LambdaForm.java 66.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang.invoke;

import java.lang.annotation.*;
import java.lang.reflect.Method;
import java.util.Map;
import java.util.List;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.concurrent.ConcurrentHashMap;
import sun.invoke.util.Wrapper;
import static java.lang.invoke.MethodHandleStatics.*;
import static java.lang.invoke.MethodHandleNatives.Constants.*;
import java.lang.reflect.Field;
import java.util.Objects;

/**
 * The symbolic, non-executable form of a method handle's invocation semantics.
 * It consists of a series of names.
 * The first N (N=arity) names are parameters,
 * while any remaining names are temporary values.
 * Each temporary specifies the application of a function to some arguments.
 * The functions are method handles, while the arguments are mixes of
 * constant values and local names.
 * The result of the lambda is defined as one of the names, often the last one.
 * <p>
 * Here is an approximate grammar:
53
 * <blockquote><pre>{@code
54 55 56 57 58 59 60 61 62
 * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
 * ArgName = "a" N ":" T
 * TempName = "t" N ":" T "=" Function "(" Argument* ");"
 * Function = ConstantValue
 * Argument = NameRef | ConstantValue
 * Result = NameRef | "void"
 * NameRef = "a" N | "t" N
 * N = (any whole number)
 * T = "L" | "I" | "J" | "F" | "D" | "V"
63
 * }</pre></blockquote>
64 65 66 67 68 69 70 71
 * Names are numbered consecutively from left to right starting at zero.
 * (The letters are merely a taste of syntax sugar.)
 * Thus, the first temporary (if any) is always numbered N (where N=arity).
 * Every occurrence of a name reference in an argument list must refer to
 * a name previously defined within the same lambda.
 * A lambda has a void result if and only if its result index is -1.
 * If a temporary has the type "V", it cannot be the subject of a NameRef,
 * even though possesses a number.
72
 * Note that all reference types are erased to "L", which stands for {@code Object}.
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
 * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
 * The other types stand for the usual primitive types.
 * <p>
 * Function invocation closely follows the static rules of the Java verifier.
 * Arguments and return values must exactly match when their "Name" types are
 * considered.
 * Conversions are allowed only if they do not change the erased type.
 * <ul>
 * <li>L = Object: casts are used freely to convert into and out of reference types
 * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
 * <li>J = long: no implicit conversions
 * <li>F = float: no implicit conversions
 * <li>D = double: no implicit conversions
 * <li>V = void: a function result may be void if and only if its Name is of type "V"
 * </ul>
 * Although implicit conversions are not allowed, explicit ones can easily be
 * encoded by using temporary expressions which call type-transformed identity functions.
 * <p>
 * Examples:
92
 * <blockquote><pre>{@code
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 * (a0:J)=>{ a0 }
 *     == identity(long)
 * (a0:I)=>{ t1:V = System.out#println(a0); void }
 *     == System.out#println(int)
 * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 *     == identity, with printing side-effect
 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 *                 t3:L = BoundMethodHandle#target(a0);
 *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 *     == general invoker for unary insertArgument combination
 * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 *                 t3:L = MethodHandle#invoke(t2, a1);
 *                 t4:L = FilterMethodHandle#target(a0);
 *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 *     == general invoker for unary filterArgument combination
 * (a0:L, a1:L)=>{ ...(same as previous example)...
 *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 *     == general invoker for unary/unary foldArgument combination
 * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 *     == invoker for identity method handle which performs i2l
 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 *                 t3:L = Class#cast(t2,a1); t3 }
 *     == invoker for identity method handle which performs cast
116
 * }</pre></blockquote>
117 118 119 120 121 122
 * <p>
 * @author John Rose, JSR 292 EG
 */
class LambdaForm {
    final int arity;
    final int result;
123
    @Stable final Name[] names;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    final String debugName;
    MemberName vmentry;   // low-level behavior, or null if not yet prepared
    private boolean isCompiled;

    // Caches for common structural transforms:
    LambdaForm[] bindCache;

    public static final int VOID_RESULT = -1, LAST_RESULT = -2;

    LambdaForm(String debugName,
               int arity, Name[] names, int result) {
        assert(namesOK(arity, names));
        this.arity = arity;
        this.result = fixResult(result, names);
        this.names = names.clone();
        this.debugName = debugName;
        normalize();
    }

    LambdaForm(String debugName,
               int arity, Name[] names) {
        this(debugName,
             arity, names, LAST_RESULT);
    }

    LambdaForm(String debugName,
               Name[] formals, Name[] temps, Name result) {
        this(debugName,
             formals.length, buildNames(formals, temps, result), LAST_RESULT);
    }

    private static Name[] buildNames(Name[] formals, Name[] temps, Name result) {
        int arity = formals.length;
        int length = arity + temps.length + (result == null ? 0 : 1);
        Name[] names = Arrays.copyOf(formals, length);
        System.arraycopy(temps, 0, names, arity, temps.length);
        if (result != null)
            names[length - 1] = result;
        return names;
    }

    private LambdaForm(String sig) {
        // Make a blank lambda form, which returns a constant zero or null.
        // It is used as a template for managing the invocation of similar forms that are non-empty.
        // Called only from getPreparedForm.
        assert(isValidSignature(sig));
        this.arity = signatureArity(sig);
        this.result = (signatureReturn(sig) == 'V' ? -1 : arity);
        this.names = buildEmptyNames(arity, sig);
        this.debugName = "LF.zero";
        assert(nameRefsAreLegal());
        assert(isEmpty());
        assert(sig.equals(basicTypeSignature()));
    }

    private static Name[] buildEmptyNames(int arity, String basicTypeSignature) {
        assert(isValidSignature(basicTypeSignature));
        int resultPos = arity + 1;  // skip '_'
        if (arity < 0 || basicTypeSignature.length() != resultPos+1)
            throw new IllegalArgumentException("bad arity for "+basicTypeSignature);
        int numRes = (basicTypeSignature.charAt(resultPos) == 'V' ? 0 : 1);
        Name[] names = arguments(numRes, basicTypeSignature.substring(0, arity));
        for (int i = 0; i < numRes; i++) {
            names[arity + i] = constantZero(arity + i, basicTypeSignature.charAt(resultPos + i));
        }
        return names;
    }

    private static int fixResult(int result, Name[] names) {
        if (result >= 0) {
            if (names[result].type == 'V')
                return -1;
        } else if (result == LAST_RESULT) {
            return names.length - 1;
        }
        return result;
    }

    private static boolean namesOK(int arity, Name[] names) {
        for (int i = 0; i < names.length; i++) {
            Name n = names[i];
            assert(n != null) : "n is null";
            if (i < arity)
                assert( n.isParam()) : n + " is not param at " + i;
            else
                assert(!n.isParam()) : n + " is param at " + i;
        }
        return true;
    }

    /** Renumber and/or replace params so that they are interned and canonically numbered. */
    private void normalize() {
        Name[] oldNames = null;
        int changesStart = 0;
        for (int i = 0; i < names.length; i++) {
            Name n = names[i];
            if (!n.initIndex(i)) {
                if (oldNames == null) {
                    oldNames = names.clone();
                    changesStart = i;
                }
                names[i] = n.cloneWithIndex(i);
            }
        }
        if (oldNames != null) {
            int startFixing = arity;
            if (startFixing <= changesStart)
                startFixing = changesStart+1;
            for (int i = startFixing; i < names.length; i++) {
                Name fixed = names[i].replaceNames(oldNames, names, changesStart, i);
                names[i] = fixed.newIndex(i);
            }
        }
        assert(nameRefsAreLegal());
        int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
        boolean needIntern = false;
        for (int i = 0; i < maxInterned; i++) {
            Name n = names[i], n2 = internArgument(n);
            if (n != n2) {
                names[i] = n2;
                needIntern = true;
            }
        }
        if (needIntern) {
            for (int i = arity; i < names.length; i++) {
                names[i].internArguments();
            }
            assert(nameRefsAreLegal());
        }
    }

    /**
     * Check that all embedded Name references are localizable to this lambda,
     * and are properly ordered after their corresponding definitions.
     * <p>
     * Note that a Name can be local to multiple lambdas, as long as
     * it possesses the same index in each use site.
     * This allows Name references to be freely reused to construct
     * fresh lambdas, without confusion.
     */
    private boolean nameRefsAreLegal() {
        assert(arity >= 0 && arity <= names.length);
        assert(result >= -1 && result < names.length);
        // Do all names possess an index consistent with their local definition order?
        for (int i = 0; i < arity; i++) {
            Name n = names[i];
            assert(n.index() == i) : Arrays.asList(n.index(), i);
            assert(n.isParam());
        }
        // Also, do all local name references
        for (int i = arity; i < names.length; i++) {
            Name n = names[i];
            assert(n.index() == i);
            for (Object arg : n.arguments) {
                if (arg instanceof Name) {
                    Name n2 = (Name) arg;
                    int i2 = n2.index;
                    assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
                    assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
                    assert(i2 < i);  // ref must come after def!
                }
            }
        }
        return true;
    }

    /** Invoke this form on the given arguments. */
    // final Object invoke(Object... args) throws Throwable {
    //     // NYI: fit this into the fast path?
    //     return interpretWithArguments(args);
    // }

    /** Report the return type. */
    char returnType() {
        if (result < 0)  return 'V';
        Name n = names[result];
        return n.type;
    }

    /** Report the N-th argument type. */
    char parameterType(int n) {
        assert(n < arity);
        return names[n].type;
    }

    /** Report the arity. */
    int arity() {
        return arity;
    }

    /** Return the method type corresponding to my basic type signature. */
    MethodType methodType() {
        return signatureType(basicTypeSignature());
    }
    /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
    final String basicTypeSignature() {
        StringBuilder buf = new StringBuilder(arity() + 3);
        for (int i = 0, a = arity(); i < a; i++)
            buf.append(parameterType(i));
        return buf.append('_').append(returnType()).toString();
    }
    static int signatureArity(String sig) {
        assert(isValidSignature(sig));
        return sig.indexOf('_');
    }
    static char signatureReturn(String sig) {
        return sig.charAt(signatureArity(sig)+1);
    }
    static boolean isValidSignature(String sig) {
        int arity = sig.indexOf('_');
        if (arity < 0)  return false;  // must be of the form *_*
        int siglen = sig.length();
        if (siglen != arity + 2)  return false;  // *_X
        for (int i = 0; i < siglen; i++) {
            if (i == arity)  continue;  // skip '_'
            char c = sig.charAt(i);
            if (c == 'V')
                return (i == siglen - 1 && arity == siglen - 2);
            if (ALL_TYPES.indexOf(c) < 0)  return false; // must be [LIJFD]
        }
        return true;  // [LIJFD]*_[LIJFDV]
    }
    static Class<?> typeClass(char t) {
        switch (t) {
        case 'I': return int.class;
        case 'J': return long.class;
        case 'F': return float.class;
        case 'D': return double.class;
        case 'L': return Object.class;
        case 'V': return void.class;
        default: assert false;
        }
        return null;
    }
    static MethodType signatureType(String sig) {
        Class<?>[] ptypes = new Class<?>[signatureArity(sig)];
        for (int i = 0; i < ptypes.length; i++)
            ptypes[i] = typeClass(sig.charAt(i));
        Class<?> rtype = typeClass(signatureReturn(sig));
        return MethodType.methodType(rtype, ptypes);
    }

    /*
     * Code generation issues:
     *
     * Compiled LFs should be reusable in general.
     * The biggest issue is how to decide when to pull a name into
     * the bytecode, versus loading a reified form from the MH data.
     *
     * For example, an asType wrapper may require execution of a cast
     * after a call to a MH.  The target type of the cast can be placed
     * as a constant in the LF itself.  This will force the cast type
     * to be compiled into the bytecodes and native code for the MH.
     * Or, the target type of the cast can be erased in the LF, and
     * loaded from the MH data.  (Later on, if the MH as a whole is
     * inlined, the data will flow into the inlined instance of the LF,
     * as a constant, and the end result will be an optimal cast.)
     *
     * This erasure of cast types can be done with any use of
     * reference types.  It can also be done with whole method
     * handles.  Erasing a method handle might leave behind
     * LF code that executes correctly for any MH of a given
     * type, and load the required MH from the enclosing MH's data.
     * Or, the erasure might even erase the expected MT.
     *
     * Also, for direct MHs, the MemberName of the target
     * could be erased, and loaded from the containing direct MH.
     * As a simple case, a LF for all int-valued non-static
     * field getters would perform a cast on its input argument
     * (to non-constant base type derived from the MemberName)
     * and load an integer value from the input object
     * (at a non-constant offset also derived from the MemberName).
     * Such MN-erased LFs would be inlinable back to optimized
     * code, whenever a constant enclosing DMH is available
     * to supply a constant MN from its data.
     *
     * The main problem here is to keep LFs reasonably generic,
     * while ensuring that hot spots will inline good instances.
     * "Reasonably generic" means that we don't end up with
     * repeated versions of bytecode or machine code that do
     * not differ in their optimized form.  Repeated versions
     * of machine would have the undesirable overheads of
     * (a) redundant compilation work and (b) extra I$ pressure.
     * To control repeated versions, we need to be ready to
     * erase details from LFs and move them into MH data,
     * whevener those details are not relevant to significant
     * optimization.  "Significant" means optimization of
     * code that is actually hot.
     *
     * Achieving this may require dynamic splitting of MHs, by replacing
     * a generic LF with a more specialized one, on the same MH,
     * if (a) the MH is frequently executed and (b) the MH cannot
     * be inlined into a containing caller, such as an invokedynamic.
     *
     * Compiled LFs that are no longer used should be GC-able.
     * If they contain non-BCP references, they should be properly
     * interlinked with the class loader(s) that their embedded types
     * depend on.  This probably means that reusable compiled LFs
     * will be tabulated (indexed) on relevant class loaders,
     * or else that the tables that cache them will have weak links.
     */

    /**
     * Make this LF directly executable, as part of a MethodHandle.
     * Invariant:  Every MH which is invoked must prepare its LF
     * before invocation.
     * (In principle, the JVM could do this very lazily,
     * as a sort of pre-invocation linkage step.)
     */
    public void prepare() {
        if (COMPILE_THRESHOLD == 0) {
            compileToBytecode();
        }
        if (this.vmentry != null) {
            // already prepared (e.g., a primitive DMH invoker form)
            return;
        }
        LambdaForm prep = getPreparedForm(basicTypeSignature());
        this.vmentry = prep.vmentry;
        // TO DO: Maybe add invokeGeneric, invokeWithArguments
    }

    /** Generate optimizable bytecode for this form. */
    MemberName compileToBytecode() {
        MethodType invokerType = methodType();
        assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
        if (vmentry != null && isCompiled) {
            return vmentry;  // already compiled somehow
        }
        try {
            vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
            if (TRACE_INTERPRETER)
                traceInterpreter("compileToBytecode", this);
            isCompiled = true;
            return vmentry;
        } catch (Error | Exception ex) {
460
            throw newInternalError("compileToBytecode", ex);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
        }
    }

    private static final ConcurrentHashMap<String,LambdaForm> PREPARED_FORMS;
    static {
        int   capacity   = 512;    // expect many distinct signatures over time
        float loadFactor = 0.75f;  // normal default
        int   writers    = 1;
        PREPARED_FORMS = new ConcurrentHashMap<>(capacity, loadFactor, writers);
    }

    private static Map<String,LambdaForm> computeInitialPreparedForms() {
        // Find all predefined invokers and associate them with canonical empty lambda forms.
        HashMap<String,LambdaForm> forms = new HashMap<>();
        for (MemberName m : MemberName.getFactory().getMethods(LambdaForm.class, false, null, null, null)) {
            if (!m.isStatic() || !m.isPackage())  continue;
            MethodType mt = m.getMethodType();
            if (mt.parameterCount() > 0 &&
                mt.parameterType(0) == MethodHandle.class &&
                m.getName().startsWith("interpret_")) {
                String sig = basicTypeSignature(mt);
                assert(m.getName().equals("interpret" + sig.substring(sig.indexOf('_'))));
                LambdaForm form = new LambdaForm(sig);
                form.vmentry = m;
                mt.form().setCachedLambdaForm(MethodTypeForm.LF_COUNTER, form);
                // FIXME: get rid of PREPARED_FORMS; use MethodTypeForm cache only
                forms.put(sig, form);
            }
        }
        //System.out.println("computeInitialPreparedForms => "+forms);
        return forms;
    }

    // Set this false to disable use of the interpret_L methods defined in this file.
    private static final boolean USE_PREDEFINED_INTERPRET_METHODS = true;

    // The following are predefined exact invokers.  The system must build
    // a separate invoker for each distinct signature.
    static Object interpret_L(MethodHandle mh) throws Throwable {
        Object[] av = {mh};
        String sig = null;
        assert(argumentTypesMatch(sig = "L_L", av));
        Object res = mh.form.interpretWithArguments(av);
        assert(returnTypesMatch(sig, av, res));
        return res;
    }
    static Object interpret_L(MethodHandle mh, Object x1) throws Throwable {
        Object[] av = {mh, x1};
        String sig = null;
        assert(argumentTypesMatch(sig = "LL_L", av));
        Object res = mh.form.interpretWithArguments(av);
        assert(returnTypesMatch(sig, av, res));
        return res;
    }
    static Object interpret_L(MethodHandle mh, Object x1, Object x2) throws Throwable {
        Object[] av = {mh, x1, x2};
        String sig = null;
        assert(argumentTypesMatch(sig = "LLL_L", av));
        Object res = mh.form.interpretWithArguments(av);
        assert(returnTypesMatch(sig, av, res));
        return res;
    }
    private static LambdaForm getPreparedForm(String sig) {
        MethodType mtype = signatureType(sig);
        //LambdaForm prep = PREPARED_FORMS.get(sig);
        LambdaForm prep =  mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
        if (prep != null)  return prep;
        assert(isValidSignature(sig));
        prep = new LambdaForm(sig);
        prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(sig);
        //LambdaForm prep2 = PREPARED_FORMS.putIfAbsent(sig.intern(), prep);
        return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
    }

    // The next few routines are called only from assert expressions
    // They verify that the built-in invokers process the correct raw data types.
    private static boolean argumentTypesMatch(String sig, Object[] av) {
        int arity = signatureArity(sig);
        assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
        assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0];
        MethodHandle mh = (MethodHandle) av[0];
        MethodType mt = mh.type();
        assert(mt.parameterCount() == arity-1);
        for (int i = 0; i < av.length; i++) {
            Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
            assert(valueMatches(sig.charAt(i), pt, av[i]));
        }
        return true;
    }
    private static boolean valueMatches(char tc, Class<?> type, Object x) {
        // The following line is needed because (...)void method handles can use non-void invokers
        if (type == void.class)  tc = 'V';   // can drop any kind of value
        assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
        switch (tc) {
        case 'I': assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
        case 'J': assert x instanceof Long   : "instanceof Long: " + x;             break;
        case 'F': assert x instanceof Float  : "instanceof Float: " + x;            break;
        case 'D': assert x instanceof Double : "instanceof Double: " + x;           break;
        case 'L': assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
        case 'V': break;  // allow anything here; will be dropped
        default:  assert(false);
        }
        return true;
    }
    private static boolean returnTypesMatch(String sig, Object[] av, Object res) {
        MethodHandle mh = (MethodHandle) av[0];
        return valueMatches(signatureReturn(sig), mh.type().returnType(), res);
    }
    private static boolean checkInt(Class<?> type, Object x) {
        assert(x instanceof Integer);
        if (type == int.class)  return true;
        Wrapper w = Wrapper.forBasicType(type);
        assert(w.isSubwordOrInt());
        Object x1 = Wrapper.INT.wrap(w.wrap(x));
        return x.equals(x1);
    }
    private static boolean checkRef(Class<?> type, Object x) {
        assert(!type.isPrimitive());
        if (x == null)  return true;
        if (type.isInterface())  return true;
        return type.isInstance(x);
    }

    /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
    private static final int COMPILE_THRESHOLD;
    static {
        if (MethodHandleStatics.COMPILE_THRESHOLD != null)
            COMPILE_THRESHOLD = MethodHandleStatics.COMPILE_THRESHOLD;
        else
            COMPILE_THRESHOLD = 30;  // default value
    }
    private int invocationCounter = 0;

    @Hidden
T
twisti 已提交
595
    @DontInline
596 597 598 599
    /** Interpretively invoke this form on the given arguments. */
    Object interpretWithArguments(Object... argumentValues) throws Throwable {
        if (TRACE_INTERPRETER)
            return interpretWithArgumentsTracing(argumentValues);
600
        checkInvocationCounter();
601 602 603 604 605 606 607 608 609
        assert(arityCheck(argumentValues));
        Object[] values = Arrays.copyOf(argumentValues, names.length);
        for (int i = argumentValues.length; i < values.length; i++) {
            values[i] = interpretName(names[i], values);
        }
        return (result < 0) ? null : values[result];
    }

    @Hidden
T
twisti 已提交
610
    @DontInline
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    /** Evaluate a single Name within this form, applying its function to its arguments. */
    Object interpretName(Name name, Object[] values) throws Throwable {
        if (TRACE_INTERPRETER)
            traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
        Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
        for (int i = 0; i < arguments.length; i++) {
            Object a = arguments[i];
            if (a instanceof Name) {
                int i2 = ((Name)a).index();
                assert(names[i2] == a);
                a = values[i2];
                arguments[i] = a;
            }
        }
        return name.function.invokeWithArguments(arguments);
    }

628 629 630 631 632 633 634 635 636 637
    private void checkInvocationCounter() {
        if (COMPILE_THRESHOLD != 0 &&
            invocationCounter < COMPILE_THRESHOLD) {
            invocationCounter++;  // benign race
            if (invocationCounter >= COMPILE_THRESHOLD) {
                // Replace vmentry with a bytecode version of this LF.
                compileToBytecode();
            }
        }
    }
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
        traceInterpreter("[ interpretWithArguments", this, argumentValues);
        if (invocationCounter < COMPILE_THRESHOLD) {
            int ctr = invocationCounter++;  // benign race
            traceInterpreter("| invocationCounter", ctr);
            if (invocationCounter >= COMPILE_THRESHOLD) {
                compileToBytecode();
            }
        }
        Object rval;
        try {
            assert(arityCheck(argumentValues));
            Object[] values = Arrays.copyOf(argumentValues, names.length);
            for (int i = argumentValues.length; i < values.length; i++) {
                values[i] = interpretName(names[i], values);
            }
            rval = (result < 0) ? null : values[result];
        } catch (Throwable ex) {
            traceInterpreter("] throw =>", ex);
            throw ex;
        }
        traceInterpreter("] return =>", rval);
        return rval;
    }

    //** This transform is applied (statically) to every name.function. */
    /*
    private static MethodHandle eraseSubwordTypes(MethodHandle mh) {
        MethodType mt = mh.type();
        if (mt.hasPrimitives()) {
            mt = mt.changeReturnType(eraseSubwordType(mt.returnType()));
            for (int i = 0; i < mt.parameterCount(); i++) {
                mt = mt.changeParameterType(i, eraseSubwordType(mt.parameterType(i)));
            }
            mh = MethodHandles.explicitCastArguments(mh, mt);
        }
        return mh;
    }
    private static Class<?> eraseSubwordType(Class<?> type) {
        if (!type.isPrimitive())  return type;
        if (type == int.class)  return type;
        Wrapper w = Wrapper.forPrimitiveType(type);
        if (w.isSubwordOrInt())  return int.class;
        return type;
    }
    */

    static void traceInterpreter(String event, Object obj, Object... args) {
686 687 688
        if (TRACE_INTERPRETER) {
            System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
        }
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    }
    static void traceInterpreter(String event, Object obj) {
        traceInterpreter(event, obj, (Object[])null);
    }
    private boolean arityCheck(Object[] argumentValues) {
        assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
        // also check that the leading (receiver) argument is somehow bound to this LF:
        assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
        assert(((MethodHandle)argumentValues[0]).internalForm() == this);
        // note:  argument #0 could also be an interface wrapper, in the future
        return true;
    }

    private boolean isEmpty() {
        if (result < 0)
            return (names.length == arity);
        else if (result == arity && names.length == arity + 1)
            return names[arity].isConstantZero();
        else
            return false;
    }

    public String toString() {
712
        StringBuilder buf = new StringBuilder(debugName+"=Lambda(");
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
        for (int i = 0; i < names.length; i++) {
            if (i == arity)  buf.append(")=>{");
            Name n = names[i];
            if (i >= arity)  buf.append("\n    ");
            buf.append(n);
            if (i < arity) {
                if (i+1 < arity)  buf.append(",");
                continue;
            }
            buf.append("=").append(n.exprString());
            buf.append(";");
        }
        buf.append(result < 0 ? "void" : names[result]).append("}");
        if (TRACE_INTERPRETER) {
            // Extra verbosity:
            buf.append(":").append(basicTypeSignature());
            buf.append("/").append(vmentry);
        }
        return buf.toString();
    }

    /**
     * Apply immediate binding for a Name in this form indicated by its position relative to the form.
     * The first parameter to a LambdaForm, a0:L, always represents the form's method handle, so 0 is not
     * accepted as valid.
     */
    LambdaForm bindImmediate(int pos, char basicType, Object value) {
        // must be an argument, and the types must match
        assert pos > 0 && pos < arity && names[pos].type == basicType && Name.typesMatch(basicType, value);

        int arity2 = arity - 1;
        Name[] names2 = new Name[names.length - 1];
        for (int r = 0, w = 0; r < names.length; ++r, ++w) { // (r)ead from names, (w)rite to names2
            Name n = names[r];
            if (n.isParam()) {
                if (n.index == pos) {
                    // do not copy over the argument that is to be replaced with a literal,
                    // but adjust the write index
                    --w;
                } else {
                    names2[w] = new Name(w, n.type);
                }
            } else {
                Object[] arguments2 = new Object[n.arguments.length];
                for (int i = 0; i < n.arguments.length; ++i) {
                    Object arg = n.arguments[i];
                    if (arg instanceof Name) {
                        int ni = ((Name) arg).index;
                        if (ni == pos) {
                            arguments2[i] = value;
                        } else if (ni < pos) {
                            // replacement position not yet passed
                            arguments2[i] = names2[ni];
                        } else {
                            // replacement position passed
                            arguments2[i] = names2[ni - 1];
                        }
                    } else {
                        arguments2[i] = arg;
                    }
                }
                names2[w] = new Name(n.function, arguments2);
                names2[w].initIndex(w);
            }
        }

        int result2 = result == -1 ? -1 : result - 1;
        return new LambdaForm(debugName, arity2, names2, result2);
    }

    LambdaForm bind(int namePos, BoundMethodHandle.SpeciesData oldData) {
        Name name = names[namePos];
        BoundMethodHandle.SpeciesData newData = oldData.extendWithType(name.type);
        return bind(name, newData.getterName(names[0], oldData.fieldCount()), oldData, newData);
    }
    LambdaForm bind(Name name, Name binding,
                    BoundMethodHandle.SpeciesData oldData,
                    BoundMethodHandle.SpeciesData newData) {
        int pos = name.index;
        assert(name.isParam());
        assert(!binding.isParam());
        assert(name.type == binding.type);
        assert(0 <= pos && pos < arity && names[pos] == name);
        assert(binding.function.memberDeclaringClassOrNull() == newData.clazz);
        assert(oldData.getters.length == newData.getters.length-1);
        if (bindCache != null) {
            LambdaForm form = bindCache[pos];
            if (form != null) {
                assert(form.contains(binding)) : "form << " + form + " >> does not contain binding << " + binding + " >>";
                return form;
            }
        } else {
            bindCache = new LambdaForm[arity];
        }
        assert(nameRefsAreLegal());
        int arity2 = arity-1;
        Name[] names2 = names.clone();
        names2[pos] = binding;  // we might move this in a moment

        // The newly created LF will run with a different BMH.
        // Switch over any pre-existing BMH field references to the new BMH class.
        int firstOldRef = -1;
        for (int i = 0; i < names2.length; i++) {
            Name n = names[i];
            if (n.function != null &&
                n.function.memberDeclaringClassOrNull() == oldData.clazz) {
                MethodHandle oldGetter = n.function.resolvedHandle;
                MethodHandle newGetter = null;
                for (int j = 0; j < oldData.getters.length; j++) {
                    if (oldGetter == oldData.getters[j])
                        newGetter =  newData.getters[j];
                }
                if (newGetter != null) {
                    if (firstOldRef < 0)  firstOldRef = i;
                    Name n2 = new Name(newGetter, n.arguments);
                    names2[i] = n2;
                }
            }
        }

        // Walk over the new list of names once, in forward order.
        // Replace references to 'name' with 'binding'.
        // Replace data structure references to the old BMH species with the new.
        // This might cause a ripple effect, but it will settle in one pass.
        assert(firstOldRef < 0 || firstOldRef > pos);
        for (int i = pos+1; i < names2.length; i++) {
            if (i <= arity2)  continue;
            names2[i] = names2[i].replaceNames(names, names2, pos, i);
        }

        //  (a0, a1, name=a2, a3, a4)  =>  (a0, a1, a3, a4, binding)
        int insPos = pos;
        for (; insPos+1 < names2.length; insPos++) {
            Name n = names2[insPos+1];
            if (n.isSiblingBindingBefore(binding)) {
                names2[insPos] = n;
            } else {
                break;
            }
        }
        names2[insPos] = binding;

        // Since we moved some stuff, maybe update the result reference:
        int result2 = result;
        if (result2 == pos)
            result2 = insPos;
        else if (result2 > pos && result2 <= insPos)
            result2 -= 1;

        return bindCache[pos] = new LambdaForm(debugName, arity2, names2, result2);
    }

    boolean contains(Name name) {
        int pos = name.index();
        if (pos >= 0) {
            return pos < names.length && name.equals(names[pos]);
        }
        for (int i = arity; i < names.length; i++) {
            if (name.equals(names[i]))
                return true;
        }
        return false;
    }

    LambdaForm addArguments(int pos, char... types) {
        assert(pos <= arity);
        int length = names.length;
        int inTypes = types.length;
        Name[] names2 = Arrays.copyOf(names, length + inTypes);
        int arity2 = arity + inTypes;
        int result2 = result;
        if (result2 >= arity)
            result2 += inTypes;
        // names array has MH in slot 0; skip it.
        int argpos = pos + 1;
        // Note:  The LF constructor will rename names2[argpos...].
        // Make space for new arguments (shift temporaries).
        System.arraycopy(names, argpos, names2, argpos + inTypes, length - argpos);
        for (int i = 0; i < inTypes; i++) {
            names2[argpos + i] = new Name(types[i]);
        }
        return new LambdaForm(debugName, arity2, names2, result2);
    }

    LambdaForm addArguments(int pos, List<Class<?>> types) {
        char[] basicTypes = new char[types.size()];
        for (int i = 0; i < basicTypes.length; i++)
            basicTypes[i] = basicType(types.get(i));
        return addArguments(pos, basicTypes);
    }

    LambdaForm permuteArguments(int skip, int[] reorder, char[] types) {
        // Note:  When inArg = reorder[outArg], outArg is fed by a copy of inArg.
        // The types are the types of the new (incoming) arguments.
        int length = names.length;
        int inTypes = types.length;
        int outArgs = reorder.length;
        assert(skip+outArgs == arity);
        assert(permutedTypesMatch(reorder, types, names, skip));
        int pos = 0;
        // skip trivial first part of reordering:
        while (pos < outArgs && reorder[pos] == pos)  pos += 1;
        Name[] names2 = new Name[length - outArgs + inTypes];
        System.arraycopy(names, 0, names2, 0, skip+pos);
        // copy the body:
        int bodyLength = length - arity;
        System.arraycopy(names, skip+outArgs, names2, skip+inTypes, bodyLength);
        int arity2 = names2.length - bodyLength;
        int result2 = result;
        if (result2 >= 0) {
            if (result2 < skip+outArgs) {
                // return the corresponding inArg
                result2 = reorder[result2-skip];
            } else {
                result2 = result2 - outArgs + inTypes;
            }
        }
        // rework names in the body:
        for (int j = pos; j < outArgs; j++) {
            Name n = names[skip+j];
            int i = reorder[j];
            // replace names[skip+j] by names2[skip+i]
            Name n2 = names2[skip+i];
            if (n2 == null)
                names2[skip+i] = n2 = new Name(types[i]);
            else
                assert(n2.type == types[i]);
            for (int k = arity2; k < names2.length; k++) {
                names2[k] = names2[k].replaceName(n, n2);
            }
        }
        // some names are unused, but must be filled in
        for (int i = skip+pos; i < arity2; i++) {
            if (names2[i] == null)
                names2[i] = argument(i, types[i - skip]);
        }
        for (int j = arity; j < names.length; j++) {
            int i = j - arity + arity2;
            // replace names2[i] by names[j]
            Name n = names[j];
            Name n2 = names2[i];
            if (n != n2) {
                for (int k = i+1; k < names2.length; k++) {
                    names2[k] = names2[k].replaceName(n, n2);
                }
            }
        }
        return new LambdaForm(debugName, arity2, names2, result2);
    }

    static boolean permutedTypesMatch(int[] reorder, char[] types, Name[] names, int skip) {
        int inTypes = types.length;
        int outArgs = reorder.length;
        for (int i = 0; i < outArgs; i++) {
            assert(names[skip+i].isParam());
            assert(names[skip+i].type == types[reorder[i]]);
        }
        return true;
    }

    static class NamedFunction {
        final MemberName member;
975 976
        @Stable MethodHandle resolvedHandle;
        @Stable MethodHandle invoker;
977 978 979 980 981 982 983 984 985

        NamedFunction(MethodHandle resolvedHandle) {
            this(resolvedHandle.internalMemberName(), resolvedHandle);
        }
        NamedFunction(MemberName member, MethodHandle resolvedHandle) {
            this.member = member;
            //resolvedHandle = eraseSubwordTypes(resolvedHandle);
            this.resolvedHandle = resolvedHandle;
        }
986 987 988 989 990 991 992 993 994 995
        NamedFunction(MethodType basicInvokerType) {
            assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
            if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
                this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
                this.member = resolvedHandle.internalMemberName();
            } else {
                // necessary to pass BigArityTest
                this.member = Invokers.invokeBasicMethod(basicInvokerType);
            }
        }
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

        // The next 3 constructors are used to break circular dependencies on MH.invokeStatic, etc.
        // Any LambdaForm containing such a member is not interpretable.
        // This is OK, since all such LFs are prepared with special primitive vmentry points.
        // And even without the resolvedHandle, the name can still be compiled and optimized.
        NamedFunction(Method method) {
            this(new MemberName(method));
        }
        NamedFunction(Field field) {
            this(new MemberName(field));
        }
        NamedFunction(MemberName member) {
            this.member = member;
            this.resolvedHandle = null;
        }

        MethodHandle resolvedHandle() {
            if (resolvedHandle == null)  resolve();
            return resolvedHandle;
        }

        void resolve() {
            resolvedHandle = DirectMethodHandle.make(member);
        }

        @Override
        public boolean equals(Object other) {
            if (this == other) return true;
            if (other == null) return false;
            if (!(other instanceof NamedFunction)) return false;
            NamedFunction that = (NamedFunction) other;
            return this.member != null && this.member.equals(that.member);
        }

        @Override
        public int hashCode() {
            if (member != null)
                return member.hashCode();
            return super.hashCode();
        }

        // Put the predefined NamedFunction invokers into the table.
        static void initializeInvokers() {
            for (MemberName m : MemberName.getFactory().getMethods(NamedFunction.class, false, null, null, null)) {
                if (!m.isStatic() || !m.isPackage())  continue;
                MethodType type = m.getMethodType();
                if (type.equals(INVOKER_METHOD_TYPE) &&
                    m.getName().startsWith("invoke_")) {
                    String sig = m.getName().substring("invoke_".length());
                    int arity = LambdaForm.signatureArity(sig);
                    MethodType srcType = MethodType.genericMethodType(arity);
                    if (LambdaForm.signatureReturn(sig) == 'V')
                        srcType = srcType.changeReturnType(void.class);
                    MethodTypeForm typeForm = srcType.form();
                    typeForm.namedFunctionInvoker = DirectMethodHandle.make(m);
                }
            }
        }

        // The following are predefined NamedFunction invokers.  The system must build
        // a separate invoker for each distinct signature.
        /** void return type invokers. */
        @Hidden
        static Object invoke__V(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 0);
            mh.invokeBasic();
            return null;
        }
        @Hidden
        static Object invoke_L_V(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 1);
            mh.invokeBasic(a[0]);
            return null;
        }
        @Hidden
        static Object invoke_LL_V(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 2);
            mh.invokeBasic(a[0], a[1]);
            return null;
        }
        @Hidden
        static Object invoke_LLL_V(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 3);
            mh.invokeBasic(a[0], a[1], a[2]);
            return null;
        }
        @Hidden
        static Object invoke_LLLL_V(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 4);
            mh.invokeBasic(a[0], a[1], a[2], a[3]);
            return null;
        }
        @Hidden
        static Object invoke_LLLLL_V(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 5);
            mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
            return null;
        }
        /** Object return type invokers. */
        @Hidden
        static Object invoke__L(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 0);
            return mh.invokeBasic();
        }
        @Hidden
        static Object invoke_L_L(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 1);
            return mh.invokeBasic(a[0]);
        }
        @Hidden
        static Object invoke_LL_L(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 2);
            return mh.invokeBasic(a[0], a[1]);
        }
        @Hidden
        static Object invoke_LLL_L(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 3);
            return mh.invokeBasic(a[0], a[1], a[2]);
        }
        @Hidden
        static Object invoke_LLLL_L(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 4);
            return mh.invokeBasic(a[0], a[1], a[2], a[3]);
        }
        @Hidden
        static Object invoke_LLLLL_L(MethodHandle mh, Object[] a) throws Throwable {
            assert(a.length == 5);
            return mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
        }

        static final MethodType INVOKER_METHOD_TYPE =
            MethodType.methodType(Object.class, MethodHandle.class, Object[].class);

        private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
            MethodHandle mh = typeForm.namedFunctionInvoker;
            if (mh != null)  return mh;
            MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
            mh = DirectMethodHandle.make(invoker);
            MethodHandle mh2 = typeForm.namedFunctionInvoker;
            if (mh2 != null)  return mh2;  // benign race
            if (!mh.type().equals(INVOKER_METHOD_TYPE))
                throw new InternalError(mh.debugString());
            return typeForm.namedFunctionInvoker = mh;
        }

        @Hidden
        Object invokeWithArguments(Object... arguments) throws Throwable {
            // If we have a cached invoker, call it right away.
            // NOTE: The invoker always returns a reference value.
            if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
            assert(checkArgumentTypes(arguments, methodType()));
            return invoker().invokeBasic(resolvedHandle(), arguments);
        }

        @Hidden
        Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
            Object rval;
            try {
                traceInterpreter("[ call", this, arguments);
                if (invoker == null) {
                    traceInterpreter("| getInvoker", this);
                    invoker();
                }
                if (resolvedHandle == null) {
                    traceInterpreter("| resolve", this);
                    resolvedHandle();
                }
                assert(checkArgumentTypes(arguments, methodType()));
                rval = invoker().invokeBasic(resolvedHandle(), arguments);
            } catch (Throwable ex) {
                traceInterpreter("] throw =>", ex);
                throw ex;
            }
            traceInterpreter("] return =>", rval);
            return rval;
        }

        private MethodHandle invoker() {
            if (invoker != null)  return invoker;
            // Get an invoker and cache it.
            return invoker = computeInvoker(methodType().form());
        }

        private static boolean checkArgumentTypes(Object[] arguments, MethodType methodType) {
            if (true)  return true;  // FIXME
            MethodType dstType = methodType.form().erasedType();
            MethodType srcType = dstType.basicType().wrap();
            Class<?>[] ptypes = new Class<?>[arguments.length];
            for (int i = 0; i < arguments.length; i++) {
                Object arg = arguments[i];
                Class<?> ptype = arg == null ? Object.class : arg.getClass();
                // If the dest. type is a primitive we keep the
                // argument type.
                ptypes[i] = dstType.parameterType(i).isPrimitive() ? ptype : Object.class;
            }
            MethodType argType = MethodType.methodType(srcType.returnType(), ptypes).wrap();
            assert(argType.isConvertibleTo(srcType)) : "wrong argument types: cannot convert " + argType + " to " + srcType;
            return true;
        }

        String basicTypeSignature() {
            //return LambdaForm.basicTypeSignature(resolvedHandle.type());
            return LambdaForm.basicTypeSignature(methodType());
        }

        MethodType methodType() {
            if (resolvedHandle != null)
                return resolvedHandle.type();
            else
                // only for certain internal LFs during bootstrapping
                return member.getInvocationType();
        }

        MemberName member() {
            assert(assertMemberIsConsistent());
            return member;
        }

        // Called only from assert.
        private boolean assertMemberIsConsistent() {
            if (resolvedHandle instanceof DirectMethodHandle) {
                MemberName m = resolvedHandle.internalMemberName();
                assert(m.equals(member));
            }
            return true;
        }

        Class<?> memberDeclaringClassOrNull() {
            return (member == null) ? null : member.getDeclaringClass();
        }

        char returnType() {
            return basicType(methodType().returnType());
        }

        char parameterType(int n) {
            return basicType(methodType().parameterType(n));
        }

        int arity() {
            //int siglen = member.getMethodType().parameterCount();
            //if (!member.isStatic())  siglen += 1;
            //return siglen;
            return methodType().parameterCount();
        }

        public String toString() {
1243
            if (member == null)  return String.valueOf(resolvedHandle);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
            return member.getDeclaringClass().getSimpleName()+"."+member.getName();
        }
    }

    void resolve() {
        for (Name n : names) n.resolve();
    }

    public static char basicType(Class<?> type) {
        char c = Wrapper.basicTypeChar(type);
        if ("ZBSC".indexOf(c) >= 0)  c = 'I';
        assert("LIJFDV".indexOf(c) >= 0);
        return c;
    }
    public static char[] basicTypes(List<Class<?>> types) {
        char[] btypes = new char[types.size()];
        for (int i = 0; i < btypes.length; i++) {
            btypes[i] = basicType(types.get(i));
        }
        return btypes;
    }
    public static String basicTypeSignature(MethodType type) {
        char[] sig = new char[type.parameterCount() + 2];
        int sigp = 0;
        for (Class<?> pt : type.parameterList()) {
            sig[sigp++] = basicType(pt);
        }
        sig[sigp++] = '_';
        sig[sigp++] = basicType(type.returnType());
        assert(sigp == sig.length);
        return String.valueOf(sig);
    }

    static final class Name {
        final char type;
        private short index;
        final NamedFunction function;
1281
        @Stable final Object[] arguments;
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

        private Name(int index, char type, NamedFunction function, Object[] arguments) {
            this.index = (short)index;
            this.type = type;
            this.function = function;
            this.arguments = arguments;
            assert(this.index == index);
        }
        Name(MethodHandle function, Object... arguments) {
            this(new NamedFunction(function), arguments);
        }
1293 1294 1295 1296
        Name(MethodType functionType, Object... arguments) {
            this(new NamedFunction(functionType), arguments);
            assert(arguments[0] instanceof Name && ((Name)arguments[0]).type == 'L');
        }
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
        Name(MemberName function, Object... arguments) {
            this(new NamedFunction(function), arguments);
        }
        Name(NamedFunction function, Object... arguments) {
            this(-1, function.returnType(), function, arguments = arguments.clone());
            assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
            for (int i = 0; i < arguments.length; i++)
                assert(typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
        }
        Name(int index, char type) {
            this(index, type, null, null);
        }
        Name(char type) {
            this(-1, type);
        }

        char type() { return type; }
        int index() { return index; }
        boolean initIndex(int i) {
            if (index != i) {
                if (index != -1)  return false;
                index = (short)i;
            }
            return true;
        }


        void resolve() {
            if (function != null)
                function.resolve();
        }

        Name newIndex(int i) {
            if (initIndex(i))  return this;
            return cloneWithIndex(i);
        }
        Name cloneWithIndex(int i) {
            Object[] newArguments = (arguments == null) ? null : arguments.clone();
            return new Name(i, type, function, newArguments);
        }
        Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
            if (oldName == newName)  return this;
            @SuppressWarnings("LocalVariableHidesMemberVariable")
            Object[] arguments = this.arguments;
            if (arguments == null)  return this;
            boolean replaced = false;
            for (int j = 0; j < arguments.length; j++) {
                if (arguments[j] == oldName) {
                    if (!replaced) {
                        replaced = true;
                        arguments = arguments.clone();
                    }
                    arguments[j] = newName;
                }
            }
            if (!replaced)  return this;
            return new Name(function, arguments);
        }
        Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
            @SuppressWarnings("LocalVariableHidesMemberVariable")
            Object[] arguments = this.arguments;
            boolean replaced = false;
        eachArg:
            for (int j = 0; j < arguments.length; j++) {
                if (arguments[j] instanceof Name) {
                    Name n = (Name) arguments[j];
                    int check = n.index;
                    // harmless check to see if the thing is already in newNames:
                    if (check >= 0 && check < newNames.length && n == newNames[check])
                        continue eachArg;
                    // n might not have the correct index: n != oldNames[n.index].
                    for (int i = start; i < end; i++) {
                        if (n == oldNames[i]) {
                            if (n == newNames[i])
                                continue eachArg;
                            if (!replaced) {
                                replaced = true;
                                arguments = arguments.clone();
                            }
                            arguments[j] = newNames[i];
                            continue eachArg;
                        }
                    }
                }
            }
            if (!replaced)  return this;
            return new Name(function, arguments);
        }
        void internArguments() {
            @SuppressWarnings("LocalVariableHidesMemberVariable")
            Object[] arguments = this.arguments;
            for (int j = 0; j < arguments.length; j++) {
                if (arguments[j] instanceof Name) {
                    Name n = (Name) arguments[j];
                    if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
                        arguments[j] = internArgument(n);
                }
            }
        }
        boolean isParam() {
            return function == null;
        }
        boolean isConstantZero() {
            return !isParam() && arguments.length == 0 && function.equals(constantZero(0, type).function);
        }

        public String toString() {
            return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+type;
        }
        public String debugString() {
            String s = toString();
            return (function == null) ? s : s + "=" + exprString();
        }
        public String exprString() {
            if (function == null)  return "null";
            StringBuilder buf = new StringBuilder(function.toString());
            buf.append("(");
            String cma = "";
            for (Object a : arguments) {
                buf.append(cma); cma = ",";
                if (a instanceof Name || a instanceof Integer)
                    buf.append(a);
                else
                    buf.append("(").append(a).append(")");
            }
            buf.append(")");
            return buf.toString();
        }

        private static boolean typesMatch(char parameterType, Object object) {
            if (object instanceof Name) {
                return ((Name)object).type == parameterType;
            }
            switch (parameterType) {
                case 'I':  return object instanceof Integer;
                case 'J':  return object instanceof Long;
                case 'F':  return object instanceof Float;
                case 'D':  return object instanceof Double;
            }
            assert(parameterType == 'L');
            return true;
        }

        /**
         * Does this Name precede the given binding node in some canonical order?
         * This predicate is used to order data bindings (via insertion sort)
         * with some stability.
         */
        boolean isSiblingBindingBefore(Name binding) {
            assert(!binding.isParam());
            if (isParam())  return true;
            if (function.equals(binding.function) &&
                arguments.length == binding.arguments.length) {
                boolean sawInt = false;
                for (int i = 0; i < arguments.length; i++) {
                    Object a1 = arguments[i];
                    Object a2 = binding.arguments[i];
                    if (!a1.equals(a2)) {
                        if (a1 instanceof Integer && a2 instanceof Integer) {
                            if (sawInt)  continue;
                            sawInt = true;
                            if ((int)a1 < (int)a2)  continue;  // still might be true
                        }
                        return false;
                    }
                }
                return sawInt;
            }
            return false;
        }

        public boolean equals(Name that) {
            if (this == that)  return true;
            if (isParam())
                // each parameter is a unique atom
                return false;  // this != that
            return
                //this.index == that.index &&
                this.type == that.type &&
                this.function.equals(that.function) &&
                Arrays.equals(this.arguments, that.arguments);
        }
        @Override
        public boolean equals(Object x) {
            return x instanceof Name && equals((Name)x);
        }
        @Override
        public int hashCode() {
            if (isParam())
                return index | (type << 8);
            return function.hashCode() ^ Arrays.hashCode(arguments);
        }
    }

    static Name argument(int which, char type) {
        int tn = ALL_TYPES.indexOf(type);
        if (tn < 0 || which >= INTERNED_ARGUMENT_LIMIT)
            return new Name(which, type);
        return INTERNED_ARGUMENTS[tn][which];
    }
    static Name internArgument(Name n) {
        assert(n.isParam()) : "not param: " + n;
        assert(n.index < INTERNED_ARGUMENT_LIMIT);
        return argument(n.index, n.type);
    }
    static Name[] arguments(int extra, String types) {
        int length = types.length();
        Name[] names = new Name[length + extra];
        for (int i = 0; i < length; i++)
            names[i] = argument(i, types.charAt(i));
        return names;
    }
    static Name[] arguments(int extra, char... types) {
        int length = types.length;
        Name[] names = new Name[length + extra];
        for (int i = 0; i < length; i++)
            names[i] = argument(i, types[i]);
        return names;
    }
    static Name[] arguments(int extra, List<Class<?>> types) {
        int length = types.size();
        Name[] names = new Name[length + extra];
        for (int i = 0; i < length; i++)
            names[i] = argument(i, basicType(types.get(i)));
        return names;
    }
    static Name[] arguments(int extra, Class<?>... types) {
        int length = types.length;
        Name[] names = new Name[length + extra];
        for (int i = 0; i < length; i++)
            names[i] = argument(i, basicType(types[i]));
        return names;
    }
    static Name[] arguments(int extra, MethodType types) {
        int length = types.parameterCount();
        Name[] names = new Name[length + extra];
        for (int i = 0; i < length; i++)
            names[i] = argument(i, basicType(types.parameterType(i)));
        return names;
    }
    static final String ALL_TYPES = "LIJFD";  // omit V, not an argument type
    static final int INTERNED_ARGUMENT_LIMIT = 10;
    private static final Name[][] INTERNED_ARGUMENTS
            = new Name[ALL_TYPES.length()][INTERNED_ARGUMENT_LIMIT];
    static {
        for (int tn = 0; tn < ALL_TYPES.length(); tn++) {
            for (int i = 0; i < INTERNED_ARGUMENTS[tn].length; i++) {
                char type = ALL_TYPES.charAt(tn);
                INTERNED_ARGUMENTS[tn][i] = new Name(i, type);
            }
        }
    }

    private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();

    static Name constantZero(int which, char type) {
        return CONSTANT_ZERO[ALL_TYPES.indexOf(type)].newIndex(which);
    }
    private static final Name[] CONSTANT_ZERO
            = new Name[ALL_TYPES.length()];
    static {
        for (int tn = 0; tn < ALL_TYPES.length(); tn++) {
            char bt = ALL_TYPES.charAt(tn);
            Wrapper wrap = Wrapper.forBasicType(bt);
            MemberName zmem = new MemberName(LambdaForm.class, "zero"+bt, MethodType.methodType(wrap.primitiveType()), REF_invokeStatic);
            try {
                zmem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zmem, null, NoSuchMethodException.class);
            } catch (IllegalAccessException|NoSuchMethodException ex) {
1565
                throw newInternalError(ex);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
            }
            NamedFunction zcon = new NamedFunction(zmem);
            Name n = new Name(zcon).newIndex(0);
            assert(n.type == ALL_TYPES.charAt(tn));
            CONSTANT_ZERO[tn] = n;
            assert(n.isConstantZero());
        }
    }

    // Avoid appealing to ValueConversions at bootstrap time:
    private static int zeroI() { return 0; }
    private static long zeroJ() { return 0; }
    private static float zeroF() { return 0; }
    private static double zeroD() { return 0; }
    private static Object zeroL() { return null; }

    // Put this last, so that previous static inits can run before.
    static {
        if (USE_PREDEFINED_INTERPRET_METHODS)
            PREPARED_FORMS.putAll(computeInitialPreparedForms());
    }

    /**
     * Internal marker for byte-compiled LambdaForms.
     */
    /*non-public*/
    @Target(ElementType.METHOD)
    @Retention(RetentionPolicy.RUNTIME)
    @interface Compiled {
    }

    /**
     * Internal marker for LambdaForm interpreter frames.
     */
    /*non-public*/
    @Target(ElementType.METHOD)
    @Retention(RetentionPolicy.RUNTIME)
    @interface Hidden {
    }


/*
    // Smoke-test for the invokers used in this file.
    static void testMethodHandleLinkers() throws Throwable {
        MemberName.Factory lookup = MemberName.getFactory();
        MemberName asList_MN = new MemberName(Arrays.class, "asList",
                                              MethodType.methodType(List.class, Object[].class),
                                              REF_invokeStatic);
        //MethodHandleNatives.resolve(asList_MN, null);
        asList_MN = lookup.resolveOrFail(asList_MN, REF_invokeStatic, null, NoSuchMethodException.class);
        System.out.println("about to call "+asList_MN);
        Object[] abc = { "a", "bc" };
        List<?> lst = (List<?>) MethodHandle.linkToStatic(abc, asList_MN);
        System.out.println("lst="+lst);
        MemberName toString_MN = new MemberName(Object.class.getMethod("toString"));
        String s1 = (String) MethodHandle.linkToVirtual(lst, toString_MN);
        toString_MN = new MemberName(Object.class.getMethod("toString"), true);
        String s2 = (String) MethodHandle.linkToSpecial(lst, toString_MN);
        System.out.println("[s1,s2,lst]="+Arrays.asList(s1, s2, lst.toString()));
        MemberName toArray_MN = new MemberName(List.class.getMethod("toArray"));
        Object[] arr = (Object[]) MethodHandle.linkToInterface(lst, toArray_MN);
        System.out.println("toArray="+Arrays.toString(arr));
    }
    static { try { testMethodHandleLinkers(); } catch (Throwable ex) { throw new RuntimeException(ex); } }
    // Requires these definitions in MethodHandle:
    static final native Object linkToStatic(Object x1, MemberName mn) throws Throwable;
    static final native Object linkToVirtual(Object x1, MemberName mn) throws Throwable;
    static final native Object linkToSpecial(Object x1, MemberName mn) throws Throwable;
    static final native Object linkToInterface(Object x1, MemberName mn) throws Throwable;
 */

    static { NamedFunction.initializeInvokers(); }
1638 1639 1640 1641 1642 1643 1644 1645

    // The following hack is necessary in order to suppress TRACE_INTERPRETER
    // during execution of the static initializes of this class.
    // Turning on TRACE_INTERPRETER too early will cause
    // stack overflows and other misbehavior during attempts to trace events
    // that occur during LambdaForm.<clinit>.
    // Therefore, do not move this line higher in this file, and do not remove.
    private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1646
}