDouble} is
     *          numerically equal to this {@code Double}; a value
     *          less than {@code 0} if this {@code Double}
     *          is numerically less than {@code anotherDouble};
     *          and a value greater than {@code 0} if this
     *          {@code Double} is numerically greater than
     *          {@code anotherDouble}.
     *
     * @since   1.2
     */
    public int compareTo(Double anotherDouble) {
        return Double.compare(value, anotherDouble.value);
    }

    /**
     * Compares the two specified {@code double} values. The sign
     * of the integer value returned is the same as that of the
     * integer that would be returned by the call:
     * <pre>
     *    new Double(d1).compareTo(new Double(d2))
     * </pre>
     *
     * @param   d1        the first {@code double} to compare
     * @param   d2        the second {@code double} to compare
     * @return  the value {@code 0} if {@code d1} is
     *          numerically equal to {@code d2}; a value less than
     *          {@code 0} if {@code d1} is numerically less than
     *          {@code d2}; and a value greater than {@code 0}
     *          if {@code d1} is numerically greater than
     *          {@code d2}.
     * @since 1.4
     */
    public static int compare(double d1, double d2) {
        if (d1 < d2)
            return -1;           // Neither val is NaN, thisVal is smaller
        if (d1 > d2)
            return 1;            // Neither val is NaN, thisVal is larger

        long thisBits = Double.doubleToLongBits(d1);
        long anotherBits = Double.doubleToLongBits(d2);

        return (thisBits == anotherBits ?  0 : // Values are equal
                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
                 1));                          // (0.0, -0.0) or (NaN, !NaN)
    }

    /** use serialVersionUID from JDK 1.0.2 for interoperability */
    private static final long serialVersionUID = -9172774392245257468L;
}