SynchronousQueue.java 43.6 KB
Newer Older
D
duke 已提交
1 2 3 4 5
/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
6
 * published by the Free Software Foundation.  Oracle designates this
D
duke 已提交
7
 * particular file as subject to the "Classpath" exception as provided
8
 * by Oracle in the LICENSE file that accompanied this code.
D
duke 已提交
9 10 11 12 13 14 15 16 17 18 19
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
20 21 22
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Written by Doug Lea, Bill Scherer, and Michael Scott with
 * assistance from members of JCP JSR-166 Expert Group and released to
 * the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

package java.util.concurrent;
import java.util.concurrent.locks.*;
import java.util.concurrent.atomic.*;
import java.util.*;

/**
 * A {@linkplain BlockingQueue blocking queue} in which each insert
 * operation must wait for a corresponding remove operation by another
 * thread, and vice versa.  A synchronous queue does not have any
 * internal capacity, not even a capacity of one.  You cannot
 * <tt>peek</tt> at a synchronous queue because an element is only
 * present when you try to remove it; you cannot insert an element
 * (using any method) unless another thread is trying to remove it;
 * you cannot iterate as there is nothing to iterate.  The
 * <em>head</em> of the queue is the element that the first queued
 * inserting thread is trying to add to the queue; if there is no such
 * queued thread then no element is available for removal and
 * <tt>poll()</tt> will return <tt>null</tt>.  For purposes of other
 * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
 * <tt>SynchronousQueue</tt> acts as an empty collection.  This queue
 * does not permit <tt>null</tt> elements.
 *
 * <p>Synchronous queues are similar to rendezvous channels used in
 * CSP and Ada. They are well suited for handoff designs, in which an
 * object running in one thread must sync up with an object running
 * in another thread in order to hand it some information, event, or
 * task.
 *
 * <p> This class supports an optional fairness policy for ordering
 * waiting producer and consumer threads.  By default, this ordering
 * is not guaranteed. However, a queue constructed with fairness set
 * to <tt>true</tt> grants threads access in FIFO order.
 *
 * <p>This class and its iterator implement all of the
 * <em>optional</em> methods of the {@link Collection} and {@link
 * Iterator} interfaces.
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @since 1.5
 * @author Doug Lea and Bill Scherer and Michael Scott
 * @param <E> the type of elements held in this collection
 */
public class SynchronousQueue<E> extends AbstractQueue<E>
    implements BlockingQueue<E>, java.io.Serializable {
    private static final long serialVersionUID = -3223113410248163686L;

    /*
     * This class implements extensions of the dual stack and dual
     * queue algorithms described in "Nonblocking Concurrent Objects
     * with Condition Synchronization", by W. N. Scherer III and
     * M. L. Scott.  18th Annual Conf. on Distributed Computing,
     * Oct. 2004 (see also
     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
     * queue for fair mode. The performance of the two is generally
     * similar. Fifo usually supports higher throughput under
     * contention but Lifo maintains higher thread locality in common
     * applications.
     *
     * A dual queue (and similarly stack) is one that at any given
     * time either holds "data" -- items provided by put operations,
     * or "requests" -- slots representing take operations, or is
     * empty. A call to "fulfill" (i.e., a call requesting an item
     * from a queue holding data or vice versa) dequeues a
     * complementary node.  The most interesting feature of these
     * queues is that any operation can figure out which mode the
     * queue is in, and act accordingly without needing locks.
     *
     * Both the queue and stack extend abstract class Transferer
     * defining the single method transfer that does a put or a
     * take. These are unified into a single method because in dual
     * data structures, the put and take operations are symmetrical,
     * so nearly all code can be combined. The resulting transfer
     * methods are on the long side, but are easier to follow than
     * they would be if broken up into nearly-duplicated parts.
     *
     * The queue and stack data structures share many conceptual
     * similarities but very few concrete details. For simplicity,
     * they are kept distinct so that they can later evolve
     * separately.
     *
     * The algorithms here differ from the versions in the above paper
     * in extending them for use in synchronous queues, as well as
     * dealing with cancellation. The main differences include:
     *
     *  1. The original algorithms used bit-marked pointers, but
     *     the ones here use mode bits in nodes, leading to a number
     *     of further adaptations.
     *  2. SynchronousQueues must block threads waiting to become
     *     fulfilled.
     *  3. Support for cancellation via timeout and interrupts,
     *     including cleaning out cancelled nodes/threads
     *     from lists to avoid garbage retention and memory depletion.
     *
     * Blocking is mainly accomplished using LockSupport park/unpark,
     * except that nodes that appear to be the next ones to become
     * fulfilled first spin a bit (on multiprocessors only). On very
     * busy synchronous queues, spinning can dramatically improve
     * throughput. And on less busy ones, the amount of spinning is
     * small enough not to be noticeable.
     *
     * Cleaning is done in different ways in queues vs stacks.  For
     * queues, we can almost always remove a node immediately in O(1)
     * time (modulo retries for consistency checks) when it is
     * cancelled. But if it may be pinned as the current tail, it must
     * wait until some subsequent cancellation. For stacks, we need a
     * potentially O(n) traversal to be sure that we can remove the
     * node, but this can run concurrently with other threads
     * accessing the stack.
     *
     * While garbage collection takes care of most node reclamation
     * issues that otherwise complicate nonblocking algorithms, care
     * is taken to "forget" references to data, other nodes, and
     * threads that might be held on to long-term by blocked
     * threads. In cases where setting to null would otherwise
     * conflict with main algorithms, this is done by changing a
     * node's link to now point to the node itself. This doesn't arise
     * much for Stack nodes (because blocked threads do not hang on to
     * old head pointers), but references in Queue nodes must be
     * aggressively forgotten to avoid reachability of everything any
     * node has ever referred to since arrival.
     */

    /**
     * Shared internal API for dual stacks and queues.
     */
    static abstract class Transferer {
        /**
         * Performs a put or take.
         *
         * @param e if non-null, the item to be handed to a consumer;
         *          if null, requests that transfer return an item
         *          offered by producer.
         * @param timed if this operation should timeout
         * @param nanos the timeout, in nanoseconds
         * @return if non-null, the item provided or received; if null,
         *         the operation failed due to timeout or interrupt --
         *         the caller can distinguish which of these occurred
         *         by checking Thread.interrupted.
         */
        abstract Object transfer(Object e, boolean timed, long nanos);
    }

    /** The number of CPUs, for spin control */
    static final int NCPUS = Runtime.getRuntime().availableProcessors();

    /**
     * The number of times to spin before blocking in timed waits.
     * The value is empirically derived -- it works well across a
     * variety of processors and OSes. Empirically, the best value
     * seems not to vary with number of CPUs (beyond 2) so is just
     * a constant.
     */
    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;

    /**
     * The number of times to spin before blocking in untimed waits.
     * This is greater than timed value because untimed waits spin
     * faster since they don't need to check times on each spin.
     */
    static final int maxUntimedSpins = maxTimedSpins * 16;

    /**
     * The number of nanoseconds for which it is faster to spin
     * rather than to use timed park. A rough estimate suffices.
     */
    static final long spinForTimeoutThreshold = 1000L;

    /** Dual stack */
    static final class TransferStack extends Transferer {
        /*
         * This extends Scherer-Scott dual stack algorithm, differing,
         * among other ways, by using "covering" nodes rather than
         * bit-marked pointers: Fulfilling operations push on marker
         * nodes (with FULFILLING bit set in mode) to reserve a spot
         * to match a waiting node.
         */

        /* Modes for SNodes, ORed together in node fields */
        /** Node represents an unfulfilled consumer */
        static final int REQUEST    = 0;
        /** Node represents an unfulfilled producer */
        static final int DATA       = 1;
        /** Node is fulfilling another unfulfilled DATA or REQUEST */
        static final int FULFILLING = 2;

        /** Return true if m has fulfilling bit set */
        static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }

        /** Node class for TransferStacks. */
        static final class SNode {
            volatile SNode next;        // next node in stack
            volatile SNode match;       // the node matched to this
            volatile Thread waiter;     // to control park/unpark
            Object item;                // data; or null for REQUESTs
            int mode;
            // Note: item and mode fields don't need to be volatile
            // since they are always written before, and read after,
            // other volatile/atomic operations.

            SNode(Object item) {
                this.item = item;
            }

            static final AtomicReferenceFieldUpdater<SNode, SNode>
                nextUpdater = AtomicReferenceFieldUpdater.newUpdater
                (SNode.class, SNode.class, "next");

            boolean casNext(SNode cmp, SNode val) {
                return (cmp == next &&
                        nextUpdater.compareAndSet(this, cmp, val));
            }

            static final AtomicReferenceFieldUpdater<SNode, SNode>
                matchUpdater = AtomicReferenceFieldUpdater.newUpdater
                (SNode.class, SNode.class, "match");

            /**
             * Tries to match node s to this node, if so, waking up thread.
             * Fulfillers call tryMatch to identify their waiters.
             * Waiters block until they have been matched.
             *
             * @param s the node to match
             * @return true if successfully matched to s
             */
            boolean tryMatch(SNode s) {
                if (match == null &&
                    matchUpdater.compareAndSet(this, null, s)) {
                    Thread w = waiter;
                    if (w != null) {    // waiters need at most one unpark
                        waiter = null;
                        LockSupport.unpark(w);
                    }
                    return true;
                }
                return match == s;
            }

            /**
             * Tries to cancel a wait by matching node to itself.
             */
            void tryCancel() {
                matchUpdater.compareAndSet(this, null, this);
            }

            boolean isCancelled() {
                return match == this;
            }
        }

        /** The head (top) of the stack */
        volatile SNode head;

        static final AtomicReferenceFieldUpdater<TransferStack, SNode>
            headUpdater = AtomicReferenceFieldUpdater.newUpdater
            (TransferStack.class,  SNode.class, "head");

        boolean casHead(SNode h, SNode nh) {
            return h == head && headUpdater.compareAndSet(this, h, nh);
        }

        /**
         * Creates or resets fields of a node. Called only from transfer
         * where the node to push on stack is lazily created and
         * reused when possible to help reduce intervals between reads
         * and CASes of head and to avoid surges of garbage when CASes
         * to push nodes fail due to contention.
         */
        static SNode snode(SNode s, Object e, SNode next, int mode) {
            if (s == null) s = new SNode(e);
            s.mode = mode;
            s.next = next;
            return s;
        }

        /**
         * Puts or takes an item.
         */
        Object transfer(Object e, boolean timed, long nanos) {
            /*
             * Basic algorithm is to loop trying one of three actions:
             *
             * 1. If apparently empty or already containing nodes of same
             *    mode, try to push node on stack and wait for a match,
             *    returning it, or null if cancelled.
             *
             * 2. If apparently containing node of complementary mode,
             *    try to push a fulfilling node on to stack, match
             *    with corresponding waiting node, pop both from
             *    stack, and return matched item. The matching or
             *    unlinking might not actually be necessary because of
             *    other threads performing action 3:
             *
             * 3. If top of stack already holds another fulfilling node,
             *    help it out by doing its match and/or pop
             *    operations, and then continue. The code for helping
             *    is essentially the same as for fulfilling, except
             *    that it doesn't return the item.
             */

            SNode s = null; // constructed/reused as needed
            int mode = (e == null)? REQUEST : DATA;

            for (;;) {
                SNode h = head;
                if (h == null || h.mode == mode) {  // empty or same-mode
                    if (timed && nanos <= 0) {      // can't wait
                        if (h != null && h.isCancelled())
                            casHead(h, h.next);     // pop cancelled node
                        else
                            return null;
                    } else if (casHead(h, s = snode(s, e, h, mode))) {
                        SNode m = awaitFulfill(s, timed, nanos);
                        if (m == s) {               // wait was cancelled
                            clean(s);
                            return null;
                        }
                        if ((h = head) != null && h.next == s)
                            casHead(h, s.next);     // help s's fulfiller
                        return mode == REQUEST? m.item : s.item;
                    }
                } else if (!isFulfilling(h.mode)) { // try to fulfill
                    if (h.isCancelled())            // already cancelled
                        casHead(h, h.next);         // pop and retry
                    else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
                        for (;;) { // loop until matched or waiters disappear
                            SNode m = s.next;       // m is s's match
                            if (m == null) {        // all waiters are gone
                                casHead(s, null);   // pop fulfill node
                                s = null;           // use new node next time
                                break;              // restart main loop
                            }
                            SNode mn = m.next;
                            if (m.tryMatch(s)) {
                                casHead(s, mn);     // pop both s and m
                                return (mode == REQUEST)? m.item : s.item;
                            } else                  // lost match
                                s.casNext(m, mn);   // help unlink
                        }
                    }
                } else {                            // help a fulfiller
                    SNode m = h.next;               // m is h's match
                    if (m == null)                  // waiter is gone
                        casHead(h, null);           // pop fulfilling node
                    else {
                        SNode mn = m.next;
                        if (m.tryMatch(h))          // help match
                            casHead(h, mn);         // pop both h and m
                        else                        // lost match
                            h.casNext(m, mn);       // help unlink
                    }
                }
            }
        }

        /**
         * Spins/blocks until node s is matched by a fulfill operation.
         *
         * @param s the waiting node
         * @param timed true if timed wait
         * @param nanos timeout value
         * @return matched node, or s if cancelled
         */
        SNode awaitFulfill(SNode s, boolean timed, long nanos) {
            /*
             * When a node/thread is about to block, it sets its waiter
             * field and then rechecks state at least one more time
             * before actually parking, thus covering race vs
             * fulfiller noticing that waiter is non-null so should be
             * woken.
             *
             * When invoked by nodes that appear at the point of call
             * to be at the head of the stack, calls to park are
             * preceded by spins to avoid blocking when producers and
             * consumers are arriving very close in time.  This can
             * happen enough to bother only on multiprocessors.
             *
             * The order of checks for returning out of main loop
             * reflects fact that interrupts have precedence over
             * normal returns, which have precedence over
             * timeouts. (So, on timeout, one last check for match is
             * done before giving up.) Except that calls from untimed
             * SynchronousQueue.{poll/offer} don't check interrupts
             * and don't wait at all, so are trapped in transfer
             * method rather than calling awaitFulfill.
             */
            long lastTime = (timed)? System.nanoTime() : 0;
            Thread w = Thread.currentThread();
            SNode h = head;
            int spins = (shouldSpin(s)?
                         (timed? maxTimedSpins : maxUntimedSpins) : 0);
            for (;;) {
                if (w.isInterrupted())
                    s.tryCancel();
                SNode m = s.match;
                if (m != null)
                    return m;
                if (timed) {
                    long now = System.nanoTime();
                    nanos -= now - lastTime;
                    lastTime = now;
                    if (nanos <= 0) {
                        s.tryCancel();
                        continue;
                    }
                }
                if (spins > 0)
                    spins = shouldSpin(s)? (spins-1) : 0;
                else if (s.waiter == null)
                    s.waiter = w; // establish waiter so can park next iter
                else if (!timed)
                    LockSupport.park(this);
                else if (nanos > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanos);
            }
        }

        /**
         * Returns true if node s is at head or there is an active
         * fulfiller.
         */
        boolean shouldSpin(SNode s) {
            SNode h = head;
            return (h == s || h == null || isFulfilling(h.mode));
        }

        /**
         * Unlinks s from the stack.
         */
        void clean(SNode s) {
            s.item = null;   // forget item
            s.waiter = null; // forget thread

            /*
             * At worst we may need to traverse entire stack to unlink
             * s. If there are multiple concurrent calls to clean, we
             * might not see s if another thread has already removed
             * it. But we can stop when we see any node known to
             * follow s. We use s.next unless it too is cancelled, in
             * which case we try the node one past. We don't check any
             * further because we don't want to doubly traverse just to
             * find sentinel.
             */

            SNode past = s.next;
            if (past != null && past.isCancelled())
                past = past.next;

            // Absorb cancelled nodes at head
            SNode p;
            while ((p = head) != null && p != past && p.isCancelled())
                casHead(p, p.next);

            // Unsplice embedded nodes
            while (p != null && p != past) {
                SNode n = p.next;
                if (n != null && n.isCancelled())
                    p.casNext(n, n.next);
                else
                    p = n;
            }
        }
    }

    /** Dual Queue */
    static final class TransferQueue extends Transferer {
        /*
         * This extends Scherer-Scott dual queue algorithm, differing,
         * among other ways, by using modes within nodes rather than
         * marked pointers. The algorithm is a little simpler than
         * that for stacks because fulfillers do not need explicit
         * nodes, and matching is done by CAS'ing QNode.item field
         * from non-null to null (for put) or vice versa (for take).
         */

        /** Node class for TransferQueue. */
        static final class QNode {
            volatile QNode next;          // next node in queue
            volatile Object item;         // CAS'ed to or from null
            volatile Thread waiter;       // to control park/unpark
            final boolean isData;

            QNode(Object item, boolean isData) {
                this.item = item;
                this.isData = isData;
            }

            static final AtomicReferenceFieldUpdater<QNode, QNode>
                nextUpdater = AtomicReferenceFieldUpdater.newUpdater
                (QNode.class, QNode.class, "next");

            boolean casNext(QNode cmp, QNode val) {
                return (next == cmp &&
                        nextUpdater.compareAndSet(this, cmp, val));
            }

            static final AtomicReferenceFieldUpdater<QNode, Object>
                itemUpdater = AtomicReferenceFieldUpdater.newUpdater
                (QNode.class, Object.class, "item");

            boolean casItem(Object cmp, Object val) {
                return (item == cmp &&
                        itemUpdater.compareAndSet(this, cmp, val));
            }

            /**
             * Tries to cancel by CAS'ing ref to this as item.
             */
            void tryCancel(Object cmp) {
                itemUpdater.compareAndSet(this, cmp, this);
            }

            boolean isCancelled() {
                return item == this;
            }

            /**
             * Returns true if this node is known to be off the queue
             * because its next pointer has been forgotten due to
             * an advanceHead operation.
             */
            boolean isOffList() {
                return next == this;
            }
        }

        /** Head of queue */
        transient volatile QNode head;
        /** Tail of queue */
        transient volatile QNode tail;
        /**
         * Reference to a cancelled node that might not yet have been
         * unlinked from queue because it was the last inserted node
         * when it cancelled.
         */
        transient volatile QNode cleanMe;

        TransferQueue() {
            QNode h = new QNode(null, false); // initialize to dummy node.
            head = h;
            tail = h;
        }

        static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
            headUpdater = AtomicReferenceFieldUpdater.newUpdater
            (TransferQueue.class,  QNode.class, "head");

        /**
         * Tries to cas nh as new head; if successful, unlink
         * old head's next node to avoid garbage retention.
         */
        void advanceHead(QNode h, QNode nh) {
            if (h == head && headUpdater.compareAndSet(this, h, nh))
                h.next = h; // forget old next
        }

        static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
            tailUpdater = AtomicReferenceFieldUpdater.newUpdater
            (TransferQueue.class, QNode.class, "tail");

        /**
         * Tries to cas nt as new tail.
         */
        void advanceTail(QNode t, QNode nt) {
            if (tail == t)
                tailUpdater.compareAndSet(this, t, nt);
        }

        static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
            cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
            (TransferQueue.class, QNode.class, "cleanMe");

        /**
         * Tries to CAS cleanMe slot.
         */
        boolean casCleanMe(QNode cmp, QNode val) {
            return (cleanMe == cmp &&
                    cleanMeUpdater.compareAndSet(this, cmp, val));
        }

        /**
         * Puts or takes an item.
         */
        Object transfer(Object e, boolean timed, long nanos) {
            /* Basic algorithm is to loop trying to take either of
             * two actions:
             *
             * 1. If queue apparently empty or holding same-mode nodes,
             *    try to add node to queue of waiters, wait to be
             *    fulfilled (or cancelled) and return matching item.
             *
             * 2. If queue apparently contains waiting items, and this
             *    call is of complementary mode, try to fulfill by CAS'ing
             *    item field of waiting node and dequeuing it, and then
             *    returning matching item.
             *
             * In each case, along the way, check for and try to help
             * advance head and tail on behalf of other stalled/slow
             * threads.
             *
             * The loop starts off with a null check guarding against
             * seeing uninitialized head or tail values. This never
             * happens in current SynchronousQueue, but could if
             * callers held non-volatile/final ref to the
             * transferer. The check is here anyway because it places
             * null checks at top of loop, which is usually faster
             * than having them implicitly interspersed.
             */

            QNode s = null; // constructed/reused as needed
            boolean isData = (e != null);

            for (;;) {
                QNode t = tail;
                QNode h = head;
                if (t == null || h == null)         // saw uninitialized value
                    continue;                       // spin

                if (h == t || t.isData == isData) { // empty or same-mode
                    QNode tn = t.next;
                    if (t != tail)                  // inconsistent read
                        continue;
                    if (tn != null) {               // lagging tail
                        advanceTail(t, tn);
                        continue;
                    }
                    if (timed && nanos <= 0)        // can't wait
                        return null;
                    if (s == null)
                        s = new QNode(e, isData);
                    if (!t.casNext(null, s))        // failed to link in
                        continue;

                    advanceTail(t, s);              // swing tail and wait
                    Object x = awaitFulfill(s, e, timed, nanos);
                    if (x == s) {                   // wait was cancelled
                        clean(t, s);
                        return null;
                    }

                    if (!s.isOffList()) {           // not already unlinked
                        advanceHead(t, s);          // unlink if head
                        if (x != null)              // and forget fields
                            s.item = s;
                        s.waiter = null;
                    }
                    return (x != null)? x : e;

                } else {                            // complementary-mode
                    QNode m = h.next;               // node to fulfill
                    if (t != tail || m == null || h != head)
                        continue;                   // inconsistent read

                    Object x = m.item;
                    if (isData == (x != null) ||    // m already fulfilled
                        x == m ||                   // m cancelled
                        !m.casItem(x, e)) {         // lost CAS
                        advanceHead(h, m);          // dequeue and retry
                        continue;
                    }

                    advanceHead(h, m);              // successfully fulfilled
                    LockSupport.unpark(m.waiter);
                    return (x != null)? x : e;
                }
            }
        }

        /**
         * Spins/blocks until node s is fulfilled.
         *
         * @param s the waiting node
         * @param e the comparison value for checking match
         * @param timed true if timed wait
         * @param nanos timeout value
         * @return matched item, or s if cancelled
         */
        Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
            /* Same idea as TransferStack.awaitFulfill */
            long lastTime = (timed)? System.nanoTime() : 0;
            Thread w = Thread.currentThread();
            int spins = ((head.next == s) ?
                         (timed? maxTimedSpins : maxUntimedSpins) : 0);
            for (;;) {
                if (w.isInterrupted())
                    s.tryCancel(e);
                Object x = s.item;
                if (x != e)
                    return x;
                if (timed) {
                    long now = System.nanoTime();
                    nanos -= now - lastTime;
                    lastTime = now;
                    if (nanos <= 0) {
                        s.tryCancel(e);
                        continue;
                    }
                }
                if (spins > 0)
                    --spins;
                else if (s.waiter == null)
                    s.waiter = w;
                else if (!timed)
                    LockSupport.park(this);
                else if (nanos > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanos);
            }
        }

        /**
         * Gets rid of cancelled node s with original predecessor pred.
         */
        void clean(QNode pred, QNode s) {
            s.waiter = null; // forget thread
            /*
             * At any given time, exactly one node on list cannot be
             * deleted -- the last inserted node. To accommodate this,
             * if we cannot delete s, we save its predecessor as
             * "cleanMe", deleting the previously saved version
             * first. At least one of node s or the node previously
             * saved can always be deleted, so this always terminates.
             */
            while (pred.next == s) { // Return early if already unlinked
                QNode h = head;
                QNode hn = h.next;   // Absorb cancelled first node as head
                if (hn != null && hn.isCancelled()) {
                    advanceHead(h, hn);
                    continue;
                }
                QNode t = tail;      // Ensure consistent read for tail
                if (t == h)
                    return;
                QNode tn = t.next;
                if (t != tail)
                    continue;
                if (tn != null) {
                    advanceTail(t, tn);
                    continue;
                }
                if (s != t) {        // If not tail, try to unsplice
                    QNode sn = s.next;
                    if (sn == s || pred.casNext(s, sn))
                        return;
                }
                QNode dp = cleanMe;
                if (dp != null) {    // Try unlinking previous cancelled node
                    QNode d = dp.next;
                    QNode dn;
                    if (d == null ||               // d is gone or
                        d == dp ||                 // d is off list or
                        !d.isCancelled() ||        // d not cancelled or
                        (d != t &&                 // d not tail and
                         (dn = d.next) != null &&  //   has successor
                         dn != d &&                //   that is on list
                         dp.casNext(d, dn)))       // d unspliced
                        casCleanMe(dp, null);
                    if (dp == pred)
                        return;      // s is already saved node
                } else if (casCleanMe(null, pred))
                    return;          // Postpone cleaning s
            }
        }
    }

    /**
     * The transferer. Set only in constructor, but cannot be declared
     * as final without further complicating serialization.  Since
     * this is accessed only at most once per public method, there
     * isn't a noticeable performance penalty for using volatile
     * instead of final here.
     */
    private transient volatile Transferer transferer;

    /**
     * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
     */
    public SynchronousQueue() {
        this(false);
    }

    /**
     * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
     *
     * @param fair if true, waiting threads contend in FIFO order for
     *        access; otherwise the order is unspecified.
     */
    public SynchronousQueue(boolean fair) {
        transferer = (fair)? new TransferQueue() : new TransferStack();
    }

    /**
     * Adds the specified element to this queue, waiting if necessary for
     * another thread to receive it.
     *
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public void put(E o) throws InterruptedException {
        if (o == null) throw new NullPointerException();
        if (transferer.transfer(o, false, 0) == null) {
            Thread.interrupted();
            throw new InterruptedException();
        }
    }

    /**
     * Inserts the specified element into this queue, waiting if necessary
     * up to the specified wait time for another thread to receive it.
     *
     * @return <tt>true</tt> if successful, or <tt>false</tt> if the
     *         specified waiting time elapses before a consumer appears.
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public boolean offer(E o, long timeout, TimeUnit unit)
        throws InterruptedException {
        if (o == null) throw new NullPointerException();
        if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
            return true;
        if (!Thread.interrupted())
            return false;
        throw new InterruptedException();
    }

    /**
     * Inserts the specified element into this queue, if another thread is
     * waiting to receive it.
     *
     * @param e the element to add
     * @return <tt>true</tt> if the element was added to this queue, else
     *         <tt>false</tt>
     * @throws NullPointerException if the specified element is null
     */
    public boolean offer(E e) {
        if (e == null) throw new NullPointerException();
        return transferer.transfer(e, true, 0) != null;
    }

    /**
     * Retrieves and removes the head of this queue, waiting if necessary
     * for another thread to insert it.
     *
     * @return the head of this queue
     * @throws InterruptedException {@inheritDoc}
     */
    public E take() throws InterruptedException {
        Object e = transferer.transfer(null, false, 0);
        if (e != null)
            return (E)e;
        Thread.interrupted();
        throw new InterruptedException();
    }

    /**
     * Retrieves and removes the head of this queue, waiting
     * if necessary up to the specified wait time, for another thread
     * to insert it.
     *
     * @return the head of this queue, or <tt>null</tt> if the
     *         specified waiting time elapses before an element is present.
     * @throws InterruptedException {@inheritDoc}
     */
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        Object e = transferer.transfer(null, true, unit.toNanos(timeout));
        if (e != null || !Thread.interrupted())
            return (E)e;
        throw new InterruptedException();
    }

    /**
     * Retrieves and removes the head of this queue, if another thread
     * is currently making an element available.
     *
     * @return the head of this queue, or <tt>null</tt> if no
     *         element is available.
     */
    public E poll() {
        return (E)transferer.transfer(null, true, 0);
    }

    /**
     * Always returns <tt>true</tt>.
     * A <tt>SynchronousQueue</tt> has no internal capacity.
     *
     * @return <tt>true</tt>
     */
    public boolean isEmpty() {
        return true;
    }

    /**
     * Always returns zero.
     * A <tt>SynchronousQueue</tt> has no internal capacity.
     *
     * @return zero.
     */
    public int size() {
        return 0;
    }

    /**
     * Always returns zero.
     * A <tt>SynchronousQueue</tt> has no internal capacity.
     *
     * @return zero.
     */
    public int remainingCapacity() {
        return 0;
    }

    /**
     * Does nothing.
     * A <tt>SynchronousQueue</tt> has no internal capacity.
     */
    public void clear() {
    }

    /**
     * Always returns <tt>false</tt>.
     * A <tt>SynchronousQueue</tt> has no internal capacity.
     *
     * @param o the element
     * @return <tt>false</tt>
     */
    public boolean contains(Object o) {
        return false;
    }

    /**
     * Always returns <tt>false</tt>.
     * A <tt>SynchronousQueue</tt> has no internal capacity.
     *
     * @param o the element to remove
     * @return <tt>false</tt>
     */
    public boolean remove(Object o) {
        return false;
    }

    /**
     * Returns <tt>false</tt> unless the given collection is empty.
     * A <tt>SynchronousQueue</tt> has no internal capacity.
     *
     * @param c the collection
     * @return <tt>false</tt> unless given collection is empty
     */
    public boolean containsAll(Collection<?> c) {
        return c.isEmpty();
    }

    /**
     * Always returns <tt>false</tt>.
     * A <tt>SynchronousQueue</tt> has no internal capacity.
     *
     * @param c the collection
     * @return <tt>false</tt>
     */
    public boolean removeAll(Collection<?> c) {
        return false;
    }

    /**
     * Always returns <tt>false</tt>.
     * A <tt>SynchronousQueue</tt> has no internal capacity.
     *
     * @param c the collection
     * @return <tt>false</tt>
     */
    public boolean retainAll(Collection<?> c) {
        return false;
    }

    /**
     * Always returns <tt>null</tt>.
     * A <tt>SynchronousQueue</tt> does not return elements
     * unless actively waited on.
     *
     * @return <tt>null</tt>
     */
    public E peek() {
        return null;
    }

    /**
     * Returns an empty iterator in which <tt>hasNext</tt> always returns
     * <tt>false</tt>.
     *
     * @return an empty iterator
     */
    public Iterator<E> iterator() {
        return Collections.emptyIterator();
    }

    /**
     * Returns a zero-length array.
     * @return a zero-length array
     */
    public Object[] toArray() {
        return new Object[0];
    }

    /**
     * Sets the zeroeth element of the specified array to <tt>null</tt>
     * (if the array has non-zero length) and returns it.
     *
     * @param a the array
     * @return the specified array
     * @throws NullPointerException if the specified array is null
     */
    public <T> T[] toArray(T[] a) {
        if (a.length > 0)
            a[0] = null;
        return a;
    }

    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    public int drainTo(Collection<? super E> c) {
        if (c == null)
            throw new NullPointerException();
        if (c == this)
            throw new IllegalArgumentException();
        int n = 0;
        E e;
        while ( (e = poll()) != null) {
            c.add(e);
            ++n;
        }
        return n;
    }

    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    public int drainTo(Collection<? super E> c, int maxElements) {
        if (c == null)
            throw new NullPointerException();
        if (c == this)
            throw new IllegalArgumentException();
        int n = 0;
        E e;
        while (n < maxElements && (e = poll()) != null) {
            c.add(e);
            ++n;
        }
        return n;
    }

    /*
     * To cope with serialization strategy in the 1.5 version of
     * SynchronousQueue, we declare some unused classes and fields
     * that exist solely to enable serializability across versions.
     * These fields are never used, so are initialized only if this
     * object is ever serialized or deserialized.
     */

    static class WaitQueue implements java.io.Serializable { }
    static class LifoWaitQueue extends WaitQueue {
        private static final long serialVersionUID = -3633113410248163686L;
    }
    static class FifoWaitQueue extends WaitQueue {
        private static final long serialVersionUID = -3623113410248163686L;
    }
    private ReentrantLock qlock;
    private WaitQueue waitingProducers;
    private WaitQueue waitingConsumers;

    /**
     * Save the state to a stream (that is, serialize it).
     *
     * @param s the stream
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        boolean fair = transferer instanceof TransferQueue;
        if (fair) {
            qlock = new ReentrantLock(true);
            waitingProducers = new FifoWaitQueue();
            waitingConsumers = new FifoWaitQueue();
        }
        else {
            qlock = new ReentrantLock();
            waitingProducers = new LifoWaitQueue();
            waitingConsumers = new LifoWaitQueue();
        }
        s.defaultWriteObject();
    }

    private void readObject(final java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();
        if (waitingProducers instanceof FifoWaitQueue)
            transferer = new TransferQueue();
        else
            transferer = new TransferStack();
    }

}