ServerHandshaker.java 50.4 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1996, 2009, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
D
duke 已提交
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
D
duke 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
 */


package sun.security.ssl;

import java.io.*;
import java.util.*;
import java.security.*;
import java.security.cert.*;
import java.security.interfaces.*;
import java.security.spec.ECParameterSpec;

import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

import javax.net.ssl.*;

import javax.security.auth.Subject;

import com.sun.net.ssl.internal.ssl.X509ExtendedTrustManager;

import sun.security.ssl.HandshakeMessage.*;
import sun.security.ssl.CipherSuite.*;
import static sun.security.ssl.CipherSuite.*;
import static sun.security.ssl.CipherSuite.KeyExchange.*;

/**
 * ServerHandshaker does the protocol handshaking from the point
 * of view of a server.  It is driven asychronously by handshake messages
 * as delivered by the parent Handshaker class, and also uses
 * common functionality (e.g. key generation) that is provided there.
 *
 * @author David Brownell
 */
final class ServerHandshaker extends Handshaker {

    // is the server going to require the client to authenticate?
    private byte                doClientAuth;

    // our authentication info
    private X509Certificate[]   certs;
    private PrivateKey          privateKey;

67
    private SecretKey[]       kerberosKeys;
D
duke 已提交
68 69 70 71

    // flag to check for clientCertificateVerify message
    private boolean             needClientVerify = false;

X
xuelei 已提交
72 73 74
    // indicate a renegotiation handshaking
    private boolean             isRenegotiation = false;

D
duke 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    /*
     * For exportable ciphersuites using non-exportable key sizes, we use
     * ephemeral RSA keys. We could also do anonymous RSA in the same way
     * but there are no such ciphersuites currently defined.
     */
    private PrivateKey          tempPrivateKey;
    private PublicKey           tempPublicKey;

    /*
     * For anonymous and ephemeral Diffie-Hellman key exchange, we use
     * ephemeral Diffie-Hellman keys.
     */
    private DHCrypt dh;

    // Helper for ECDH based key exchanges
    private ECDHCrypt ecdh;

    // version request by the client in its ClientHello
    // we remember it for the RSA premaster secret version check
    private ProtocolVersion clientRequestedVersion;

    private SupportedEllipticCurvesExtension supportedCurves;

    /*
     * Constructor ... use the keys found in the auth context.
     */
    ServerHandshaker(SSLSocketImpl socket, SSLContextImpl context,
X
xuelei 已提交
102 103 104
            ProtocolList enabledProtocols, byte clientAuth,
            boolean isRenegotiation, ProtocolVersion activeProtocolVersion) {

D
duke 已提交
105 106 107
        super(socket, context, enabledProtocols,
                        (clientAuth != SSLEngineImpl.clauth_none), false);
        doClientAuth = clientAuth;
X
xuelei 已提交
108 109
        this.isRenegotiation = isRenegotiation;
        this.activeProtocolVersion = activeProtocolVersion;
D
duke 已提交
110 111 112 113 114 115
    }

    /*
     * Constructor ... use the keys found in the auth context.
     */
    ServerHandshaker(SSLEngineImpl engine, SSLContextImpl context,
X
xuelei 已提交
116 117 118
            ProtocolList enabledProtocols, byte clientAuth,
            boolean isRenegotiation, ProtocolVersion activeProtocolVersion) {

D
duke 已提交
119 120 121
        super(engine, context, enabledProtocols,
                        (clientAuth != SSLEngineImpl.clauth_none), false);
        doClientAuth = clientAuth;
X
xuelei 已提交
122 123
        this.isRenegotiation = isRenegotiation;
        this.activeProtocolVersion = activeProtocolVersion;
D
duke 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    }

    /*
     * As long as handshaking has not started, we can change
     * whether client authentication is required.  Otherwise,
     * we will need to wait for the next handshake.
     */
    void setClientAuth(byte clientAuth) {
        doClientAuth = clientAuth;
    }

    /*
     * This routine handles all the server side handshake messages, one at
     * a time.  Given the message type (and in some cases the pending cipher
     * spec) it parses the type-specific message.  Then it calls a function
     * that handles that specific message.
     *
     * It updates the state machine as each message is processed, and writes
     * responses as needed using the connection in the constructor.
     */
    void processMessage(byte type, int message_len)
            throws IOException {
        //
        // In SSLv3 and TLS, messages follow strictly increasing
        // numerical order _except_ for one annoying special case.
        //
        if ((state > type)
                && (state != HandshakeMessage.ht_client_key_exchange
                    && type != HandshakeMessage.ht_certificate_verify)) {
            throw new SSLProtocolException(
                    "Handshake message sequence violation, state = " + state
                    + ", type = " + type);
        }

        switch (type) {
            case HandshakeMessage.ht_client_hello:
                ClientHello ch = new ClientHello(input, message_len);
                /*
                 * send it off for processing.
                 */
                this.clientHello(ch);
                break;

            case HandshakeMessage.ht_certificate:
                if (doClientAuth == SSLEngineImpl.clauth_none) {
                    fatalSE(Alerts.alert_unexpected_message,
                                "client sent unsolicited cert chain");
                    // NOTREACHED
                }
                this.clientCertificate(new CertificateMsg(input));
                break;

            case HandshakeMessage.ht_client_key_exchange:
                SecretKey preMasterSecret;
                switch (keyExchange) {
                case K_RSA:
                case K_RSA_EXPORT:
                    /*
                     * The client's pre-master secret is decrypted using
                     * either the server's normal private RSA key, or the
                     * temporary one used for non-export or signing-only
                     * certificates/keys.
                     */
                    RSAClientKeyExchange pms = new RSAClientKeyExchange
                        (protocolVersion, input, message_len, privateKey);
                    preMasterSecret = this.clientKeyExchange(pms);
                    break;
                case K_KRB5:
                case K_KRB5_EXPORT:
                    preMasterSecret = this.clientKeyExchange(
                        new KerberosClientKeyExchange(protocolVersion,
                            clientRequestedVersion,
                            sslContext.getSecureRandom(),
                            input,
                            kerberosKeys));
                    break;
                case K_DHE_RSA:
                case K_DHE_DSS:
                case K_DH_ANON:
                    /*
                     * The pre-master secret is derived using the normal
                     * Diffie-Hellman calculation.   Note that the main
                     * protocol difference in these five flavors is in how
                     * the ServerKeyExchange message was constructed!
                     */
                    preMasterSecret = this.clientKeyExchange(
                            new DHClientKeyExchange(input));
                    break;
                case K_ECDH_RSA:
                case K_ECDH_ECDSA:
                case K_ECDHE_RSA:
                case K_ECDHE_ECDSA:
                case K_ECDH_ANON:
                    preMasterSecret = this.clientKeyExchange
                                            (new ECDHClientKeyExchange(input));
                    break;
                default:
                    throw new SSLProtocolException
                        ("Unrecognized key exchange: " + keyExchange);
                }

                //
                // All keys are calculated from the premaster secret
                // and the exchanged nonces in the same way.
                //
                calculateKeys(preMasterSecret, clientRequestedVersion);
                break;

            case HandshakeMessage.ht_certificate_verify:
                this.clientCertificateVerify(new CertificateVerify(input));
                break;

            case HandshakeMessage.ht_finished:
                this.clientFinished(new Finished(protocolVersion, input));
                break;

            default:
                throw new SSLProtocolException(
                        "Illegal server handshake msg, " + type);
        }

        //
        // Move the state machine forward except for that annoying
        // special case.  This means that clients could send extra
        // cert verify messages; not a problem so long as all of
        // them actually check out.
        //
        if (state < type && type != HandshakeMessage.ht_certificate_verify) {
            state = type;
        }
    }


    /*
     * ClientHello presents the server with a bunch of options, to which the
     * server replies with a ServerHello listing the ones which this session
     * will use.  If needed, it also writes its Certificate plus in some cases
     * a ServerKeyExchange message.  It may also write a CertificateRequest,
     * to elicit a client certificate.
     *
     * All these messages are terminated by a ServerHelloDone message.  In
     * most cases, all this can be sent in a single Record.
     */
    private void clientHello(ClientHello mesg) throws IOException {
        if (debug != null && Debug.isOn("handshake")) {
            mesg.print(System.out);
        }
X
xuelei 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

        // if it is a renegotiation request and renegotiation is not allowed
        if (isRenegotiation && !renegotiable) {
            if (activeProtocolVersion.v >= ProtocolVersion.TLS10.v) {
                // response with a no_negotiation warning,
                warningSE(Alerts.alert_no_negotiation);

                // invalidate the handshake so that the caller can
                // dispose this object.
                invalidated = true;

                // If there is still unread block in the handshake
                // input stream, it would be truncated with the disposal
                // and the next handshake message will become incomplete.
                //
                // However, according to SSL/TLS specifications, no more
                // handshake message could immediately follow ClientHello
                // or HelloRequest. But in case of any improper messages,
                // we'd better check to ensure there is no remaining bytes
                // in the handshake input stream.
                if (input.available() > 0) {
                    fatalSE(Alerts.alert_unexpected_message,
                        "ClientHello followed by an unexpected  " +
                        "handshake message");

                }

                return;
            } else {
                // For SSLv3, send the handshake_failure fatal error.
                // Note that SSLv3 does not define a no_negotiation alert
                // like TLSv1. However we cannot ignore the message
                // simply, otherwise the other side was waiting for a
                // response that would never come.
                fatalSE(Alerts.alert_handshake_failure,
                    "renegotiation is not allowed");
            }
        }

D
duke 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        /*
         * Always make sure this entire record has been digested before we
         * start emitting output, to ensure correct digesting order.
         */
        input.digestNow();

        /*
         * FIRST, construct the ServerHello using the options and priorities
         * from the ClientHello.  Update the (pending) cipher spec as we do
         * so, and save the client's version to protect against rollback
         * attacks.
         *
         * There are a bunch of minor tasks here, and one major one: deciding
         * if the short or the full handshake sequence will be used.
         */
        ServerHello m1 = new ServerHello();

        clientRequestedVersion = mesg.protocolVersion;

        // check if clientVersion is recent enough for us
        if (clientRequestedVersion.v < enabledProtocols.min.v) {
            fatalSE(Alerts.alert_handshake_failure,
                "Client requested protocol " + clientRequestedVersion +
                 " not enabled or not supported");
        }

        // now we know we have an acceptable version
        // use the lower of our max and the client requested version
        ProtocolVersion selectedVersion;
        if (clientRequestedVersion.v <= enabledProtocols.max.v) {
            selectedVersion = clientRequestedVersion;
        } else {
            selectedVersion = enabledProtocols.max;
        }
        setVersion(selectedVersion);

        m1.protocolVersion = protocolVersion;

        //
        // random ... save client and server values for later use
        // in computing the master secret (from pre-master secret)
        // and thence the other crypto keys.
        //
        // NOTE:  this use of three inputs to generating _each_ set
        // of ciphers slows things down, but it does increase the
        // security since each connection in the session can hold
        // its own authenticated (and strong) keys.  One could make
        // creation of a session a rare thing...
        //
        clnt_random = mesg.clnt_random;
        svr_random = new RandomCookie(sslContext.getSecureRandom());
        m1.svr_random = svr_random;

        session = null; // forget about the current session
        //
        // Here we go down either of two paths:  (a) the fast one, where
        // the client's asked to rejoin an existing session, and the server
        // permits this; (b) the other one, where a new session is created.
        //
        if (mesg.sessionId.length() != 0) {
            // client is trying to resume a session, let's see...

            SSLSessionImpl previous = ((SSLSessionContextImpl)sslContext
                        .engineGetServerSessionContext())
                        .get(mesg.sessionId.getId());
            //
            // Check if we can use the fast path, resuming a session.  We
            // can do so iff we have a valid record for that session, and
            // the cipher suite for that session was on the list which the
            // client requested, and if we're not forgetting any needed
            // authentication on the part of the client.
            //
            if (previous != null) {
                resumingSession = previous.isRejoinable();

                if (resumingSession) {
                    ProtocolVersion oldVersion = previous.getProtocolVersion();
                    // cannot resume session with different version
                    if (oldVersion != protocolVersion) {
                        resumingSession = false;
                    }
                }

                if (resumingSession &&
                        (doClientAuth == SSLEngineImpl.clauth_required)) {
                    try {
                        previous.getPeerPrincipal();
                    } catch (SSLPeerUnverifiedException e) {
                        resumingSession = false;
                    }
                }

                // validate subject identity
                if (resumingSession) {
                    CipherSuite suite = previous.getSuite();
                    if (suite.keyExchange == K_KRB5 ||
                        suite.keyExchange == K_KRB5_EXPORT) {
                        Principal localPrincipal = previous.getLocalPrincipal();

                        Subject subject = null;
                        try {
                            subject = AccessController.doPrivileged(
                                new PrivilegedExceptionAction<Subject>() {
                                public Subject run() throws Exception {
414 415
                                    return
                                        Krb5Helper.getServerSubject(getAccSE());
D
duke 已提交
416 417 418 419 420 421 422 423 424 425
                            }});
                        } catch (PrivilegedActionException e) {
                            subject = null;
                            if (debug != null && Debug.isOn("session")) {
                                System.out.println("Attempt to obtain" +
                                                " subject failed!");
                            }
                        }

                        if (subject != null) {
426 427 428
                            // Eliminate dependency on KerberosPrincipal
                            Set<Principal> principals =
                                subject.getPrincipals(Principal.class);
D
duke 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
                            if (!principals.contains(localPrincipal)) {
                                resumingSession = false;
                                if (debug != null && Debug.isOn("session")) {
                                    System.out.println("Subject identity" +
                                                        " is not the same");
                                }
                            } else {
                                if (debug != null && Debug.isOn("session"))
                                    System.out.println("Subject identity" +
                                                        " is same");
                            }
                        } else {
                            resumingSession = false;
                            if (debug != null && Debug.isOn("session"))
                                System.out.println("Kerberos credentials are" +
                                    " not present in the current Subject;" +
                                    " check if " +
                                    " javax.security.auth.useSubjectAsCreds" +
                                    " system property has been set to false");
                        }
                    }
                }

                if (resumingSession) {
                    CipherSuite suite = previous.getSuite();
                    // verify that the ciphersuite from the cached session
                    // is in the list of client requested ciphersuites and
                    // we have it enabled
                    if ((isEnabled(suite) == false) ||
                            (mesg.getCipherSuites().contains(suite) == false)) {
                        resumingSession = false;
                    } else {
                        // everything looks ok, set the ciphersuite
                        // this should be done last when we are sure we
                        // will resume
                        setCipherSuite(suite);
                    }
                }

                if (resumingSession) {
                    session = previous;
                    if (debug != null &&
                        (Debug.isOn("handshake") || Debug.isOn("session"))) {
                        System.out.println("%% Resuming " + session);
                    }
                }
            }
        } // else client did not try to resume

        //
        // If client hasn't specified a session we can resume, start a
        // new one and choose its cipher suite and compression options.
        // Unless new session creation is disabled for this connection!
        //
        if (session == null) {
            if (!enableNewSession) {
                throw new SSLException("Client did not resume a session");
            }
            supportedCurves = (SupportedEllipticCurvesExtension)mesg.extensions.get
                                        (ExtensionType.EXT_ELLIPTIC_CURVES);
            chooseCipherSuite(mesg);
            session = new SSLSessionImpl(protocolVersion, cipherSuite,
                sslContext.getSecureRandom(),
                getHostAddressSE(), getPortSE());
            session.setLocalPrivateKey(privateKey);
            // chooseCompression(mesg);
        }

        m1.cipherSuite = cipherSuite;
        m1.sessionId = session.getSessionId();
        m1.compression_method = session.getCompression();

        if (debug != null && Debug.isOn("handshake")) {
            m1.print(System.out);
            System.out.println("Cipher suite:  " + session.getSuite());
        }
        m1.write(output);

        //
        // If we are resuming a session, we finish writing handshake
        // messages right now and then finish.
        //
        if (resumingSession) {
            calculateConnectionKeys(session.getMasterSecret());
            sendChangeCipherAndFinish(false);
            return;
        }


        /*
         * SECOND, write the server Certificate(s) if we need to.
         *
         * NOTE:  while an "anonymous RSA" mode is explicitly allowed by
         * the protocol, we can't support it since all of the SSL flavors
         * defined in the protocol spec are explicitly stated to require
         * using RSA certificates.
         */
        if (keyExchange == K_KRB5 || keyExchange == K_KRB5_EXPORT) {
            // Server certificates are omitted for Kerberos ciphers

        } else if ((keyExchange != K_DH_ANON) && (keyExchange != K_ECDH_ANON)) {
            if (certs == null) {
                throw new RuntimeException("no certificates");
            }

            CertificateMsg m2 = new CertificateMsg(certs);

            /*
             * Set local certs in the SSLSession, output
             * debug info, and then actually write to the client.
             */
            session.setLocalCertificates(certs);
            if (debug != null && Debug.isOn("handshake")) {
                m2.print(System.out);
            }
            m2.write(output);

            // XXX has some side effects with OS TCP buffering,
            // leave it out for now

            // let client verify chain in the meantime...
            // output.flush();
        } else {
            if (certs != null) {
                throw new RuntimeException("anonymous keyexchange with certs");
            }
        }

        /*
         * THIRD, the ServerKeyExchange message ... iff it's needed.
         *
         * It's usually needed unless there's an encryption-capable
         * RSA cert, or a D-H cert.  The notable exception is that
         * exportable ciphers used with big RSA keys need to downgrade
         * to use short RSA keys, even when the key/cert encrypts OK.
         */

        ServerKeyExchange m3;
        switch (keyExchange) {
        case K_RSA:
        case K_KRB5:
        case K_KRB5_EXPORT:
            // no server key exchange for RSA or KRB5 ciphersuites
            m3 = null;
            break;
        case K_RSA_EXPORT:
            if (JsseJce.getRSAKeyLength(certs[0].getPublicKey()) > 512) {
                try {
                    m3 = new RSA_ServerKeyExchange(
                        tempPublicKey, privateKey,
                        clnt_random, svr_random,
                        sslContext.getSecureRandom());
                    privateKey = tempPrivateKey;
                } catch (GeneralSecurityException e) {
                    throwSSLException
                        ("Error generating RSA server key exchange", e);
                    m3 = null; // make compiler happy
                }
            } else {
                // RSA_EXPORT with short key, don't need ServerKeyExchange
                m3 = null;
            }
            break;
        case K_DHE_RSA:
        case K_DHE_DSS:
            try {
                m3 = new DH_ServerKeyExchange(dh,
                    privateKey,
                    clnt_random.random_bytes,
                    svr_random.random_bytes,
                    sslContext.getSecureRandom());
            } catch (GeneralSecurityException e) {
                throwSSLException("Error generating DH server key exchange", e);
                m3 = null; // make compiler happy
            }
            break;
        case K_DH_ANON:
            m3 = new DH_ServerKeyExchange(dh);
            break;
        case K_ECDHE_RSA:
        case K_ECDHE_ECDSA:
        case K_ECDH_ANON:
            try {
                m3 = new ECDH_ServerKeyExchange(ecdh,
                    privateKey,
                    clnt_random.random_bytes,
                    svr_random.random_bytes,
                    sslContext.getSecureRandom());
            } catch (GeneralSecurityException e) {
                throwSSLException("Error generating ECDH server key exchange", e);
                m3 = null; // make compiler happy
            }
            break;
        case K_ECDH_RSA:
        case K_ECDH_ECDSA:
            // ServerKeyExchange not used for fixed ECDH
            m3 = null;
            break;
        default:
            throw new RuntimeException("internal error: " + keyExchange);
        }
        if (m3 != null) {
            if (debug != null && Debug.isOn("handshake")) {
                m3.print(System.out);
            }
            m3.write(output);
        }

        //
        // FOURTH, the CertificateRequest message.  The details of
        // the message can be affected by the key exchange algorithm
        // in use.  For example, certs with fixed Diffie-Hellman keys
        // are only useful with the DH_DSS and DH_RSA key exchange
        // algorithms.
        //
        // Needed only if server requires client to authenticate self.
        // Illegal for anonymous flavors, so we need to check that.
        //
        if (keyExchange == K_KRB5 || keyExchange == K_KRB5_EXPORT) {
            // CertificateRequest is omitted for Kerberos ciphers

        } else if (doClientAuth != SSLEngineImpl.clauth_none &&
                keyExchange != K_DH_ANON && keyExchange != K_ECDH_ANON) {
            CertificateRequest m4;
            X509Certificate caCerts[];

            caCerts = sslContext.getX509TrustManager().getAcceptedIssuers();
            m4 = new CertificateRequest(caCerts, keyExchange);

            if (debug != null && Debug.isOn("handshake")) {
                m4.print(System.out);
            }
            m4.write(output);
        }

        /*
         * FIFTH, say ServerHelloDone.
         */
        ServerHelloDone m5 = new ServerHelloDone();

        if (debug != null && Debug.isOn("handshake")) {
            m5.print(System.out);
        }
        m5.write(output);

        /*
         * Flush any buffered messages so the client will see them.
         * Ideally, all the messages above go in a single network level
         * message to the client.  Without big Certificate chains, it's
         * going to be the common case.
         */
        output.flush();
    }

    /*
     * Choose cipher suite from among those supported by client. Sets
     * the cipherSuite and keyExchange variables.
     */
    private void chooseCipherSuite(ClientHello mesg) throws IOException {
        for (CipherSuite suite : mesg.getCipherSuites().collection()) {
            if (isEnabled(suite) == false) {
                continue;
            }
            if (doClientAuth == SSLEngineImpl.clauth_required) {
                if ((suite.keyExchange == K_DH_ANON) || (suite.keyExchange == K_ECDH_ANON)) {
                    continue;
                }
            }
            if (trySetCipherSuite(suite) == false) {
                continue;
            }
            return;
        }
        fatalSE(Alerts.alert_handshake_failure,
                    "no cipher suites in common");
    }

    /**
     * Set the given CipherSuite, if possible. Return the result.
     * The call succeeds if the CipherSuite is available and we have
     * the necessary certificates to complete the handshake. We don't
     * check if the CipherSuite is actually enabled.
     *
     * If successful, this method also generates ephemeral keys if
     * required for this ciphersuite. This may take some time, so this
     * method should only be called if you really want to use the
     * CipherSuite.
     *
     * This method is called from chooseCipherSuite() in this class
     * and SSLServerSocketImpl.checkEnabledSuites() (as a sanity check).
     */
    boolean trySetCipherSuite(CipherSuite suite) {
        /*
         * If we're resuming a session we know we can
         * support this key exchange algorithm and in fact
         * have already cached the result of it in
         * the session state.
         */
        if (resumingSession) {
            return true;
        }

        if (suite.isAvailable() == false) {
            return false;
        }

        KeyExchange keyExchange = suite.keyExchange;

        // null out any existing references
        privateKey = null;
        certs = null;
        dh = null;
        tempPrivateKey = null;
        tempPublicKey = null;

        switch (keyExchange) {
        case K_RSA:
        case K_RSA_EXPORT:
        case K_DHE_RSA:
        case K_ECDHE_RSA:
            // need RSA certs for authentication
            if (setupPrivateKeyAndChain("RSA") == false) {
                return false;
            }

            if (keyExchange == K_RSA_EXPORT) {
                try {
                   if (JsseJce.getRSAKeyLength(certs[0].getPublicKey()) > 512) {
                        if (!setupEphemeralRSAKeys(suite.exportable)) {
                            return false;
                        }
                   }
                } catch (RuntimeException e) {
                    // could not determine keylength, ignore key
                    return false;
                }
            } else if (keyExchange == K_DHE_RSA) {
                setupEphemeralDHKeys(suite.exportable);
            } else if (keyExchange == K_ECDHE_RSA) {
                if (setupEphemeralECDHKeys() == false) {
                    return false;
                }
            } // else nothing more to do for K_RSA
            break;
        case K_DHE_DSS:
            // need DSS certs for authentication
            if (setupPrivateKeyAndChain("DSA") == false) {
                return false;
            }
            setupEphemeralDHKeys(suite.exportable);
            break;
        case K_ECDHE_ECDSA:
            // need EC cert signed using EC
            if (setupPrivateKeyAndChain("EC_EC") == false) {
                return false;
            }
            if (setupEphemeralECDHKeys() == false) {
                return false;
            }
            break;
        case K_ECDH_RSA:
            // need EC cert signed using RSA
            if (setupPrivateKeyAndChain("EC_RSA") == false) {
                return false;
            }
            setupStaticECDHKeys();
            break;
        case K_ECDH_ECDSA:
            // need EC cert signed using EC
            if (setupPrivateKeyAndChain("EC_EC") == false) {
                return false;
            }
            setupStaticECDHKeys();
            break;
        case K_KRB5:
        case K_KRB5_EXPORT:
            // need Kerberos Key
            if (!setupKerberosKeys()) {
                return false;
            }
            break;
        case K_DH_ANON:
            // no certs needed for anonymous
            setupEphemeralDHKeys(suite.exportable);
            break;
        case K_ECDH_ANON:
            // no certs needed for anonymous
            if (setupEphemeralECDHKeys() == false) {
                return false;
            }
            break;
        default:
            // internal error, unknown key exchange
            throw new RuntimeException("Unrecognized cipherSuite: " + suite);
        }
        setCipherSuite(suite);
        return true;
    }

    /*
     * Get some "ephemeral" RSA keys for this context. This means
     * generating them if it's not already been done.
     *
     * Note that we currently do not implement any ciphersuites that use
     * strong ephemeral RSA. (We do not support the EXPORT1024 ciphersuites
     * and standard RSA ciphersuites prohibit ephemeral mode for some reason)
     * This means that export is always true and 512 bit keys are generated.
     */
    private boolean setupEphemeralRSAKeys(boolean export) {
        KeyPair kp = sslContext.getEphemeralKeyManager().
                        getRSAKeyPair(export, sslContext.getSecureRandom());
        if (kp == null) {
            return false;
        } else {
            tempPublicKey = kp.getPublic();
            tempPrivateKey = kp.getPrivate();
            return true;
        }
    }

    /*
     * Acquire some "ephemeral" Diffie-Hellman  keys for this handshake.
     * We don't reuse these, for improved forward secrecy.
     */
    private void setupEphemeralDHKeys(boolean export) {
        /*
         * Diffie-Hellman keys ... we use 768 bit private keys due
         * to the "use twice as many key bits as bits you want secret"
         * rule of thumb, assuming we want the same size premaster
         * secret with Diffie-Hellman and RSA key exchanges.  Except
         * that exportable ciphers max out at 512 bits modulus values.
         */
        dh = new DHCrypt((export ? 512 : 768), sslContext.getSecureRandom());
    }

    // Setup the ephemeral ECDH parameters.
    // If we cannot continue because we do not support any of the curves that
    // the client requested, return false. Otherwise (all is well), return true.
    private boolean setupEphemeralECDHKeys() {
        int index = -1;
        if (supportedCurves != null) {
            // if the client sent the supported curves extension, pick the
            // first one that we support;
            for (int curveId : supportedCurves.curveIds()) {
                if (SupportedEllipticCurvesExtension.isSupported(curveId)) {
                    index = curveId;
                    break;
                }
            }
            if (index < 0) {
                // no match found, cannot use this ciphersuite
                return false;
            }
        } else {
            // pick our preference
            index = SupportedEllipticCurvesExtension.DEFAULT.curveIds()[0];
        }
        String oid = SupportedEllipticCurvesExtension.getCurveOid(index);
        ecdh = new ECDHCrypt(oid, sslContext.getSecureRandom());
        return true;
    }

    private void setupStaticECDHKeys() {
        // don't need to check whether the curve is supported, already done
        // in setupPrivateKeyAndChain().
        ecdh = new ECDHCrypt(privateKey, certs[0].getPublicKey());
    }

    /**
     * Retrieve the server key and certificate for the specified algorithm
     * from the KeyManager and set the instance variables.
     *
     * @return true if successful, false if not available or invalid
     */
    private boolean setupPrivateKeyAndChain(String algorithm) {
        X509ExtendedKeyManager km = sslContext.getX509KeyManager();
        String alias;
        if (conn != null) {
            alias = km.chooseServerAlias(algorithm, null, conn);
        } else {
            alias = km.chooseEngineServerAlias(algorithm, null, engine);
        }
        if (alias == null) {
            return false;
        }
        PrivateKey tempPrivateKey = km.getPrivateKey(alias);
        if (tempPrivateKey == null) {
            return false;
        }
        X509Certificate[] tempCerts = km.getCertificateChain(alias);
        if ((tempCerts == null) || (tempCerts.length == 0)) {
            return false;
        }
        String keyAlgorithm = algorithm.split("_")[0];
        PublicKey publicKey = tempCerts[0].getPublicKey();
        if ((tempPrivateKey.getAlgorithm().equals(keyAlgorithm) == false)
                || (publicKey.getAlgorithm().equals(keyAlgorithm) == false)) {
            return false;
        }
        // For ECC certs, check whether we support the EC domain parameters.
        // If the client sent a SupportedEllipticCurves ClientHello extension,
        // check against that too.
        if (keyAlgorithm.equals("EC")) {
            if (publicKey instanceof ECPublicKey == false) {
                return false;
            }
            ECParameterSpec params = ((ECPublicKey)publicKey).getParams();
            int index = SupportedEllipticCurvesExtension.getCurveIndex(params);
            if (SupportedEllipticCurvesExtension.isSupported(index) == false) {
                return false;
            }
            if ((supportedCurves != null) && !supportedCurves.contains(index)) {
                return false;
            }
        }
        this.privateKey = tempPrivateKey;
        this.certs = tempCerts;
        return true;
    }

    /**
     * Retrieve the Kerberos key for the specified server principal
     * from the JAAS configuration file.
     *
     * @return true if successful, false if not available or invalid
     */
    private boolean setupKerberosKeys() {
        if (kerberosKeys != null) {
            return true;
        }
        try {
            final AccessControlContext acc = getAccSE();
            kerberosKeys = AccessController.doPrivileged(
962 963 964
                // Eliminate dependency on KerberosKey
                new PrivilegedExceptionAction<SecretKey[]>() {
                public SecretKey[] run() throws Exception {
D
duke 已提交
965
                    // get kerberos key for the default principal
966
                    return Krb5Helper.getServerKeys(acc);
D
duke 已提交
967 968 969 970 971 972 973 974 975 976 977 978
                        }});

            // check permission to access and use the secret key of the
            // Kerberized "host" service
            if (kerberosKeys != null) {

                if (debug != null && Debug.isOn("handshake")) {
                    System.out.println("Using Kerberos key: " +
                        kerberosKeys[0]);
                }

                String serverPrincipal =
979
                    Krb5Helper.getServerPrincipalName(kerberosKeys[0]);
D
duke 已提交
980 981 982
                SecurityManager sm = System.getSecurityManager();
                try {
                   if (sm != null) {
983 984 985
                      // Eliminate dependency on ServicePermission
                      sm.checkPermission(Krb5Helper.getServicePermission(
                          serverPrincipal, "accept"), acc);
D
duke 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
                   }
                } catch (SecurityException se) {
                   kerberosKeys = null;
                   // %%% destroy keys? or will that affect Subject?
                   if (debug != null && Debug.isOn("handshake"))
                      System.out.println("Permission to access Kerberos"
                                + " secret key denied");
                   return false;
                }
            }
            return (kerberosKeys != null);
        } catch (PrivilegedActionException e) {
            // Likely exception here is LoginExceptin
            if (debug != null && Debug.isOn("handshake")) {
                System.out.println("Attempt to obtain Kerberos key failed: "
                                + e.toString());
            }
            return false;
        }
    }

    /*
     * For Kerberos ciphers, the premaster secret is encrypted using
     * the session key. See RFC 2712.
     */
    private SecretKey clientKeyExchange(KerberosClientKeyExchange mesg)
        throws IOException {

        if (debug != null && Debug.isOn("handshake")) {
            mesg.print(System.out);
        }

        // Record the principals involved in exchange
        session.setPeerPrincipal(mesg.getPeerPrincipal());
        session.setLocalPrincipal(mesg.getLocalPrincipal());

1022
        byte[] b = mesg.getUnencryptedPreMasterSecret();
D
duke 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        return new SecretKeySpec(b, "TlsPremasterSecret");
    }

    /*
     * Diffie Hellman key exchange is used when the server presented
     * D-H parameters in its certificate (signed using RSA or DSS/DSA),
     * or else the server presented no certificate but sent D-H params
     * in a ServerKeyExchange message.  Use of D-H is specified by the
     * cipher suite chosen.
     *
     * The message optionally contains the client's D-H public key (if
     * it wasn't not sent in a client certificate).  As always with D-H,
     * if a client and a server have each other's D-H public keys and
     * they use common algorithm parameters, they have a shared key
     * that's derived via the D-H calculation.  That key becomes the
     * pre-master secret.
     */
    private SecretKey clientKeyExchange(DHClientKeyExchange mesg)
            throws IOException {

        if (debug != null && Debug.isOn("handshake")) {
            mesg.print(System.out);
        }
        return dh.getAgreedSecret(mesg.getClientPublicKey());
    }

    private SecretKey clientKeyExchange(ECDHClientKeyExchange mesg)
            throws IOException {

        if (debug != null && Debug.isOn("handshake")) {
            mesg.print(System.out);
        }
        return ecdh.getAgreedSecret(mesg.getEncodedPoint());
    }

    /*
     * Client wrote a message to verify the certificate it sent earlier.
     *
     * Note that this certificate isn't involved in key exchange.  Client
     * authentication messages are included in the checksums used to
     * validate the handshake (e.g. Finished messages).  Other than that,
     * the _exact_ identity of the client is less fundamental to protocol
     * security than its role in selecting keys via the pre-master secret.
     */
    private void clientCertificateVerify(CertificateVerify mesg)
            throws IOException {

        if (debug != null && Debug.isOn("handshake")) {
            mesg.print(System.out);
        }

        try {
            PublicKey publicKey =
                session.getPeerCertificates()[0].getPublicKey();

            boolean valid = mesg.verify(protocolVersion, handshakeHash,
                                        publicKey, session.getMasterSecret());
            if (valid == false) {
                fatalSE(Alerts.alert_bad_certificate,
                            "certificate verify message signature error");
            }
        } catch (GeneralSecurityException e) {
            fatalSE(Alerts.alert_bad_certificate,
                "certificate verify format error", e);
        }

        // reset the flag for clientCertificateVerify message
        needClientVerify = false;
    }


    /*
     * Client writes "finished" at the end of its handshake, after cipher
     * spec is changed.   We verify it and then send ours.
     *
     * When we're resuming a session, we'll have already sent our own
     * Finished message so just the verification is needed.
     */
    private void clientFinished(Finished mesg) throws IOException {
        if (debug != null && Debug.isOn("handshake")) {
            mesg.print(System.out);
        }

        /*
         * Verify if client did send the certificate when client
         * authentication was required, otherwise server should not proceed
         */
        if (doClientAuth == SSLEngineImpl.clauth_required) {
           // get X500Principal of the end-entity certificate for X509-based
           // ciphersuites, or Kerberos principal for Kerberos ciphersuites
           session.getPeerPrincipal();
        }

        /*
         * Verify if client did send clientCertificateVerify message following
         * the client Certificate, otherwise server should not proceed
         */
        if (needClientVerify) {
                fatalSE(Alerts.alert_handshake_failure,
                        "client did not send certificate verify message");
        }

        /*
         * Verify the client's message with the "before" digest of messages,
         * and forget about continuing to use that digest.
         */
        boolean verified = mesg.verify(protocolVersion, handshakeHash,
                                Finished.CLIENT, session.getMasterSecret());

        if (!verified) {
            fatalSE(Alerts.alert_handshake_failure,
                        "client 'finished' message doesn't verify");
            // NOTREACHED
        }

        /*
         * OK, it verified.  If we're doing the full handshake, add that
         * "Finished" message to the hash of handshake messages, then send
         * the change_cipher_spec and Finished message.
         */
        if (!resumingSession) {
            input.digestNow();
            sendChangeCipherAndFinish(true);
        }

        /*
         * Update the session cache only after the handshake completed, else
         * we're open to an attack against a partially completed handshake.
         */
        session.setLastAccessedTime(System.currentTimeMillis());
        if (!resumingSession && session.isRejoinable()) {
            ((SSLSessionContextImpl)sslContext.engineGetServerSessionContext())
                .put(session);
            if (debug != null && Debug.isOn("session")) {
                System.out.println(
                    "%% Cached server session: " + session);
            }
        } else if (!resumingSession &&
                debug != null && Debug.isOn("session")) {
            System.out.println(
                "%% Didn't cache non-resumable server session: "
                + session);
        }
    }

    /*
     * Compute finished message with the "server" digest (and then forget
     * about that digest, it can't be used again).
     */
    private void sendChangeCipherAndFinish(boolean finishedTag)
            throws IOException {

        output.flush();

        Finished mesg = new Finished(protocolVersion, handshakeHash,
                                Finished.SERVER, session.getMasterSecret());

        /*
         * Send the change_cipher_spec record; then our Finished handshake
         * message will be the last handshake message.  Flush, and now we
         * are ready for application data!!
         */
        sendChangeCipherSpec(mesg, finishedTag);

        /*
         * Update state machine so client MUST send 'finished' next
         * The update should only take place if it is not in the fast
         * handshake mode since the server has to wait for a finished
         * message from the client.
         */
        if (finishedTag) {
            state = HandshakeMessage.ht_finished;
        }
    }


    /*
     * Returns a HelloRequest message to kickstart renegotiations
     */
    HandshakeMessage getKickstartMessage() {
        return new HelloRequest();
    }


    /*
     * Fault detected during handshake.
     */
    void handshakeAlert(byte description) throws SSLProtocolException {

        String message = Alerts.alertDescription(description);

        if (debug != null && Debug.isOn("handshake")) {
            System.out.println("SSL -- handshake alert:  "
                + message);
        }

        /*
         * It's ok to get a no_certificate alert from a client of which
         * we *requested* authentication information.
         * However, if we *required* it, then this is not acceptable.
         *
         * Anyone calling getPeerCertificates() on the
         * session will get an SSLPeerUnverifiedException.
         */
        if ((description == Alerts.alert_no_certificate) &&
                (doClientAuth == SSLEngineImpl.clauth_requested)) {
            return;
        }

        throw new SSLProtocolException("handshake alert: " + message);
    }

    /*
     * RSA key exchange is normally used.  The client encrypts a "pre-master
     * secret" with the server's public key, from the Certificate (or else
     * ServerKeyExchange) message that was sent to it by the server.  That's
     * decrypted using the private key before we get here.
     */
    private SecretKey clientKeyExchange(RSAClientKeyExchange mesg) throws IOException {

        if (debug != null && Debug.isOn("handshake")) {
            mesg.print(System.out);
        }
        return mesg.preMaster;
    }

    /*
     * Verify the certificate sent by the client. We'll only get one if we
     * sent a CertificateRequest to request client authentication. If we
     * are in TLS mode, the client may send a message with no certificates
     * to indicate it does not have an appropriate chain. (In SSLv3 mode,
     * it would send a no certificate alert).
     */
    private void clientCertificate(CertificateMsg mesg) throws IOException {
        if (debug != null && Debug.isOn("handshake")) {
            mesg.print(System.out);
        }

        X509Certificate[] peerCerts = mesg.getCertificateChain();

        if (peerCerts.length == 0) {
            /*
             * If the client authentication is only *REQUESTED* (e.g.
             * not *REQUIRED*, this is an acceptable condition.)
             */
            if (doClientAuth == SSLEngineImpl.clauth_requested) {
                return;
            } else {
                fatalSE(Alerts.alert_bad_certificate,
                    "null cert chain");
            }
        }

        // ask the trust manager to verify the chain
        X509TrustManager tm = sslContext.getX509TrustManager();

        try {
            // find out the types of client authentication used
            PublicKey key = peerCerts[0].getPublicKey();
            String keyAlgorithm = key.getAlgorithm();
            String authType;
            if (keyAlgorithm.equals("RSA")) {
                authType = "RSA";
            } else if (keyAlgorithm.equals("DSA")) {
                authType = "DSA";
            } else if (keyAlgorithm.equals("EC")) {
                authType = "EC";
            } else {
                // unknown public key type
                authType = "UNKNOWN";
            }

            String identificator = getHostnameVerificationSE();
            if (tm instanceof X509ExtendedTrustManager) {
                ((X509ExtendedTrustManager)tm).checkClientTrusted(
                        (peerCerts != null ?
                            peerCerts.clone() :
                            null),
                        authType,
                        getHostSE(),
                        identificator);
            } else {
                if (identificator != null) {
                    throw new RuntimeException(
                        "trust manager does not support peer identification");
                }

                tm.checkClientTrusted(
                    (peerCerts != null ?
                        peerCerts.clone() :
                        peerCerts),
                    authType);
            }
        } catch (CertificateException e) {
            // This will throw an exception, so include the original error.
            fatalSE(Alerts.alert_certificate_unknown, e);
        }
        // set the flag for clientCertificateVerify message
        needClientVerify = true;

        session.setPeerCertificates(peerCerts);
    }
}