AESCrypt.java 28.1 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
D
duke 已提交
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
D
duke 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 */

/* $Id: Rijndael.java,v 1.6 2000/02/10 01:31:41 gelderen Exp $
 *
 * Copyright (C) 1995-2000 The Cryptix Foundation Limited.
 * All rights reserved.
 *
 * Use, modification, copying and distribution of this softwareas is subject
 * the terms and conditions of the Cryptix General Licence. You should have
 * received a copy of the Cryptix General Licence along with this library;
 * if not, you can download a copy from http://www.cryptix.org/ .
 */

package com.sun.crypto.provider;

import java.security.InvalidKeyException;
40
import java.security.MessageDigest;
A
andrew 已提交
41
import java.util.Objects;
D
duke 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55

/**
 * Rijndael --pronounced Reindaal-- is a symmetric cipher with a 128-bit
 * block size and variable key-size (128-, 192- and 256-bit).
 * <p>
 * Rijndael was designed by <a href="mailto:rijmen@esat.kuleuven.ac.be">Vincent
 * Rijmen</a> and <a href="mailto:Joan.Daemen@village.uunet.be">Joan Daemen</a>.
 */
final class AESCrypt extends SymmetricCipher implements AESConstants
{
    private boolean ROUNDS_12 = false;
    private boolean ROUNDS_14 = false;

    /** Session and Sub keys */
S
simonis 已提交
56
    private int[][] sessionK = null;
D
duke 已提交
57 58
    private int[] K = null;

59 60 61 62 63 64
    /** Cipher encryption/decryption key */
    // skip re-generating Session and Sub keys if the cipher key is
    // the same
    private byte[] lastKey = null;

    /** ROUNDS * 4 */
D
duke 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    private int limit = 0;

    AESCrypt() {
        // empty
    }

    /**
     * Returns this cipher's block size.
     *
     * @return this cipher's block size
     */
    int getBlockSize() {
        return AES_BLOCK_SIZE;
    }

    void init(boolean decrypting, String algorithm, byte[] key)
            throws InvalidKeyException {
        if (!algorithm.equalsIgnoreCase("AES")
                    && !algorithm.equalsIgnoreCase("Rijndael")) {
            throw new InvalidKeyException
                ("Wrong algorithm: AES or Rijndael required");
        }
        if (!isKeySizeValid(key.length)) {
            throw new InvalidKeyException("Invalid AES key length: " +
                key.length + " bytes");
        }

92
        if (!MessageDigest.isEqual(key, lastKey)) {
93 94 95 96 97 98
            // re-generate session key 'sessionK' when cipher key changes
            makeSessionKey(key);
            lastKey = key.clone();  // save cipher key
        }

        // set sub key to the corresponding session Key
S
simonis 已提交
99
        this.K = sessionK[(decrypting? 1:0)];
D
duke 已提交
100 101
    }

102 103 104 105 106 107 108 109 110 111 112 113
    /**
     * Expand an int[(ROUNDS+1)][4] into int[(ROUNDS+1)*4].
     * For decryption round keys, need to rotate right by 4 ints.
     * @param kr The round keys for encryption or decryption.
     * @param decrypting True if 'kr' is for decryption and false otherwise.
     */
    private static final int[] expandToSubKey(int[][] kr, boolean decrypting) {
        int total = kr.length;
        int[] expK = new int[total*4];
        if (decrypting) {
            // decrypting, rotate right by 4 ints
            // i.e. i==0
D
duke 已提交
114
            for(int j=0; j<4; j++) {
115
                expK[j] = kr[total-1][j];
D
duke 已提交
116
            }
117 118 119 120 121 122 123 124 125 126 127
            for(int i=1; i<total; i++) {
                for(int j=0; j<4; j++) {
                    expK[i*4 + j] = kr[i-1][j];
                }
            }
        } else {
            // encrypting, straight expansion
            for(int i=0; i<total; i++) {
                for(int j=0; j<4; j++) {
                    expK[i*4 + j] = kr[i][j];
                }
D
duke 已提交
128 129
            }
        }
130
        return expK;
D
duke 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    }

    private static int[]
        alog = new int[256],
        log  = new int[256];

    private static final byte[]
        S  = new byte[256],
        Si = new byte[256];

    private static final int[]
        T1 = new int[256],
        T2 = new int[256],
        T3 = new int[256],
        T4 = new int[256],
        T5 = new int[256],
        T6 = new int[256],
        T7 = new int[256],
        T8 = new int[256];

    private static final int[]
        U1 = new int[256],
        U2 = new int[256],
        U3 = new int[256],
        U4 = new int[256];

    private static final byte[] rcon = new byte[30];


    // Static code - to intialise S-boxes and T-boxes
    static
    {
        int ROOT = 0x11B;
        int i, j = 0;

        //
        // produce log and alog tables, needed for multiplying in the
        // field GF(2^m) (generator = 3)
        //
        alog[0] = 1;
        for (i = 1; i < 256; i++)
        {
            j = (alog[i-1] << 1) ^ alog[i-1];
            if ((j & 0x100) != 0) {
                j ^= ROOT;
            }
            alog[i] = j;
        }
        for (i = 1; i < 255; i++) {
            log[alog[i]] = i;
        }
        byte[][] A = new byte[][]
        {
            {1, 1, 1, 1, 1, 0, 0, 0},
            {0, 1, 1, 1, 1, 1, 0, 0},
            {0, 0, 1, 1, 1, 1, 1, 0},
            {0, 0, 0, 1, 1, 1, 1, 1},
            {1, 0, 0, 0, 1, 1, 1, 1},
            {1, 1, 0, 0, 0, 1, 1, 1},
            {1, 1, 1, 0, 0, 0, 1, 1},
            {1, 1, 1, 1, 0, 0, 0, 1}
        };
        byte[] B = new byte[] { 0, 1, 1, 0, 0, 0, 1, 1};

        //
        // substitution box based on F^{-1}(x)
        //
        int t;
        byte[][] box = new byte[256][8];
        box[1][7] = 1;
        for (i = 2; i < 256; i++) {
            j = alog[255 - log[i]];
            for (t = 0; t < 8; t++) {
                box[i][t] = (byte)((j >>> (7 - t)) & 0x01);
            }
        }
        //
        // affine transform:  box[i] <- B + A*box[i]
        //
        byte[][] cox = new byte[256][8];
        for (i = 0; i < 256; i++) {
            for (t = 0; t < 8; t++) {
                cox[i][t] = B[t];
                for (j = 0; j < 8; j++) {
                    cox[i][t] ^= A[t][j] * box[i][j];
                }
            }
        }
        //
        // S-boxes and inverse S-boxes
        //
        for (i = 0; i < 256; i++) {
            S[i] = (byte)(cox[i][0] << 7);
            for (t = 1; t < 8; t++) {
                    S[i] ^= cox[i][t] << (7-t);
            }
            Si[S[i] & 0xFF] = (byte) i;
        }
        //
        // T-boxes
        //
        byte[][] G = new byte[][] {
            {2, 1, 1, 3},
            {3, 2, 1, 1},
            {1, 3, 2, 1},
            {1, 1, 3, 2}
        };
        byte[][] AA = new byte[4][8];
        for (i = 0; i < 4; i++) {
            for (j = 0; j < 4; j++) AA[i][j] = G[i][j];
            AA[i][i+4] = 1;
        }
        byte pivot, tmp;
        byte[][] iG = new byte[4][4];
        for (i = 0; i < 4; i++) {
            pivot = AA[i][i];
            if (pivot == 0) {
                t = i + 1;
                while ((AA[t][i] == 0) && (t < 4)) {
                    t++;
                }
                if (t == 4) {
                    throw new RuntimeException("G matrix is not invertible");
                }
                else {
                    for (j = 0; j < 8; j++) {
                        tmp = AA[i][j];
                        AA[i][j] = AA[t][j];
259
                        AA[t][j] = tmp;
D
duke 已提交
260 261 262 263 264 265 266
                    }
                    pivot = AA[i][i];
                }
            }
            for (j = 0; j < 8; j++) {
                if (AA[i][j] != 0) {
                    AA[i][j] = (byte)
X
xuelei 已提交
267 268
                        alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF])
                        % 255];
D
duke 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
                }
            }
            for (t = 0; t < 4; t++) {
                if (i != t) {
                    for (j = i+1; j < 8; j++) {
                        AA[t][j] ^= mul(AA[i][j], AA[t][i]);
                    }
                    AA[t][i] = 0;
                }
            }
        }
        for (i = 0; i < 4; i++) {
            for (j = 0; j < 4; j++) {
                iG[i][j] = AA[i][j + 4];
            }
        }

        int s;
        for (t = 0; t < 256; t++) {
            s = S[t];
            T1[t] = mul4(s, G[0]);
            T2[t] = mul4(s, G[1]);
            T3[t] = mul4(s, G[2]);
            T4[t] = mul4(s, G[3]);

            s = Si[t];
            T5[t] = mul4(s, iG[0]);
            T6[t] = mul4(s, iG[1]);
            T7[t] = mul4(s, iG[2]);
            T8[t] = mul4(s, iG[3]);

            U1[t] = mul4(t, iG[0]);
            U2[t] = mul4(t, iG[1]);
            U3[t] = mul4(t, iG[2]);
            U4[t] = mul4(t, iG[3]);
        }
        //
        // round constants
        //
        rcon[0] = 1;
        int r = 1;
        for (t = 1; t < 30; t++) {
            r = mul(2, r);
            rcon[t] = (byte) r;
        }
        log = null;
        alog = null;
    }

    // multiply two elements of GF(2^m)
    private static final int mul (int a, int b) {
        return (a != 0 && b != 0) ?
            alog[(log[a & 0xFF] + log[b & 0xFF]) % 255] :
            0;
    }

    // convenience method used in generating Transposition boxes
    private static final int mul4 (int a, byte[] b) {
        if (a == 0) return 0;
        a = log[a & 0xFF];
        int a0 = (b[0] != 0) ? alog[(a + log[b[0] & 0xFF]) % 255] & 0xFF : 0;
        int a1 = (b[1] != 0) ? alog[(a + log[b[1] & 0xFF]) % 255] & 0xFF : 0;
        int a2 = (b[2] != 0) ? alog[(a + log[b[2] & 0xFF]) % 255] & 0xFF : 0;
        int a3 = (b[3] != 0) ? alog[(a + log[b[3] & 0xFF]) % 255] & 0xFF : 0;
        return a0 << 24 | a1 << 16 | a2 << 8 | a3;
    }

    // check if the specified length (in bytes) is a valid keysize for AES
    static final boolean isKeySizeValid(int len) {
        for (int i = 0; i < AES_KEYSIZES.length; i++) {
            if (len == AES_KEYSIZES[i]) {
                return true;
            }
        }
        return false;
    }

    /**
     * Encrypt exactly one block of plaintext.
     */
    void encryptBlock(byte[] in, int inOffset,
A
andrew 已提交
350 351 352 353 354 355 356 357 358
                      byte[] out, int outOffset) {
        cryptBlockCheck(in, inOffset);
        cryptBlockCheck(out, outOffset);
        implEncryptBlock(in, inOffset, out, outOffset);
    }

    // Encryption operation. Possibly replaced with a compiler intrinsic.
    private void implEncryptBlock(byte[] in, int inOffset,
                                  byte[] out, int outOffset)
D
duke 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    {
        int keyOffset = 0;
        int t0   = ((in[inOffset++]       ) << 24 |
                    (in[inOffset++] & 0xFF) << 16 |
                    (in[inOffset++] & 0xFF) <<  8 |
                    (in[inOffset++] & 0xFF)        ) ^ K[keyOffset++];
        int t1   = ((in[inOffset++]       ) << 24 |
                    (in[inOffset++] & 0xFF) << 16 |
                    (in[inOffset++] & 0xFF) <<  8 |
                    (in[inOffset++] & 0xFF)        ) ^ K[keyOffset++];
        int t2   = ((in[inOffset++]       ) << 24 |
                    (in[inOffset++] & 0xFF) << 16 |
                    (in[inOffset++] & 0xFF) <<  8 |
                    (in[inOffset++] & 0xFF)        ) ^ K[keyOffset++];
        int t3   = ((in[inOffset++]       ) << 24 |
                    (in[inOffset++] & 0xFF) << 16 |
                    (in[inOffset++] & 0xFF) <<  8 |
                    (in[inOffset++] & 0xFF)        ) ^ K[keyOffset++];

        // apply round transforms
        while( keyOffset < limit )
        {
            int a0, a1, a2;
            a0 = T1[(t0 >>> 24)       ] ^
                 T2[(t1 >>> 16) & 0xFF] ^
                 T3[(t2 >>>  8) & 0xFF] ^
                 T4[(t3       ) & 0xFF] ^ K[keyOffset++];
            a1 = T1[(t1 >>> 24)       ] ^
                 T2[(t2 >>> 16) & 0xFF] ^
                 T3[(t3 >>>  8) & 0xFF] ^
                 T4[(t0       ) & 0xFF] ^ K[keyOffset++];
            a2 = T1[(t2 >>> 24)       ] ^
                 T2[(t3 >>> 16) & 0xFF] ^
                 T3[(t0 >>>  8) & 0xFF] ^
                 T4[(t1       ) & 0xFF] ^ K[keyOffset++];
            t3 = T1[(t3 >>> 24)       ] ^
                 T2[(t0 >>> 16) & 0xFF] ^
                 T3[(t1 >>>  8) & 0xFF] ^
                 T4[(t2       ) & 0xFF] ^ K[keyOffset++];
            t0 = a0; t1 = a1; t2 = a2;
        }

        // last round is special
        int tt = K[keyOffset++];
        out[outOffset++] = (byte)(S[(t0 >>> 24)       ] ^ (tt >>> 24));
        out[outOffset++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
        out[outOffset++] = (byte)(S[(t2 >>>  8) & 0xFF] ^ (tt >>>  8));
        out[outOffset++] = (byte)(S[(t3       ) & 0xFF] ^ (tt       ));
        tt = K[keyOffset++];
        out[outOffset++] = (byte)(S[(t1 >>> 24)       ] ^ (tt >>> 24));
        out[outOffset++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
        out[outOffset++] = (byte)(S[(t3 >>>  8) & 0xFF] ^ (tt >>>  8));
        out[outOffset++] = (byte)(S[(t0       ) & 0xFF] ^ (tt       ));
        tt = K[keyOffset++];
        out[outOffset++] = (byte)(S[(t2 >>> 24)       ] ^ (tt >>> 24));
        out[outOffset++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
        out[outOffset++] = (byte)(S[(t0 >>>  8) & 0xFF] ^ (tt >>>  8));
        out[outOffset++] = (byte)(S[(t1       ) & 0xFF] ^ (tt       ));
        tt = K[keyOffset++];
        out[outOffset++] = (byte)(S[(t3 >>> 24)       ] ^ (tt >>> 24));
        out[outOffset++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
        out[outOffset++] = (byte)(S[(t1 >>>  8) & 0xFF] ^ (tt >>>  8));
        out[outOffset  ] = (byte)(S[(t2       ) & 0xFF] ^ (tt       ));
    }

    /**
     * Decrypt exactly one block of plaintext.
     */
    void decryptBlock(byte[] in, int inOffset,
A
andrew 已提交
428 429 430 431 432 433 434 435 436
                      byte[] out, int outOffset) {
        cryptBlockCheck(in, inOffset);
        cryptBlockCheck(out, outOffset);
        implDecryptBlock(in, inOffset, out, outOffset);
    }

    // Decrypt operation. Possibly replaced with a compiler intrinsic.
    private void implDecryptBlock(byte[] in, int inOffset,
                                  byte[] out, int outOffset)
D
duke 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    {
        int keyOffset = 4;
        int t0 = ((in[inOffset++]       ) << 24 |
                  (in[inOffset++] & 0xFF) << 16 |
                  (in[inOffset++] & 0xFF) <<  8 |
                  (in[inOffset++] & 0xFF)        ) ^ K[keyOffset++];
        int t1 = ((in[inOffset++]       ) << 24 |
                  (in[inOffset++] & 0xFF) << 16 |
                  (in[inOffset++] & 0xFF) <<  8 |
                  (in[inOffset++] & 0xFF)        ) ^ K[keyOffset++];
        int t2 = ((in[inOffset++]       ) << 24 |
                  (in[inOffset++] & 0xFF) << 16 |
                  (in[inOffset++] & 0xFF) <<  8 |
                  (in[inOffset++] & 0xFF)        ) ^ K[keyOffset++];
        int t3 = ((in[inOffset++]       ) << 24 |
                  (in[inOffset++] & 0xFF) << 16 |
                  (in[inOffset++] & 0xFF) <<  8 |
                  (in[inOffset  ] & 0xFF)        ) ^ K[keyOffset++];

        int a0, a1, a2;
        if(ROUNDS_12)
        {
            a0 = T5[(t0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
                 T7[(t2>>> 8)&0xFF] ^ T8[(t1     )&0xFF] ^ K[keyOffset++];
            a1 = T5[(t1>>>24)     ] ^ T6[(t0>>>16)&0xFF] ^
                 T7[(t3>>> 8)&0xFF] ^ T8[(t2     )&0xFF] ^ K[keyOffset++];
            a2 = T5[(t2>>>24)     ] ^ T6[(t1>>>16)&0xFF] ^
                 T7[(t0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
            t3 = T5[(t3>>>24)     ] ^ T6[(t2>>>16)&0xFF] ^
                 T7[(t1>>> 8)&0xFF] ^ T8[(t0     )&0xFF] ^ K[keyOffset++];
            t0 = T5[(a0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
                 T7[(a2>>> 8)&0xFF] ^ T8[(a1     )&0xFF] ^ K[keyOffset++];
            t1 = T5[(a1>>>24)     ] ^ T6[(a0>>>16)&0xFF] ^
                 T7[(t3>>> 8)&0xFF] ^ T8[(a2     )&0xFF] ^ K[keyOffset++];
            t2 = T5[(a2>>>24)     ] ^ T6[(a1>>>16)&0xFF] ^
                 T7[(a0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
            t3 = T5[(t3>>>24)     ] ^ T6[(a2>>>16)&0xFF] ^
                 T7[(a1>>> 8)&0xFF] ^ T8[(a0     )&0xFF] ^ K[keyOffset++];

            if(ROUNDS_14)
            {
                a0 = T5[(t0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
                     T7[(t2>>> 8)&0xFF] ^ T8[(t1     )&0xFF] ^ K[keyOffset++];
                a1 = T5[(t1>>>24)     ] ^ T6[(t0>>>16)&0xFF] ^
                     T7[(t3>>> 8)&0xFF] ^ T8[(t2     )&0xFF] ^ K[keyOffset++];
                a2 = T5[(t2>>>24)     ] ^ T6[(t1>>>16)&0xFF] ^
                     T7[(t0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
                t3 = T5[(t3>>>24)     ] ^ T6[(t2>>>16)&0xFF] ^
                     T7[(t1>>> 8)&0xFF] ^ T8[(t0     )&0xFF] ^ K[keyOffset++];
                t0 = T5[(a0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
                     T7[(a2>>> 8)&0xFF] ^ T8[(a1     )&0xFF] ^ K[keyOffset++];
                t1 = T5[(a1>>>24)     ] ^ T6[(a0>>>16)&0xFF] ^
                     T7[(t3>>> 8)&0xFF] ^ T8[(a2     )&0xFF] ^ K[keyOffset++];
                t2 = T5[(a2>>>24)     ] ^ T6[(a1>>>16)&0xFF] ^
                     T7[(a0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
                t3 = T5[(t3>>>24)     ] ^ T6[(a2>>>16)&0xFF] ^
                     T7[(a1>>> 8)&0xFF] ^ T8[(a0     )&0xFF] ^ K[keyOffset++];
            }
        }
        a0 = T5[(t0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
             T7[(t2>>> 8)&0xFF] ^ T8[(t1     )&0xFF] ^ K[keyOffset++];
        a1 = T5[(t1>>>24)     ] ^ T6[(t0>>>16)&0xFF] ^
             T7[(t3>>> 8)&0xFF] ^ T8[(t2     )&0xFF] ^ K[keyOffset++];
        a2 = T5[(t2>>>24)     ] ^ T6[(t1>>>16)&0xFF] ^
             T7[(t0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
        t3 = T5[(t3>>>24)     ] ^ T6[(t2>>>16)&0xFF] ^
             T7[(t1>>> 8)&0xFF] ^ T8[(t0     )&0xFF] ^ K[keyOffset++];
        t0 = T5[(a0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
             T7[(a2>>> 8)&0xFF] ^ T8[(a1     )&0xFF] ^ K[keyOffset++];
        t1 = T5[(a1>>>24)     ] ^ T6[(a0>>>16)&0xFF] ^
             T7[(t3>>> 8)&0xFF] ^ T8[(a2     )&0xFF] ^ K[keyOffset++];
        t2 = T5[(a2>>>24)     ] ^ T6[(a1>>>16)&0xFF] ^
             T7[(a0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
        t3 = T5[(t3>>>24)     ] ^ T6[(a2>>>16)&0xFF] ^
             T7[(a1>>> 8)&0xFF] ^ T8[(a0     )&0xFF] ^ K[keyOffset++];
        a0 = T5[(t0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
             T7[(t2>>> 8)&0xFF] ^ T8[(t1     )&0xFF] ^ K[keyOffset++];
        a1 = T5[(t1>>>24)     ] ^ T6[(t0>>>16)&0xFF] ^
             T7[(t3>>> 8)&0xFF] ^ T8[(t2     )&0xFF] ^ K[keyOffset++];
        a2 = T5[(t2>>>24)     ] ^ T6[(t1>>>16)&0xFF] ^
             T7[(t0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
        t3 = T5[(t3>>>24)     ] ^ T6[(t2>>>16)&0xFF] ^
             T7[(t1>>> 8)&0xFF] ^ T8[(t0     )&0xFF] ^ K[keyOffset++];
        t0 = T5[(a0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
             T7[(a2>>> 8)&0xFF] ^ T8[(a1     )&0xFF] ^ K[keyOffset++];
        t1 = T5[(a1>>>24)     ] ^ T6[(a0>>>16)&0xFF] ^
             T7[(t3>>> 8)&0xFF] ^ T8[(a2     )&0xFF] ^ K[keyOffset++];
        t2 = T5[(a2>>>24)     ] ^ T6[(a1>>>16)&0xFF] ^
             T7[(a0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
        t3 = T5[(t3>>>24)     ] ^ T6[(a2>>>16)&0xFF] ^
             T7[(a1>>> 8)&0xFF] ^ T8[(a0     )&0xFF] ^ K[keyOffset++];
        a0 = T5[(t0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
             T7[(t2>>> 8)&0xFF] ^ T8[(t1     )&0xFF] ^ K[keyOffset++];
        a1 = T5[(t1>>>24)     ] ^ T6[(t0>>>16)&0xFF] ^
             T7[(t3>>> 8)&0xFF] ^ T8[(t2     )&0xFF] ^ K[keyOffset++];
        a2 = T5[(t2>>>24)     ] ^ T6[(t1>>>16)&0xFF] ^
             T7[(t0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
        t3 = T5[(t3>>>24)     ] ^ T6[(t2>>>16)&0xFF] ^
             T7[(t1>>> 8)&0xFF] ^ T8[(t0     )&0xFF] ^ K[keyOffset++];
        t0 = T5[(a0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
             T7[(a2>>> 8)&0xFF] ^ T8[(a1     )&0xFF] ^ K[keyOffset++];
        t1 = T5[(a1>>>24)     ] ^ T6[(a0>>>16)&0xFF] ^
             T7[(t3>>> 8)&0xFF] ^ T8[(a2     )&0xFF] ^ K[keyOffset++];
        t2 = T5[(a2>>>24)     ] ^ T6[(a1>>>16)&0xFF] ^
             T7[(a0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
        t3 = T5[(t3>>>24)     ] ^ T6[(a2>>>16)&0xFF] ^
             T7[(a1>>> 8)&0xFF] ^ T8[(a0     )&0xFF] ^ K[keyOffset++];
        a0 = T5[(t0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
             T7[(t2>>> 8)&0xFF] ^ T8[(t1     )&0xFF] ^ K[keyOffset++];
        a1 = T5[(t1>>>24)     ] ^ T6[(t0>>>16)&0xFF] ^
             T7[(t3>>> 8)&0xFF] ^ T8[(t2     )&0xFF] ^ K[keyOffset++];
        a2 = T5[(t2>>>24)     ] ^ T6[(t1>>>16)&0xFF] ^
             T7[(t0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
        t3 = T5[(t3>>>24)     ] ^ T6[(t2>>>16)&0xFF] ^
             T7[(t1>>> 8)&0xFF] ^ T8[(t0     )&0xFF] ^ K[keyOffset++];
        t0 = T5[(a0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
             T7[(a2>>> 8)&0xFF] ^ T8[(a1     )&0xFF] ^ K[keyOffset++];
        t1 = T5[(a1>>>24)     ] ^ T6[(a0>>>16)&0xFF] ^
             T7[(t3>>> 8)&0xFF] ^ T8[(a2     )&0xFF] ^ K[keyOffset++];
        t2 = T5[(a2>>>24)     ] ^ T6[(a1>>>16)&0xFF] ^
             T7[(a0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
        t3 = T5[(t3>>>24)     ] ^ T6[(a2>>>16)&0xFF] ^
             T7[(a1>>> 8)&0xFF] ^ T8[(a0     )&0xFF] ^ K[keyOffset++];
        a0 = T5[(t0>>>24)     ] ^ T6[(t3>>>16)&0xFF] ^
             T7[(t2>>> 8)&0xFF] ^ T8[(t1     )&0xFF] ^ K[keyOffset++];
        a1 = T5[(t1>>>24)     ] ^ T6[(t0>>>16)&0xFF] ^
             T7[(t3>>> 8)&0xFF] ^ T8[(t2     )&0xFF] ^ K[keyOffset++];
        a2 = T5[(t2>>>24)     ] ^ T6[(t1>>>16)&0xFF] ^
             T7[(t0>>> 8)&0xFF] ^ T8[(t3     )&0xFF] ^ K[keyOffset++];
        t3 = T5[(t3>>>24)     ] ^ T6[(t2>>>16)&0xFF] ^
             T7[(t1>>> 8)&0xFF] ^ T8[(t0     )&0xFF] ^ K[keyOffset++];

        t1 = K[0];
        out[outOffset++] = (byte)(Si[(a0 >>> 24)       ] ^ (t1 >>> 24));
        out[outOffset++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (t1 >>> 16));
        out[outOffset++] = (byte)(Si[(a2 >>>  8) & 0xFF] ^ (t1 >>>  8));
        out[outOffset++] = (byte)(Si[(a1       ) & 0xFF] ^ (t1       ));
        t1 = K[1];
        out[outOffset++] = (byte)(Si[(a1 >>> 24)       ] ^ (t1 >>> 24));
        out[outOffset++] = (byte)(Si[(a0 >>> 16) & 0xFF] ^ (t1 >>> 16));
        out[outOffset++] = (byte)(Si[(t3 >>>  8) & 0xFF] ^ (t1 >>>  8));
        out[outOffset++] = (byte)(Si[(a2       ) & 0xFF] ^ (t1       ));
        t1 = K[2];
        out[outOffset++] = (byte)(Si[(a2 >>> 24)       ] ^ (t1 >>> 24));
        out[outOffset++] = (byte)(Si[(a1 >>> 16) & 0xFF] ^ (t1 >>> 16));
        out[outOffset++] = (byte)(Si[(a0 >>>  8) & 0xFF] ^ (t1 >>>  8));
        out[outOffset++] = (byte)(Si[(t3       ) & 0xFF] ^ (t1       ));
        t1 = K[3];
        out[outOffset++] = (byte)(Si[(t3 >>> 24)       ] ^ (t1 >>> 24));
        out[outOffset++] = (byte)(Si[(a2 >>> 16) & 0xFF] ^ (t1 >>> 16));
        out[outOffset++] = (byte)(Si[(a1 >>>  8) & 0xFF] ^ (t1 >>>  8));
        out[outOffset  ] = (byte)(Si[(a0       ) & 0xFF] ^ (t1       ));
    }

A
andrew 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    // Used to perform all checks required by the Java semantics
    // (i.e., null checks and bounds checks) on the input parameters
    // to encryptBlock and to decryptBlock.
    // Normally, the Java Runtime performs these checks, however, as
    // encryptBlock and decryptBlock are possibly replaced with
    // compiler intrinsics, the JDK performs the required checks instead.
    // Does not check accesses to class-internal (private) arrays.
    private static void cryptBlockCheck(byte[] array, int offset) {
        Objects.requireNonNull(array);

        if (offset < 0 || offset >= array.length) {
            throw new ArrayIndexOutOfBoundsException(offset);
        }

        int largestIndex = offset + AES_BLOCK_SIZE - 1;
        if (largestIndex < 0 || largestIndex >= array.length) {
            throw new ArrayIndexOutOfBoundsException(largestIndex);
        }
    }
D
duke 已提交
610 611 612 613

    /**
     * Expand a user-supplied key material into a session key.
     *
614
     * @param k The 128/192/256-bit cipher key to use.
D
duke 已提交
615 616
     * @exception InvalidKeyException  If the key is invalid.
     */
617
    private void makeSessionKey(byte[] k) throws InvalidKeyException {
D
duke 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        if (k == null) {
            throw new InvalidKeyException("Empty key");
        }
        if (!isKeySizeValid(k.length)) {
             throw new InvalidKeyException("Invalid AES key length: " +
                                           k.length + " bytes");
        }
        int ROUNDS          = getRounds(k.length);
        int ROUND_KEY_COUNT = (ROUNDS + 1) * 4;

        int BC = 4;
        int[][] Ke = new int[ROUNDS + 1][4]; // encryption round keys
        int[][] Kd = new int[ROUNDS + 1][4]; // decryption round keys

        int KC = k.length/4; // keylen in 32-bit elements

        int[] tk = new int[KC];
        int i, j;

        // copy user material bytes into temporary ints
        for (i = 0, j = 0; i < KC; i++, j+=4) {
            tk[i] = (k[j]       ) << 24 |
                    (k[j+1] & 0xFF) << 16 |
                    (k[j+2] & 0xFF) <<  8 |
                    (k[j+3] & 0xFF);
        }

        // copy values into round key arrays
        int t = 0;
        for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
            Ke[t / 4][t % 4] = tk[j];
            Kd[ROUNDS - (t / 4)][t % 4] = tk[j];
        }
        int tt, rconpointer = 0;
        while (t < ROUND_KEY_COUNT) {
            // extrapolate using phi (the round key evolution function)
            tt = tk[KC - 1];
            tk[0] ^= (S[(tt >>> 16) & 0xFF]       ) << 24 ^
                     (S[(tt >>>  8) & 0xFF] & 0xFF) << 16 ^
                     (S[(tt       ) & 0xFF] & 0xFF) <<  8 ^
                     (S[(tt >>> 24)       ] & 0xFF)       ^
                     (rcon[rconpointer++]         ) << 24;
            if (KC != 8)
                for (i = 1, j = 0; i < KC; i++, j++) tk[i] ^= tk[j];
            else {
                for (i = 1, j = 0; i < KC / 2; i++, j++) tk[i] ^= tk[j];
                tt = tk[KC / 2 - 1];
                tk[KC / 2] ^= (S[(tt       ) & 0xFF] & 0xFF)       ^
                              (S[(tt >>>  8) & 0xFF] & 0xFF) <<  8 ^
                              (S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^
                              (S[(tt >>> 24)       ]       ) << 24;
                for (j = KC / 2, i = j + 1; i < KC; i++, j++) tk[i] ^= tk[j];
            }
            // copy values into round key arrays
            for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
                Ke[t / 4][t % 4] = tk[j];
                Kd[ROUNDS - (t / 4)][t % 4] = tk[j];
            }
        }
        for (int r = 1; r < ROUNDS; r++) {
            // inverse MixColumn where needed
            for (j = 0; j < BC; j++) {
                tt = Kd[r][j];
                Kd[r][j] = U1[(tt >>> 24) & 0xFF] ^
                           U2[(tt >>> 16) & 0xFF] ^
                           U3[(tt >>>  8) & 0xFF] ^
                           U4[ tt         & 0xFF];
            }
        }
687 688 689 690 691 692 693 694 695 696 697

        // assemble the encryption (Ke) and decryption (Kd) round keys
        // and expand them into arrays of ints.
        int[] expandedKe = expandToSubKey(Ke, false); // decrypting==false
        int[] expandedKd = expandToSubKey(Kd, true);  // decrypting==true

        ROUNDS_12 = (ROUNDS>=12);
        ROUNDS_14 = (ROUNDS==14);
        limit = ROUNDS*4;

        // store the expanded sub keys into 'sessionK'
S
simonis 已提交
698
        sessionK = new int[][] { expandedKe, expandedKd };
D
duke 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712
    }


    /**
     * Return The number of rounds for a given Rijndael keysize.
     *
     * @param keySize  The size of the user key material in bytes.
     *                 MUST be one of (16, 24, 32).
     * @return         The number of rounds.
     */
    private static int getRounds(int keySize) {
        return (keySize >> 2) + 6;
    }
}