Arrays.java 157.0 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Sun designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Sun in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 */

package java.util;

import java.lang.reflect.*;

/**
 * This class contains various methods for manipulating arrays (such as
32
 * sorting and searching). This class also contains a static factory
D
duke 已提交
33 34
 * that allows arrays to be viewed as lists.
 *
35 36
 * <p>The methods in this class all throw a {@code NullPointerException},
 * if the specified array reference is null, except where noted.
D
duke 已提交
37 38
 *
 * <p>The documentation for the methods contained in this class includes
39
 * briefs description of the <i>implementations</i>. Such descriptions should
D
duke 已提交
40
 * be regarded as <i>implementation notes</i>, rather than parts of the
41 42 43 44
 * <i>specification</i>. Implementors should feel free to substitute other
 * algorithms, so long as the specification itself is adhered to. (For
 * example, the algorithm used by {@code sort(Object[])} does not have to be
 * a MergeSort, but it does have to be <i>stable</i>.)
D
duke 已提交
45 46 47 48 49
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
50 51 52 53
 * @author Josh Bloch
 * @author Neal Gafter
 * @author John Rose
 * @since  1.2
D
duke 已提交
54 55
 */
public class Arrays {
56

D
duke 已提交
57
    // Suppresses default constructor, ensuring non-instantiability.
58
    private Arrays() {}
D
duke 已提交
59

A
alanb 已提交
60 61 62
    /*
     * Sorting of primitive type arrays.
     */
D
duke 已提交
63 64

    /**
65 66
     * Sorts the specified array into ascending numerical order.
     *
A
alanb 已提交
67
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
68 69 70 71
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
72 73 74
     *
     * @param a the array to be sorted
     */
A
alanb 已提交
75 76
    public static void sort(int[] a) {
        DualPivotQuicksort.sort(a);
D
duke 已提交
77 78 79
    }

    /**
A
alanb 已提交
80 81 82
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
83
     * the range to be sorted is empty.
D
duke 已提交
84
     *
A
alanb 已提交
85
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
86 87 88 89
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
90 91
     *
     * @param a the array to be sorted
A
alanb 已提交
92 93 94
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
95 96 97
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
D
duke 已提交
98
     */
A
alanb 已提交
99 100
    public static void sort(int[] a, int fromIndex, int toIndex) {
        DualPivotQuicksort.sort(a, fromIndex, toIndex);
D
duke 已提交
101 102 103
    }

    /**
104 105
     * Sorts the specified array into ascending numerical order.
     *
A
alanb 已提交
106
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
107 108 109 110
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
111 112 113
     *
     * @param a the array to be sorted
     */
A
alanb 已提交
114 115
    public static void sort(long[] a) {
        DualPivotQuicksort.sort(a);
D
duke 已提交
116 117 118
    }

    /**
A
alanb 已提交
119 120 121
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
122
     * the range to be sorted is empty.
D
duke 已提交
123
     *
A
alanb 已提交
124
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
125 126 127 128
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
129 130
     *
     * @param a the array to be sorted
A
alanb 已提交
131 132 133
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
134 135 136
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
D
duke 已提交
137
     */
A
alanb 已提交
138 139
    public static void sort(long[] a, int fromIndex, int toIndex) {
        DualPivotQuicksort.sort(a, fromIndex, toIndex);
D
duke 已提交
140 141 142
    }

    /**
143 144
     * Sorts the specified array into ascending numerical order.
     *
A
alanb 已提交
145
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
146 147 148 149
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
150 151 152 153
     *
     * @param a the array to be sorted
     */
    public static void sort(short[] a) {
A
alanb 已提交
154
        DualPivotQuicksort.sort(a);
D
duke 已提交
155 156 157
    }

    /**
A
alanb 已提交
158 159 160
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
161
     * the range to be sorted is empty.
D
duke 已提交
162
     *
A
alanb 已提交
163
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
164 165 166 167
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
168 169
     *
     * @param a the array to be sorted
A
alanb 已提交
170 171 172
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
173 174 175
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
D
duke 已提交
176 177
     */
    public static void sort(short[] a, int fromIndex, int toIndex) {
A
alanb 已提交
178
        DualPivotQuicksort.sort(a, fromIndex, toIndex);
D
duke 已提交
179 180 181
    }

    /**
182 183
     * Sorts the specified array into ascending numerical order.
     *
A
alanb 已提交
184
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
185 186 187 188
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
189 190 191 192
     *
     * @param a the array to be sorted
     */
    public static void sort(char[] a) {
A
alanb 已提交
193
        DualPivotQuicksort.sort(a);
D
duke 已提交
194 195 196
    }

    /**
A
alanb 已提交
197 198 199
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
200
     * the range to be sorted is empty.
D
duke 已提交
201
     *
A
alanb 已提交
202
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
203 204 205 206
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
207 208
     *
     * @param a the array to be sorted
A
alanb 已提交
209 210 211
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
212 213 214
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
D
duke 已提交
215 216
     */
    public static void sort(char[] a, int fromIndex, int toIndex) {
A
alanb 已提交
217
        DualPivotQuicksort.sort(a, fromIndex, toIndex);
D
duke 已提交
218 219 220
    }

    /**
221 222
     * Sorts the specified array into ascending numerical order.
     *
A
alanb 已提交
223
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
224 225 226 227
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
228 229 230 231
     *
     * @param a the array to be sorted
     */
    public static void sort(byte[] a) {
A
alanb 已提交
232
        DualPivotQuicksort.sort(a);
D
duke 已提交
233 234 235
    }

    /**
A
alanb 已提交
236 237 238
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
239
     * the range to be sorted is empty.
D
duke 已提交
240
     *
A
alanb 已提交
241
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
242 243 244 245
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
246 247
     *
     * @param a the array to be sorted
A
alanb 已提交
248 249 250
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
251 252 253
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
D
duke 已提交
254 255
     */
    public static void sort(byte[] a, int fromIndex, int toIndex) {
A
alanb 已提交
256
        DualPivotQuicksort.sort(a, fromIndex, toIndex);
D
duke 已提交
257 258 259
    }

    /**
260
     * Sorts the specified array into ascending numerical order.
D
duke 已提交
261
     *
A
alanb 已提交
262 263 264 265 266 267 268 269 270
     * <p>The {@code <} relation does not provide a total order on all float
     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
     * value compares neither less than, greater than, nor equal to any value,
     * even itself. This method uses the total order imposed by the method
     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
     * other value and all {@code Float.NaN} values are considered equal.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
271 272 273 274
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
275 276 277
     *
     * @param a the array to be sorted
     */
A
alanb 已提交
278 279
    public static void sort(float[] a) {
        DualPivotQuicksort.sort(a);
D
duke 已提交
280 281 282
    }

    /**
A
alanb 已提交
283 284 285
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
286
     * the range to be sorted is empty.
D
duke 已提交
287
     *
A
alanb 已提交
288 289 290 291 292 293 294 295 296
     * <p>The {@code <} relation does not provide a total order on all float
     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
     * value compares neither less than, greater than, nor equal to any value,
     * even itself. This method uses the total order imposed by the method
     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
     * other value and all {@code Float.NaN} values are considered equal.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
297 298 299 300
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
D
duke 已提交
301 302
     *
     * @param a the array to be sorted
A
alanb 已提交
303 304 305
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
306 307 308
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
D
duke 已提交
309
     */
A
alanb 已提交
310 311
    public static void sort(float[] a, int fromIndex, int toIndex) {
        DualPivotQuicksort.sort(a, fromIndex, toIndex);
D
duke 已提交
312 313
    }

314 315 316
    /**
     * Sorts the specified array into ascending numerical order.
     *
A
alanb 已提交
317 318 319 320 321 322 323 324 325
     * <p>The {@code <} relation does not provide a total order on all double
     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
     * value compares neither less than, greater than, nor equal to any value,
     * even itself. This method uses the total order imposed by the method
     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
     * other value and all {@code Double.NaN} values are considered equal.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
326 327 328 329 330 331 332
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
     */
A
alanb 已提交
333 334
    public static void sort(double[] a) {
        DualPivotQuicksort.sort(a);
335 336 337
    }

    /**
A
alanb 已提交
338 339 340
     * Sorts the specified range of the array into ascending order. The range
     * to be sorted extends from the index {@code fromIndex}, inclusive, to
     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
341 342
     * the range to be sorted is empty.
     *
A
alanb 已提交
343 344 345 346 347 348 349 350 351
     * <p>The {@code <} relation does not provide a total order on all double
     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
     * value compares neither less than, greater than, nor equal to any value,
     * even itself. This method uses the total order imposed by the method
     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
     * other value and all {@code Double.NaN} values are considered equal.
     *
     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
352 353 354 355 356 357
     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
     * offers O(n log(n)) performance on many data sets that cause other
     * quicksorts to degrade to quadratic performance, and is typically
     * faster than traditional (one-pivot) Quicksort implementations.
     *
     * @param a the array to be sorted
A
alanb 已提交
358 359 360
     * @param fromIndex the index of the first element, inclusive, to be sorted
     * @param toIndex the index of the last element, exclusive, to be sorted
     *
361 362 363 364
     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
     */
A
alanb 已提交
365 366
    public static void sort(double[] a, int fromIndex, int toIndex) {
        DualPivotQuicksort.sort(a, fromIndex, toIndex);
367
    }
D
duke 已提交
368

A
alanb 已提交
369 370 371 372
    /*
     * Sorting of complex type arrays.
     *
     */
D
duke 已提交
373

374 375 376 377
    /**
     * Old merge sort implementation can be selected (for
     * compatibility with broken comparators) using a system property.
     * Cannot be a static boolean in the enclosing class due to
378
     * circular dependencies. To be removed in a future release.
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
     */
    static final class LegacyMergeSort {
        private static final boolean userRequested =
            java.security.AccessController.doPrivileged(
                new sun.security.action.GetBooleanAction(
                    "java.util.Arrays.useLegacyMergeSort")).booleanValue();
    }

    /*
     * If this platform has an optimizing VM, check whether ComparableTimSort
     * offers any performance benefit over TimSort in conjunction with a
     * comparator that returns:
     *    {@code ((Comparable)first).compareTo(Second)}.
     * If not, you are better off deleting ComparableTimSort to
     * eliminate the code duplication.  In other words, the commented
     * out code below is the preferable implementation for sorting
     * arrays of Comparables if it offers sufficient performance.
     */

//    /**
//     * A comparator that implements the natural ordering of a group of
//     * mutually comparable elements.  Using this comparator saves us
//     * from duplicating most of the code in this file (one version for
//     * Comparables, one for explicit Comparators).
//     */
//    private static final Comparator<Object> NATURAL_ORDER =
//            new Comparator<Object>() {
//        @SuppressWarnings("unchecked")
//        public int compare(Object first, Object second) {
//            return ((Comparable<Object>)first).compareTo(second);
//        }
//    };
//
//    public static void sort(Object[] a) {
//        sort(a, 0, a.length, NATURAL_ORDER);
//    }
//
//    public static void sort(Object[] a, int fromIndex, int toIndex) {
//        sort(a, fromIndex, toIndex, NATURAL_ORDER);
//    }
D
duke 已提交
419 420

    /**
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
     * Sorts the specified array of objects into ascending order, according
     * to the {@linkplain Comparable natural ordering} of its elements.
     * All elements in the array must implement the {@link Comparable}
     * interface.  Furthermore, all elements in the array must be
     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must
     * not throw a {@code ClassCastException} for any elements {@code e1}
     * and {@code e2} in the array).
     *
     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
     * not be reordered as a result of the sort.
     *
     * <p>Implementation note: This implementation is a stable, adaptive,
     * iterative mergesort that requires far fewer than n lg(n) comparisons
     * when the input array is partially sorted, while offering the
     * performance of a traditional mergesort when the input array is
     * randomly ordered.  If the input array is nearly sorted, the
     * implementation requires approximately n comparisons.  Temporary
     * storage requirements vary from a small constant for nearly sorted
     * input arrays to n/2 object references for randomly ordered input
     * arrays.
D
duke 已提交
441
     *
442 443 444 445 446
     * <p>The implementation takes equal advantage of ascending and
     * descending order in its input array, and can take advantage of
     * ascending and descending order in different parts of the the same
     * input array.  It is well-suited to merging two or more sorted arrays:
     * simply concatenate the arrays and sort the resulting array.
D
duke 已提交
447
     *
448 449 450 451 452 453
     * <p>The implementation was adapted from Tim Peters's list sort for Python
     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
     * Sorting and Information Theoretic Complexity", in Proceedings of the
     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
     * January 1993.
D
duke 已提交
454 455
     *
     * @param a the array to be sorted
456 457 458 459 460
     * @throws ClassCastException if the array contains elements that are not
     *         <i>mutually comparable</i> (for example, strings and integers)
     * @throws IllegalArgumentException (optional) if the natural
     *         ordering of the array elements is found to violate the
     *         {@link Comparable} contract
D
duke 已提交
461 462
     */
    public static void sort(Object[] a) {
463 464 465 466 467 468 469 470
        if (LegacyMergeSort.userRequested)
            legacyMergeSort(a);
        else
            ComparableTimSort.sort(a);
    }

    /** To be removed in a future release. */
    private static void legacyMergeSort(Object[] a) {
471
        Object[] aux = a.clone();
D
duke 已提交
472 473 474 475 476 477 478 479
        mergeSort(aux, a, 0, a.length, 0);
    }

    /**
     * Sorts the specified range of the specified array of objects into
     * ascending order, according to the
     * {@linkplain Comparable natural ordering} of its
     * elements.  The range to be sorted extends from index
480 481
     * {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive.
     * (If {@code fromIndex==toIndex}, the range to be sorted is empty.)  All
D
duke 已提交
482 483
     * elements in this range must implement the {@link Comparable}
     * interface.  Furthermore, all elements in this range must be <i>mutually
484 485 486
     * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
     * {@code ClassCastException} for any elements {@code e1} and
     * {@code e2} in the array).
D
duke 已提交
487
     *
488 489
     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
     * not be reordered as a result of the sort.
D
duke 已提交
490
     *
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
     * <p>Implementation note: This implementation is a stable, adaptive,
     * iterative mergesort that requires far fewer than n lg(n) comparisons
     * when the input array is partially sorted, while offering the
     * performance of a traditional mergesort when the input array is
     * randomly ordered.  If the input array is nearly sorted, the
     * implementation requires approximately n comparisons.  Temporary
     * storage requirements vary from a small constant for nearly sorted
     * input arrays to n/2 object references for randomly ordered input
     * arrays.
     *
     * <p>The implementation takes equal advantage of ascending and
     * descending order in its input array, and can take advantage of
     * ascending and descending order in different parts of the the same
     * input array.  It is well-suited to merging two or more sorted arrays:
     * simply concatenate the arrays and sort the resulting array.
     *
     * <p>The implementation was adapted from Tim Peters's list sort for Python
     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
     * Sorting and Information Theoretic Complexity", in Proceedings of the
     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
     * January 1993.
D
duke 已提交
513 514 515 516 517
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element (inclusive) to be
     *        sorted
     * @param toIndex the index of the last element (exclusive) to be sorted
518 519 520 521 522 523 524 525
     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
     *         (optional) if the natural ordering of the array elements is
     *         found to violate the {@link Comparable} contract
     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
     *         {@code toIndex > a.length}
     * @throws ClassCastException if the array contains elements that are
     *         not <i>mutually comparable</i> (for example, strings and
     *         integers).
D
duke 已提交
526 527
     */
    public static void sort(Object[] a, int fromIndex, int toIndex) {
528 529 530 531 532 533 534 535 536
        if (LegacyMergeSort.userRequested)
            legacyMergeSort(a, fromIndex, toIndex);
        else
            ComparableTimSort.sort(a, fromIndex, toIndex);
    }

    /** To be removed in a future release. */
    private static void legacyMergeSort(Object[] a,
                                        int fromIndex, int toIndex) {
D
duke 已提交
537 538 539 540 541 542 543
        rangeCheck(a.length, fromIndex, toIndex);
        Object[] aux = copyOfRange(a, fromIndex, toIndex);
        mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
    }

    /**
     * Tuning parameter: list size at or below which insertion sort will be
544
     * used in preference to mergesort.
545
     * To be removed in a future release.
D
duke 已提交
546 547 548 549 550 551 552 553 554
     */
    private static final int INSERTIONSORT_THRESHOLD = 7;

    /**
     * Src is the source array that starts at index 0
     * Dest is the (possibly larger) array destination with a possible offset
     * low is the index in dest to start sorting
     * high is the end index in dest to end sorting
     * off is the offset to generate corresponding low, high in src
555
     * To be removed in a future release.
D
duke 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
     */
    private static void mergeSort(Object[] src,
                                  Object[] dest,
                                  int low,
                                  int high,
                                  int off) {
        int length = high - low;

        // Insertion sort on smallest arrays
        if (length < INSERTIONSORT_THRESHOLD) {
            for (int i=low; i<high; i++)
                for (int j=i; j>low &&
                         ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
                    swap(dest, j, j-1);
            return;
        }

        // Recursively sort halves of dest into src
        int destLow  = low;
        int destHigh = high;
        low  += off;
        high += off;
        int mid = (low + high) >>> 1;
        mergeSort(dest, src, low, mid, -off);
        mergeSort(dest, src, mid, high, -off);

        // If list is already sorted, just copy from src to dest.  This is an
        // optimization that results in faster sorts for nearly ordered lists.
        if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
            System.arraycopy(src, low, dest, destLow, length);
            return;
        }

        // Merge sorted halves (now in src) into dest
        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
            if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
                dest[i] = src[p++];
            else
                dest[i] = src[q++];
        }
    }

    /**
     * Swaps x[a] with x[b].
     */
    private static void swap(Object[] x, int a, int b) {
        Object t = x[a];
        x[a] = x[b];
        x[b] = t;
    }

    /**
     * Sorts the specified array of objects according to the order induced by
     * the specified comparator.  All elements in the array must be
     * <i>mutually comparable</i> by the specified comparator (that is,
611 612 613 614 615
     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
     * for any elements {@code e1} and {@code e2} in the array).
     *
     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
     * not be reordered as a result of the sort.
D
duke 已提交
616
     *
617 618 619 620 621 622 623 624 625
     * <p>Implementation note: This implementation is a stable, adaptive,
     * iterative mergesort that requires far fewer than n lg(n) comparisons
     * when the input array is partially sorted, while offering the
     * performance of a traditional mergesort when the input array is
     * randomly ordered.  If the input array is nearly sorted, the
     * implementation requires approximately n comparisons.  Temporary
     * storage requirements vary from a small constant for nearly sorted
     * input arrays to n/2 object references for randomly ordered input
     * arrays.
D
duke 已提交
626
     *
627 628 629 630 631 632 633 634 635 636 637 638
     * <p>The implementation takes equal advantage of ascending and
     * descending order in its input array, and can take advantage of
     * ascending and descending order in different parts of the the same
     * input array.  It is well-suited to merging two or more sorted arrays:
     * simply concatenate the arrays and sort the resulting array.
     *
     * <p>The implementation was adapted from Tim Peters's list sort for Python
     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
     * Sorting and Information Theoretic Complexity", in Proceedings of the
     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
     * January 1993.
D
duke 已提交
639 640 641
     *
     * @param a the array to be sorted
     * @param c the comparator to determine the order of the array.  A
642
     *        {@code null} value indicates that the elements'
D
duke 已提交
643
     *        {@linkplain Comparable natural ordering} should be used.
644 645 646 647
     * @throws ClassCastException if the array contains elements that are
     *         not <i>mutually comparable</i> using the specified comparator
     * @throws IllegalArgumentException (optional) if the comparator is
     *         found to violate the {@link Comparator} contract
D
duke 已提交
648 649
     */
    public static <T> void sort(T[] a, Comparator<? super T> c) {
650 651 652 653 654 655 656 657
        if (LegacyMergeSort.userRequested)
            legacyMergeSort(a, c);
        else
            TimSort.sort(a, c);
    }

    /** To be removed in a future release. */
    private static <T> void legacyMergeSort(T[] a, Comparator<? super T> c) {
658
        T[] aux = a.clone();
D
duke 已提交
659 660 661 662 663 664 665 666 667
        if (c==null)
            mergeSort(aux, a, 0, a.length, 0);
        else
            mergeSort(aux, a, 0, a.length, 0, c);
    }

    /**
     * Sorts the specified range of the specified array of objects according
     * to the order induced by the specified comparator.  The range to be
668 669
     * sorted extends from index {@code fromIndex}, inclusive, to index
     * {@code toIndex}, exclusive.  (If {@code fromIndex==toIndex}, the
D
duke 已提交
670 671
     * range to be sorted is empty.)  All elements in the range must be
     * <i>mutually comparable</i> by the specified comparator (that is,
672 673
     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
     * for any elements {@code e1} and {@code e2} in the range).
D
duke 已提交
674
     *
675 676
     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
     * not be reordered as a result of the sort.
D
duke 已提交
677
     *
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
     * <p>Implementation note: This implementation is a stable, adaptive,
     * iterative mergesort that requires far fewer than n lg(n) comparisons
     * when the input array is partially sorted, while offering the
     * performance of a traditional mergesort when the input array is
     * randomly ordered.  If the input array is nearly sorted, the
     * implementation requires approximately n comparisons.  Temporary
     * storage requirements vary from a small constant for nearly sorted
     * input arrays to n/2 object references for randomly ordered input
     * arrays.
     *
     * <p>The implementation takes equal advantage of ascending and
     * descending order in its input array, and can take advantage of
     * ascending and descending order in different parts of the the same
     * input array.  It is well-suited to merging two or more sorted arrays:
     * simply concatenate the arrays and sort the resulting array.
     *
     * <p>The implementation was adapted from Tim Peters's list sort for Python
     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
     * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
     * Sorting and Information Theoretic Complexity", in Proceedings of the
     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
     * January 1993.
D
duke 已提交
700 701 702 703 704 705
     *
     * @param a the array to be sorted
     * @param fromIndex the index of the first element (inclusive) to be
     *        sorted
     * @param toIndex the index of the last element (exclusive) to be sorted
     * @param c the comparator to determine the order of the array.  A
706
     *        {@code null} value indicates that the elements'
D
duke 已提交
707 708 709
     *        {@linkplain Comparable natural ordering} should be used.
     * @throws ClassCastException if the array contains elements that are not
     *         <i>mutually comparable</i> using the specified comparator.
710 711 712 713 714
     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
     *         (optional) if the comparator is found to violate the
     *         {@link Comparator} contract
     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
     *         {@code toIndex > a.length}
D
duke 已提交
715 716 717
     */
    public static <T> void sort(T[] a, int fromIndex, int toIndex,
                                Comparator<? super T> c) {
718 719 720 721 722 723 724 725 726
        if (LegacyMergeSort.userRequested)
            legacyMergeSort(a, fromIndex, toIndex, c);
        else
            TimSort.sort(a, fromIndex, toIndex, c);
    }

    /** To be removed in a future release. */
    private static <T> void legacyMergeSort(T[] a, int fromIndex, int toIndex,
                                            Comparator<? super T> c) {
D
duke 已提交
727
        rangeCheck(a.length, fromIndex, toIndex);
728
        T[] aux = copyOfRange(a, fromIndex, toIndex);
D
duke 已提交
729 730 731 732 733 734 735 736 737 738 739 740
        if (c==null)
            mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
        else
            mergeSort(aux, a, fromIndex, toIndex, -fromIndex, c);
    }

    /**
     * Src is the source array that starts at index 0
     * Dest is the (possibly larger) array destination with a possible offset
     * low is the index in dest to start sorting
     * high is the end index in dest to end sorting
     * off is the offset into src corresponding to low in dest
741
     * To be removed in a future release.
D
duke 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
     */
    private static void mergeSort(Object[] src,
                                  Object[] dest,
                                  int low, int high, int off,
                                  Comparator c) {
        int length = high - low;

        // Insertion sort on smallest arrays
        if (length < INSERTIONSORT_THRESHOLD) {
            for (int i=low; i<high; i++)
                for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--)
                    swap(dest, j, j-1);
            return;
        }

        // Recursively sort halves of dest into src
        int destLow  = low;
        int destHigh = high;
        low  += off;
        high += off;
        int mid = (low + high) >>> 1;
        mergeSort(dest, src, low, mid, -off, c);
        mergeSort(dest, src, mid, high, -off, c);

        // If list is already sorted, just copy from src to dest.  This is an
        // optimization that results in faster sorts for nearly ordered lists.
        if (c.compare(src[mid-1], src[mid]) <= 0) {
           System.arraycopy(src, low, dest, destLow, length);
           return;
        }

        // Merge sorted halves (now in src) into dest
        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
            if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0)
                dest[i] = src[p++];
            else
                dest[i] = src[q++];
        }
    }

    /**
783 784
     * Checks that {@code fromIndex} and {@code toIndex} are in
     * the range and throws an appropriate exception, if they aren't.
D
duke 已提交
785
     */
786 787 788 789 790 791
    private static void rangeCheck(int length, int fromIndex, int toIndex) {
        if (fromIndex > toIndex) {
            throw new IllegalArgumentException(
                "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
        }
        if (fromIndex < 0) {
D
duke 已提交
792
            throw new ArrayIndexOutOfBoundsException(fromIndex);
793 794
        }
        if (toIndex > length) {
D
duke 已提交
795
            throw new ArrayIndexOutOfBoundsException(toIndex);
796
        }
D
duke 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    }

    // Searching

    /**
     * Searches the specified array of longs for the specified value using the
     * binary search algorithm.  The array must be sorted (as
     * by the {@link #sort(long[])} method) prior to making this call.  If it
     * is not sorted, the results are undefined.  If the array contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     */
    public static int binarySearch(long[] a, long key) {
        return binarySearch0(a, 0, a.length, key);
    }

    /**
     * Searches a range of
     * the specified array of longs for the specified value using the
     * binary search algorithm.
     * The range must be sorted (as
     * by the {@link #sort(long[], int, int)} method)
     * prior to making this call.  If it
     * is not sorted, the results are undefined.  If the range contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
     *         elements in the range are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static int binarySearch(long[] a, int fromIndex, int toIndex,
                                   long key) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(long[] a, int fromIndex, int toIndex,
                                     long key) {
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            long midVal = a[mid];

            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

    /**
     * Searches the specified array of ints for the specified value using the
     * binary search algorithm.  The array must be sorted (as
     * by the {@link #sort(int[])} method) prior to making this call.  If it
     * is not sorted, the results are undefined.  If the array contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     */
    public static int binarySearch(int[] a, int key) {
        return binarySearch0(a, 0, a.length, key);
    }

    /**
     * Searches a range of
     * the specified array of ints for the specified value using the
     * binary search algorithm.
     * The range must be sorted (as
     * by the {@link #sort(int[], int, int)} method)
     * prior to making this call.  If it
     * is not sorted, the results are undefined.  If the range contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
     *         elements in the range are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static int binarySearch(int[] a, int fromIndex, int toIndex,
                                   int key) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(int[] a, int fromIndex, int toIndex,
                                     int key) {
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            int midVal = a[mid];

            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

    /**
     * Searches the specified array of shorts for the specified value using
     * the binary search algorithm.  The array must be sorted
     * (as by the {@link #sort(short[])} method) prior to making this call.  If
     * it is not sorted, the results are undefined.  If the array contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     */
    public static int binarySearch(short[] a, short key) {
        return binarySearch0(a, 0, a.length, key);
    }

    /**
     * Searches a range of
     * the specified array of shorts for the specified value using
     * the binary search algorithm.
     * The range must be sorted
     * (as by the {@link #sort(short[], int, int)} method)
     * prior to making this call.  If
     * it is not sorted, the results are undefined.  If the range contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
     *         elements in the range are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static int binarySearch(short[] a, int fromIndex, int toIndex,
                                   short key) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(short[] a, int fromIndex, int toIndex,
                                     short key) {
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            short midVal = a[mid];

            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

    /**
     * Searches the specified array of chars for the specified value using the
     * binary search algorithm.  The array must be sorted (as
     * by the {@link #sort(char[])} method) prior to making this call.  If it
     * is not sorted, the results are undefined.  If the array contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     */
    public static int binarySearch(char[] a, char key) {
        return binarySearch0(a, 0, a.length, key);
    }

    /**
     * Searches a range of
     * the specified array of chars for the specified value using the
     * binary search algorithm.
     * The range must be sorted (as
     * by the {@link #sort(char[], int, int)} method)
     * prior to making this call.  If it
     * is not sorted, the results are undefined.  If the range contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
     *         elements in the range are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static int binarySearch(char[] a, int fromIndex, int toIndex,
                                   char key) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(char[] a, int fromIndex, int toIndex,
                                     char key) {
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            char midVal = a[mid];

            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

    /**
     * Searches the specified array of bytes for the specified value using the
     * binary search algorithm.  The array must be sorted (as
     * by the {@link #sort(byte[])} method) prior to making this call.  If it
     * is not sorted, the results are undefined.  If the array contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     */
    public static int binarySearch(byte[] a, byte key) {
        return binarySearch0(a, 0, a.length, key);
    }

    /**
     * Searches a range of
     * the specified array of bytes for the specified value using the
     * binary search algorithm.
     * The range must be sorted (as
     * by the {@link #sort(byte[], int, int)} method)
     * prior to making this call.  If it
     * is not sorted, the results are undefined.  If the range contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
     *         elements in the range are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static int binarySearch(byte[] a, int fromIndex, int toIndex,
                                   byte key) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(byte[] a, int fromIndex, int toIndex,
                                     byte key) {
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            byte midVal = a[mid];

            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

    /**
     * Searches the specified array of doubles for the specified value using
     * the binary search algorithm.  The array must be sorted
     * (as by the {@link #sort(double[])} method) prior to making this call.
     * If it is not sorted, the results are undefined.  If the array contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.  This method considers all NaN values to be
     * equivalent and equal.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     */
    public static int binarySearch(double[] a, double key) {
        return binarySearch0(a, 0, a.length, key);
    }

    /**
     * Searches a range of
     * the specified array of doubles for the specified value using
     * the binary search algorithm.
     * The range must be sorted
     * (as by the {@link #sort(double[], int, int)} method)
     * prior to making this call.
     * If it is not sorted, the results are undefined.  If the range contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.  This method considers all NaN values to be
     * equivalent and equal.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
     *         elements in the range are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static int binarySearch(double[] a, int fromIndex, int toIndex,
                                   double key) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(double[] a, int fromIndex, int toIndex,
                                     double key) {
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            double midVal = a[mid];

            if (midVal < key)
                low = mid + 1;  // Neither val is NaN, thisVal is smaller
            else if (midVal > key)
                high = mid - 1; // Neither val is NaN, thisVal is larger
            else {
                long midBits = Double.doubleToLongBits(midVal);
                long keyBits = Double.doubleToLongBits(key);
                if (midBits == keyBits)     // Values are equal
                    return mid;             // Key found
                else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN)
                    low = mid + 1;
                else                        // (0.0, -0.0) or (NaN, !NaN)
                    high = mid - 1;
            }
        }
        return -(low + 1);  // key not found.
    }

    /**
     * Searches the specified array of floats for the specified value using
1299 1300 1301
     * the binary search algorithm. The array must be sorted
     * (as by the {@link #sort(float[])} method) prior to making this call. If
     * it is not sorted, the results are undefined. If the array contains
D
duke 已提交
1302
     * multiple elements with the specified value, there is no guarantee which
1303
     * one will be found. This method considers all NaN values to be
D
duke 已提交
1304 1305 1306 1307 1308
     * equivalent and equal.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
1309
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
D
duke 已提交
1310 1311 1312
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
1313
     *         elements in the array are less than the specified key. Note
D
duke 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     */
    public static int binarySearch(float[] a, float key) {
        return binarySearch0(a, 0, a.length, key);
    }

    /**
     * Searches a range of
     * the specified array of floats for the specified value using
     * the binary search algorithm.
     * The range must be sorted
     * (as by the {@link #sort(float[], int, int)} method)
1327 1328
     * prior to making this call. If
     * it is not sorted, the results are undefined. If the range contains
D
duke 已提交
1329
     * multiple elements with the specified value, there is no guarantee which
1330
     * one will be found. This method considers all NaN values to be
D
duke 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339
     * equivalent and equal.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
1340
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
D
duke 已提交
1341 1342 1343 1344
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
1345
     *         elements in the range are less than the specified key. Note
D
duke 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static int binarySearch(float[] a, int fromIndex, int toIndex,
                                   float key) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(float[] a, int fromIndex, int toIndex,
                                     float key) {
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            float midVal = a[mid];

            if (midVal < key)
                low = mid + 1;  // Neither val is NaN, thisVal is smaller
            else if (midVal > key)
                high = mid - 1; // Neither val is NaN, thisVal is larger
            else {
                int midBits = Float.floatToIntBits(midVal);
                int keyBits = Float.floatToIntBits(key);
                if (midBits == keyBits)     // Values are equal
                    return mid;             // Key found
                else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN)
                    low = mid + 1;
                else                        // (0.0, -0.0) or (NaN, !NaN)
                    high = mid - 1;
            }
        }
        return -(low + 1);  // key not found.
    }

    /**
     * Searches the specified array for the specified object using the binary
1390
     * search algorithm. The array must be sorted into ascending order
D
duke 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
     * according to the
     * {@linkplain Comparable natural ordering}
     * of its elements (as by the
     * {@link #sort(Object[])} method) prior to making this call.
     * If it is not sorted, the results are undefined.
     * (If the array contains elements that are not mutually comparable (for
     * example, strings and integers), it <i>cannot</i> be sorted according
     * to the natural ordering of its elements, hence results are undefined.)
     * If the array contains multiple
     * elements equal to the specified object, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws ClassCastException if the search key is not comparable to the
     *         elements of the array.
     */
    public static int binarySearch(Object[] a, Object key) {
        return binarySearch0(a, 0, a.length, key);
    }

    /**
     * Searches a range of
     * the specified array for the specified object using the binary
     * search algorithm.
     * The range must be sorted into ascending order
     * according to the
     * {@linkplain Comparable natural ordering}
     * of its elements (as by the
     * {@link #sort(Object[], int, int)} method) prior to making this
     * call.  If it is not sorted, the results are undefined.
     * (If the range contains elements that are not mutually comparable (for
     * example, strings and integers), it <i>cannot</i> be sorted according
     * to the natural ordering of its elements, hence results are undefined.)
     * If the range contains multiple
     * elements equal to the specified object, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
     *         elements in the range are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws ClassCastException if the search key is not comparable to the
     *         elements of the array within the specified range.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static int binarySearch(Object[] a, int fromIndex, int toIndex,
                                   Object key) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(Object[] a, int fromIndex, int toIndex,
                                     Object key) {
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            Comparable midVal = (Comparable)a[mid];
            int cmp = midVal.compareTo(key);

            if (cmp < 0)
                low = mid + 1;
            else if (cmp > 0)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

    /**
     * Searches the specified array for the specified object using the binary
     * search algorithm.  The array must be sorted into ascending order
     * according to the specified comparator (as by the
     * {@link #sort(Object[], Comparator) sort(T[], Comparator)}
     * method) prior to making this call.  If it is
     * not sorted, the results are undefined.
     * If the array contains multiple
     * elements equal to the specified object, there is no guarantee which one
     * will be found.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @param c the comparator by which the array is ordered.  A
     *        <tt>null</tt> value indicates that the elements'
     *        {@linkplain Comparable natural ordering} should be used.
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws ClassCastException if the array contains elements that are not
     *         <i>mutually comparable</i> using the specified comparator,
     *         or the search key is not comparable to the
     *         elements of the array using this comparator.
     */
    public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c) {
        return binarySearch0(a, 0, a.length, key, c);
    }

    /**
     * Searches a range of
     * the specified array for the specified object using the binary
     * search algorithm.
     * The range must be sorted into ascending order
     * according to the specified comparator (as by the
     * {@link #sort(Object[], int, int, Comparator)
     * sort(T[], int, int, Comparator)}
     * method) prior to making this call.
     * If it is not sorted, the results are undefined.
     * If the range contains multiple elements equal to the specified object,
     * there is no guarantee which one will be found.
     *
     * @param a the array to be searched
     * @param fromIndex the index of the first element (inclusive) to be
     *          searched
     * @param toIndex the index of the last element (exclusive) to be searched
     * @param key the value to be searched for
     * @param c the comparator by which the array is ordered.  A
     *        <tt>null</tt> value indicates that the elements'
     *        {@linkplain Comparable natural ordering} should be used.
     * @return index of the search key, if it is contained in the array
     *         within the specified range;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element in the range greater than the key,
     *         or <tt>toIndex</tt> if all
     *         elements in the range are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     * @throws ClassCastException if the range contains elements that are not
     *         <i>mutually comparable</i> using the specified comparator,
     *         or the search key is not comparable to the
     *         elements in the range using this comparator.
     * @throws IllegalArgumentException
     *         if {@code fromIndex > toIndex}
     * @throws ArrayIndexOutOfBoundsException
     *         if {@code fromIndex < 0 or toIndex > a.length}
     * @since 1.6
     */
    public static <T> int binarySearch(T[] a, int fromIndex, int toIndex,
                                       T key, Comparator<? super T> c) {
        rangeCheck(a.length, fromIndex, toIndex);
        return binarySearch0(a, fromIndex, toIndex, key, c);
    }

    // Like public version, but without range checks.
    private static <T> int binarySearch0(T[] a, int fromIndex, int toIndex,
                                         T key, Comparator<? super T> c) {
        if (c == null) {
            return binarySearch0(a, fromIndex, toIndex, key);
        }
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            T midVal = a[mid];
            int cmp = c.compare(midVal, key);
            if (cmp < 0)
                low = mid + 1;
            else if (cmp > 0)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

    // Equality Testing

    /**
     * Returns <tt>true</tt> if the two specified arrays of longs are
     * <i>equal</i> to one another.  Two arrays are considered equal if both
     * arrays contain the same number of elements, and all corresponding pairs
     * of elements in the two arrays are equal.  In other words, two arrays
     * are equal if they contain the same elements in the same order.  Also,
     * two array references are considered equal if both are <tt>null</tt>.<p>
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     */
    public static boolean equals(long[] a, long[] a2) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;

        for (int i=0; i<length; i++)
            if (a[i] != a2[i])
                return false;

        return true;
    }

    /**
     * Returns <tt>true</tt> if the two specified arrays of ints are
     * <i>equal</i> to one another.  Two arrays are considered equal if both
     * arrays contain the same number of elements, and all corresponding pairs
     * of elements in the two arrays are equal.  In other words, two arrays
     * are equal if they contain the same elements in the same order.  Also,
     * two array references are considered equal if both are <tt>null</tt>.<p>
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     */
    public static boolean equals(int[] a, int[] a2) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;

        for (int i=0; i<length; i++)
            if (a[i] != a2[i])
                return false;

        return true;
    }

    /**
     * Returns <tt>true</tt> if the two specified arrays of shorts are
     * <i>equal</i> to one another.  Two arrays are considered equal if both
     * arrays contain the same number of elements, and all corresponding pairs
     * of elements in the two arrays are equal.  In other words, two arrays
     * are equal if they contain the same elements in the same order.  Also,
     * two array references are considered equal if both are <tt>null</tt>.<p>
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     */
    public static boolean equals(short[] a, short a2[]) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;

        for (int i=0; i<length; i++)
            if (a[i] != a2[i])
                return false;

        return true;
    }

    /**
     * Returns <tt>true</tt> if the two specified arrays of chars are
     * <i>equal</i> to one another.  Two arrays are considered equal if both
     * arrays contain the same number of elements, and all corresponding pairs
     * of elements in the two arrays are equal.  In other words, two arrays
     * are equal if they contain the same elements in the same order.  Also,
     * two array references are considered equal if both are <tt>null</tt>.<p>
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     */
    public static boolean equals(char[] a, char[] a2) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;

        for (int i=0; i<length; i++)
            if (a[i] != a2[i])
                return false;

        return true;
    }

    /**
     * Returns <tt>true</tt> if the two specified arrays of bytes are
     * <i>equal</i> to one another.  Two arrays are considered equal if both
     * arrays contain the same number of elements, and all corresponding pairs
     * of elements in the two arrays are equal.  In other words, two arrays
     * are equal if they contain the same elements in the same order.  Also,
     * two array references are considered equal if both are <tt>null</tt>.<p>
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     */
    public static boolean equals(byte[] a, byte[] a2) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;

        for (int i=0; i<length; i++)
            if (a[i] != a2[i])
                return false;

        return true;
    }

    /**
     * Returns <tt>true</tt> if the two specified arrays of booleans are
     * <i>equal</i> to one another.  Two arrays are considered equal if both
     * arrays contain the same number of elements, and all corresponding pairs
     * of elements in the two arrays are equal.  In other words, two arrays
     * are equal if they contain the same elements in the same order.  Also,
     * two array references are considered equal if both are <tt>null</tt>.<p>
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     */
    public static boolean equals(boolean[] a, boolean[] a2) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;

        for (int i=0; i<length; i++)
            if (a[i] != a2[i])
                return false;

        return true;
    }

    /**
     * Returns <tt>true</tt> if the two specified arrays of doubles are
     * <i>equal</i> to one another.  Two arrays are considered equal if both
     * arrays contain the same number of elements, and all corresponding pairs
     * of elements in the two arrays are equal.  In other words, two arrays
     * are equal if they contain the same elements in the same order.  Also,
     * two array references are considered equal if both are <tt>null</tt>.<p>
     *
     * Two doubles <tt>d1</tt> and <tt>d2</tt> are considered equal if:
     * <pre>    <tt>new Double(d1).equals(new Double(d2))</tt></pre>
     * (Unlike the <tt>==</tt> operator, this method considers
     * <tt>NaN</tt> equals to itself, and 0.0d unequal to -0.0d.)
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     * @see Double#equals(Object)
     */
    public static boolean equals(double[] a, double[] a2) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;

        for (int i=0; i<length; i++)
            if (Double.doubleToLongBits(a[i])!=Double.doubleToLongBits(a2[i]))
                return false;

        return true;
    }

    /**
     * Returns <tt>true</tt> if the two specified arrays of floats are
     * <i>equal</i> to one another.  Two arrays are considered equal if both
     * arrays contain the same number of elements, and all corresponding pairs
     * of elements in the two arrays are equal.  In other words, two arrays
     * are equal if they contain the same elements in the same order.  Also,
     * two array references are considered equal if both are <tt>null</tt>.<p>
     *
     * Two floats <tt>f1</tt> and <tt>f2</tt> are considered equal if:
     * <pre>    <tt>new Float(f1).equals(new Float(f2))</tt></pre>
     * (Unlike the <tt>==</tt> operator, this method considers
     * <tt>NaN</tt> equals to itself, and 0.0f unequal to -0.0f.)
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     * @see Float#equals(Object)
     */
    public static boolean equals(float[] a, float[] a2) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;

        for (int i=0; i<length; i++)
            if (Float.floatToIntBits(a[i])!=Float.floatToIntBits(a2[i]))
                return false;

        return true;
    }

    /**
     * Returns <tt>true</tt> if the two specified arrays of Objects are
     * <i>equal</i> to one another.  The two arrays are considered equal if
     * both arrays contain the same number of elements, and all corresponding
     * pairs of elements in the two arrays are equal.  Two objects <tt>e1</tt>
     * and <tt>e2</tt> are considered <i>equal</i> if <tt>(e1==null ? e2==null
     * : e1.equals(e2))</tt>.  In other words, the two arrays are equal if
     * they contain the same elements in the same order.  Also, two array
     * references are considered equal if both are <tt>null</tt>.<p>
     *
     * @param a one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     */
    public static boolean equals(Object[] a, Object[] a2) {
        if (a==a2)
            return true;
        if (a==null || a2==null)
            return false;

        int length = a.length;
        if (a2.length != length)
            return false;

        for (int i=0; i<length; i++) {
            Object o1 = a[i];
            Object o2 = a2[i];
            if (!(o1==null ? o2==null : o1.equals(o2)))
                return false;
        }

        return true;
    }

    // Filling

    /**
     * Assigns the specified long value to each element of the specified array
     * of longs.
     *
     * @param a the array to be filled
     * @param val the value to be stored in all elements of the array
     */
    public static void fill(long[] a, long val) {
        for (int i = 0, len = a.length; i < len; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified long value to each element of the specified
     * range of the specified array of longs.  The range to be filled
     * extends from index <tt>fromIndex</tt>, inclusive, to index
     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
     * range to be filled is empty.)
     *
     * @param a the array to be filled
     * @param fromIndex the index of the first element (inclusive) to be
     *        filled with the specified value
     * @param toIndex the index of the last element (exclusive) to be
     *        filled with the specified value
     * @param val the value to be stored in all elements of the array
     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
     *         <tt>toIndex &gt; a.length</tt>
     */
    public static void fill(long[] a, int fromIndex, int toIndex, long val) {
        rangeCheck(a.length, fromIndex, toIndex);
        for (int i = fromIndex; i < toIndex; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified int value to each element of the specified array
     * of ints.
     *
     * @param a the array to be filled
     * @param val the value to be stored in all elements of the array
     */
    public static void fill(int[] a, int val) {
        for (int i = 0, len = a.length; i < len; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified int value to each element of the specified
     * range of the specified array of ints.  The range to be filled
     * extends from index <tt>fromIndex</tt>, inclusive, to index
     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
     * range to be filled is empty.)
     *
     * @param a the array to be filled
     * @param fromIndex the index of the first element (inclusive) to be
     *        filled with the specified value
     * @param toIndex the index of the last element (exclusive) to be
     *        filled with the specified value
     * @param val the value to be stored in all elements of the array
     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
     *         <tt>toIndex &gt; a.length</tt>
     */
    public static void fill(int[] a, int fromIndex, int toIndex, int val) {
        rangeCheck(a.length, fromIndex, toIndex);
        for (int i = fromIndex; i < toIndex; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified short value to each element of the specified array
     * of shorts.
     *
     * @param a the array to be filled
     * @param val the value to be stored in all elements of the array
     */
    public static void fill(short[] a, short val) {
        for (int i = 0, len = a.length; i < len; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified short value to each element of the specified
     * range of the specified array of shorts.  The range to be filled
     * extends from index <tt>fromIndex</tt>, inclusive, to index
     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
     * range to be filled is empty.)
     *
     * @param a the array to be filled
     * @param fromIndex the index of the first element (inclusive) to be
     *        filled with the specified value
     * @param toIndex the index of the last element (exclusive) to be
     *        filled with the specified value
     * @param val the value to be stored in all elements of the array
     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
     *         <tt>toIndex &gt; a.length</tt>
     */
    public static void fill(short[] a, int fromIndex, int toIndex, short val) {
        rangeCheck(a.length, fromIndex, toIndex);
        for (int i = fromIndex; i < toIndex; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified char value to each element of the specified array
     * of chars.
     *
     * @param a the array to be filled
     * @param val the value to be stored in all elements of the array
     */
    public static void fill(char[] a, char val) {
        for (int i = 0, len = a.length; i < len; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified char value to each element of the specified
     * range of the specified array of chars.  The range to be filled
     * extends from index <tt>fromIndex</tt>, inclusive, to index
     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
     * range to be filled is empty.)
     *
     * @param a the array to be filled
     * @param fromIndex the index of the first element (inclusive) to be
     *        filled with the specified value
     * @param toIndex the index of the last element (exclusive) to be
     *        filled with the specified value
     * @param val the value to be stored in all elements of the array
     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
     *         <tt>toIndex &gt; a.length</tt>
     */
    public static void fill(char[] a, int fromIndex, int toIndex, char val) {
        rangeCheck(a.length, fromIndex, toIndex);
        for (int i = fromIndex; i < toIndex; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified byte value to each element of the specified array
     * of bytes.
     *
     * @param a the array to be filled
     * @param val the value to be stored in all elements of the array
     */
    public static void fill(byte[] a, byte val) {
        for (int i = 0, len = a.length; i < len; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified byte value to each element of the specified
     * range of the specified array of bytes.  The range to be filled
     * extends from index <tt>fromIndex</tt>, inclusive, to index
     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
     * range to be filled is empty.)
     *
     * @param a the array to be filled
     * @param fromIndex the index of the first element (inclusive) to be
     *        filled with the specified value
     * @param toIndex the index of the last element (exclusive) to be
     *        filled with the specified value
     * @param val the value to be stored in all elements of the array
     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
     *         <tt>toIndex &gt; a.length</tt>
     */
    public static void fill(byte[] a, int fromIndex, int toIndex, byte val) {
        rangeCheck(a.length, fromIndex, toIndex);
        for (int i = fromIndex; i < toIndex; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified boolean value to each element of the specified
     * array of booleans.
     *
     * @param a the array to be filled
     * @param val the value to be stored in all elements of the array
     */
    public static void fill(boolean[] a, boolean val) {
        for (int i = 0, len = a.length; i < len; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified boolean value to each element of the specified
     * range of the specified array of booleans.  The range to be filled
     * extends from index <tt>fromIndex</tt>, inclusive, to index
     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
     * range to be filled is empty.)
     *
     * @param a the array to be filled
     * @param fromIndex the index of the first element (inclusive) to be
     *        filled with the specified value
     * @param toIndex the index of the last element (exclusive) to be
     *        filled with the specified value
     * @param val the value to be stored in all elements of the array
     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
     *         <tt>toIndex &gt; a.length</tt>
     */
    public static void fill(boolean[] a, int fromIndex, int toIndex,
                            boolean val) {
        rangeCheck(a.length, fromIndex, toIndex);
        for (int i = fromIndex; i < toIndex; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified double value to each element of the specified
     * array of doubles.
     *
     * @param a the array to be filled
     * @param val the value to be stored in all elements of the array
     */
    public static void fill(double[] a, double val) {
        for (int i = 0, len = a.length; i < len; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified double value to each element of the specified
     * range of the specified array of doubles.  The range to be filled
     * extends from index <tt>fromIndex</tt>, inclusive, to index
     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
     * range to be filled is empty.)
     *
     * @param a the array to be filled
     * @param fromIndex the index of the first element (inclusive) to be
     *        filled with the specified value
     * @param toIndex the index of the last element (exclusive) to be
     *        filled with the specified value
     * @param val the value to be stored in all elements of the array
     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
     *         <tt>toIndex &gt; a.length</tt>
     */
    public static void fill(double[] a, int fromIndex, int toIndex,double val){
        rangeCheck(a.length, fromIndex, toIndex);
        for (int i = fromIndex; i < toIndex; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified float value to each element of the specified array
     * of floats.
     *
     * @param a the array to be filled
     * @param val the value to be stored in all elements of the array
     */
    public static void fill(float[] a, float val) {
        for (int i = 0, len = a.length; i < len; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified float value to each element of the specified
     * range of the specified array of floats.  The range to be filled
     * extends from index <tt>fromIndex</tt>, inclusive, to index
     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
     * range to be filled is empty.)
     *
     * @param a the array to be filled
     * @param fromIndex the index of the first element (inclusive) to be
     *        filled with the specified value
     * @param toIndex the index of the last element (exclusive) to be
     *        filled with the specified value
     * @param val the value to be stored in all elements of the array
     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
     *         <tt>toIndex &gt; a.length</tt>
     */
    public static void fill(float[] a, int fromIndex, int toIndex, float val) {
        rangeCheck(a.length, fromIndex, toIndex);
        for (int i = fromIndex; i < toIndex; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified Object reference to each element of the specified
     * array of Objects.
     *
     * @param a the array to be filled
     * @param val the value to be stored in all elements of the array
     * @throws ArrayStoreException if the specified value is not of a
     *         runtime type that can be stored in the specified array
     */
    public static void fill(Object[] a, Object val) {
        for (int i = 0, len = a.length; i < len; i++)
            a[i] = val;
    }

    /**
     * Assigns the specified Object reference to each element of the specified
     * range of the specified array of Objects.  The range to be filled
     * extends from index <tt>fromIndex</tt>, inclusive, to index
     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
     * range to be filled is empty.)
     *
     * @param a the array to be filled
     * @param fromIndex the index of the first element (inclusive) to be
     *        filled with the specified value
     * @param toIndex the index of the last element (exclusive) to be
     *        filled with the specified value
     * @param val the value to be stored in all elements of the array
     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
     *         <tt>toIndex &gt; a.length</tt>
     * @throws ArrayStoreException if the specified value is not of a
     *         runtime type that can be stored in the specified array
     */
    public static void fill(Object[] a, int fromIndex, int toIndex, Object val) {
        rangeCheck(a.length, fromIndex, toIndex);
        for (int i = fromIndex; i < toIndex; i++)
            a[i] = val;
    }

    // Cloning
2193

D
duke 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
    /**
     * Copies the specified array, truncating or padding with nulls (if necessary)
     * so the copy has the specified length.  For all indices that are
     * valid in both the original array and the copy, the two arrays will
     * contain identical values.  For any indices that are valid in the
     * copy but not the original, the copy will contain <tt>null</tt>.
     * Such indices will exist if and only if the specified length
     * is greater than that of the original array.
     * The resulting array is of exactly the same class as the original array.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @return a copy of the original array, truncated or padded with nulls
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static <T> T[] copyOf(T[] original, int newLength) {
        return (T[]) copyOf(original, newLength, original.getClass());
    }

    /**
     * Copies the specified array, truncating or padding with nulls (if necessary)
     * so the copy has the specified length.  For all indices that are
     * valid in both the original array and the copy, the two arrays will
     * contain identical values.  For any indices that are valid in the
     * copy but not the original, the copy will contain <tt>null</tt>.
     * Such indices will exist if and only if the specified length
     * is greater than that of the original array.
     * The resulting array is of the class <tt>newType</tt>.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @param newType the class of the copy to be returned
     * @return a copy of the original array, truncated or padded with nulls
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @throws ArrayStoreException if an element copied from
     *     <tt>original</tt> is not of a runtime type that can be stored in
     *     an array of class <tt>newType</tt>
     * @since 1.6
     */
    public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
        T[] copy = ((Object)newType == (Object)Object[].class)
            ? (T[]) new Object[newLength]
            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    /**
     * Copies the specified array, truncating or padding with zeros (if necessary)
     * so the copy has the specified length.  For all indices that are
     * valid in both the original array and the copy, the two arrays will
     * contain identical values.  For any indices that are valid in the
     * copy but not the original, the copy will contain <tt>(byte)0</tt>.
     * Such indices will exist if and only if the specified length
     * is greater than that of the original array.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @return a copy of the original array, truncated or padded with zeros
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static byte[] copyOf(byte[] original, int newLength) {
        byte[] copy = new byte[newLength];
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    /**
     * Copies the specified array, truncating or padding with zeros (if necessary)
     * so the copy has the specified length.  For all indices that are
     * valid in both the original array and the copy, the two arrays will
     * contain identical values.  For any indices that are valid in the
     * copy but not the original, the copy will contain <tt>(short)0</tt>.
     * Such indices will exist if and only if the specified length
     * is greater than that of the original array.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @return a copy of the original array, truncated or padded with zeros
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static short[] copyOf(short[] original, int newLength) {
        short[] copy = new short[newLength];
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    /**
     * Copies the specified array, truncating or padding with zeros (if necessary)
     * so the copy has the specified length.  For all indices that are
     * valid in both the original array and the copy, the two arrays will
     * contain identical values.  For any indices that are valid in the
     * copy but not the original, the copy will contain <tt>0</tt>.
     * Such indices will exist if and only if the specified length
     * is greater than that of the original array.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @return a copy of the original array, truncated or padded with zeros
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static int[] copyOf(int[] original, int newLength) {
        int[] copy = new int[newLength];
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    /**
     * Copies the specified array, truncating or padding with zeros (if necessary)
     * so the copy has the specified length.  For all indices that are
     * valid in both the original array and the copy, the two arrays will
     * contain identical values.  For any indices that are valid in the
     * copy but not the original, the copy will contain <tt>0L</tt>.
     * Such indices will exist if and only if the specified length
     * is greater than that of the original array.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @return a copy of the original array, truncated or padded with zeros
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static long[] copyOf(long[] original, int newLength) {
        long[] copy = new long[newLength];
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    /**
     * Copies the specified array, truncating or padding with null characters (if necessary)
     * so the copy has the specified length.  For all indices that are valid
     * in both the original array and the copy, the two arrays will contain
     * identical values.  For any indices that are valid in the copy but not
     * the original, the copy will contain <tt>'\\u000'</tt>.  Such indices
     * will exist if and only if the specified length is greater than that of
     * the original array.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @return a copy of the original array, truncated or padded with null characters
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static char[] copyOf(char[] original, int newLength) {
        char[] copy = new char[newLength];
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    /**
     * Copies the specified array, truncating or padding with zeros (if necessary)
     * so the copy has the specified length.  For all indices that are
     * valid in both the original array and the copy, the two arrays will
     * contain identical values.  For any indices that are valid in the
     * copy but not the original, the copy will contain <tt>0f</tt>.
     * Such indices will exist if and only if the specified length
     * is greater than that of the original array.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @return a copy of the original array, truncated or padded with zeros
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static float[] copyOf(float[] original, int newLength) {
        float[] copy = new float[newLength];
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    /**
     * Copies the specified array, truncating or padding with zeros (if necessary)
     * so the copy has the specified length.  For all indices that are
     * valid in both the original array and the copy, the two arrays will
     * contain identical values.  For any indices that are valid in the
     * copy but not the original, the copy will contain <tt>0d</tt>.
     * Such indices will exist if and only if the specified length
     * is greater than that of the original array.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @return a copy of the original array, truncated or padded with zeros
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static double[] copyOf(double[] original, int newLength) {
        double[] copy = new double[newLength];
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    /**
     * Copies the specified array, truncating or padding with <tt>false</tt> (if necessary)
     * so the copy has the specified length.  For all indices that are
     * valid in both the original array and the copy, the two arrays will
     * contain identical values.  For any indices that are valid in the
     * copy but not the original, the copy will contain <tt>false</tt>.
     * Such indices will exist if and only if the specified length
     * is greater than that of the original array.
     *
     * @param original the array to be copied
     * @param newLength the length of the copy to be returned
     * @return a copy of the original array, truncated or padded with false elements
     *     to obtain the specified length
     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static boolean[] copyOf(boolean[] original, int newLength) {
        boolean[] copy = new boolean[newLength];
        System.arraycopy(original, 0, copy, 0,
                         Math.min(original.length, newLength));
        return copy;
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>null</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     * <p>
     * The resulting array is of exactly the same class as the original array.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with nulls to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static <T> T[] copyOfRange(T[] original, int from, int to) {
        return copyOfRange(original, from, to, (Class<T[]>) original.getClass());
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>null</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     * The resulting array is of the class <tt>newType</tt>.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @param newType the class of the copy to be returned
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with nulls to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @throws ArrayStoreException if an element copied from
     *     <tt>original</tt> is not of a runtime type that can be stored in
     *     an array of class <tt>newType</tt>.
     * @since 1.6
     */
    public static <T,U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType) {
        int newLength = to - from;
        if (newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        T[] copy = ((Object)newType == (Object)Object[].class)
            ? (T[]) new Object[newLength]
            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>(byte)0</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with zeros to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static byte[] copyOfRange(byte[] original, int from, int to) {
        int newLength = to - from;
        if (newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        byte[] copy = new byte[newLength];
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>(short)0</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with zeros to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static short[] copyOfRange(short[] original, int from, int to) {
        int newLength = to - from;
        if (newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        short[] copy = new short[newLength];
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>0</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with zeros to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static int[] copyOfRange(int[] original, int from, int to) {
        int newLength = to - from;
        if (newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        int[] copy = new int[newLength];
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>0L</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with zeros to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static long[] copyOfRange(long[] original, int from, int to) {
        int newLength = to - from;
        if (newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        long[] copy = new long[newLength];
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>'\\u000'</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with null characters to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static char[] copyOfRange(char[] original, int from, int to) {
        int newLength = to - from;
        if (newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        char[] copy = new char[newLength];
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>0f</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with zeros to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static float[] copyOfRange(float[] original, int from, int to) {
        int newLength = to - from;
        if (newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        float[] copy = new float[newLength];
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>0d</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with zeros to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static double[] copyOfRange(double[] original, int from, int to) {
        int newLength = to - from;
        if (newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        double[] copy = new double[newLength];
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }

    /**
     * Copies the specified range of the specified array into a new array.
     * The initial index of the range (<tt>from</tt>) must lie between zero
     * and <tt>original.length</tt>, inclusive.  The value at
     * <tt>original[from]</tt> is placed into the initial element of the copy
     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
     * Values from subsequent elements in the original array are placed into
     * subsequent elements in the copy.  The final index of the range
     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
     * may be greater than <tt>original.length</tt>, in which case
     * <tt>false</tt> is placed in all elements of the copy whose index is
     * greater than or equal to <tt>original.length - from</tt>.  The length
     * of the returned array will be <tt>to - from</tt>.
     *
     * @param original the array from which a range is to be copied
     * @param from the initial index of the range to be copied, inclusive
     * @param to the final index of the range to be copied, exclusive.
     *     (This index may lie outside the array.)
     * @return a new array containing the specified range from the original array,
     *     truncated or padded with false elements to obtain the required length
     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
     *     or {@code from > original.length}
     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
     * @throws NullPointerException if <tt>original</tt> is null
     * @since 1.6
     */
    public static boolean[] copyOfRange(boolean[] original, int from, int to) {
        int newLength = to - from;
        if (newLength < 0)
            throw new IllegalArgumentException(from + " > " + to);
        boolean[] copy = new boolean[newLength];
        System.arraycopy(original, from, copy, 0,
                         Math.min(original.length - from, newLength));
        return copy;
    }

    // Misc

    /**
     * Returns a fixed-size list backed by the specified array.  (Changes to
     * the returned list "write through" to the array.)  This method acts
     * as bridge between array-based and collection-based APIs, in
     * combination with {@link Collection#toArray}.  The returned list is
     * serializable and implements {@link RandomAccess}.
     *
     * <p>This method also provides a convenient way to create a fixed-size
     * list initialized to contain several elements:
     * <pre>
     *     List&lt;String&gt; stooges = Arrays.asList("Larry", "Moe", "Curly");
     * </pre>
     *
     * @param a the array by which the list will be backed
     * @return a list view of the specified array
     */
    public static <T> List<T> asList(T... a) {
        return new ArrayList<T>(a);
    }

    /**
     * @serial include
     */
    private static class ArrayList<E> extends AbstractList<E>
        implements RandomAccess, java.io.Serializable
    {
        private static final long serialVersionUID = -2764017481108945198L;
        private final E[] a;

        ArrayList(E[] array) {
            if (array==null)
                throw new NullPointerException();
            a = array;
        }

        public int size() {
            return a.length;
        }

        public Object[] toArray() {
            return a.clone();
        }

        public <T> T[] toArray(T[] a) {
            int size = size();
            if (a.length < size)
                return Arrays.copyOf(this.a, size,
                                     (Class<? extends T[]>) a.getClass());
            System.arraycopy(this.a, 0, a, 0, size);
            if (a.length > size)
                a[size] = null;
            return a;
        }

        public E get(int index) {
            return a[index];
        }

        public E set(int index, E element) {
            E oldValue = a[index];
            a[index] = element;
            return oldValue;
        }

        public int indexOf(Object o) {
            if (o==null) {
                for (int i=0; i<a.length; i++)
                    if (a[i]==null)
                        return i;
            } else {
                for (int i=0; i<a.length; i++)
                    if (o.equals(a[i]))
                        return i;
            }
            return -1;
        }

        public boolean contains(Object o) {
            return indexOf(o) != -1;
        }
    }

    /**
     * Returns a hash code based on the contents of the specified array.
     * For any two <tt>long</tt> arrays <tt>a</tt> and <tt>b</tt>
     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
     *
     * <p>The value returned by this method is the same value that would be
     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
     * method on a {@link List} containing a sequence of {@link Long}
     * instances representing the elements of <tt>a</tt> in the same order.
     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
     *
     * @param a the array whose hash value to compute
     * @return a content-based hash code for <tt>a</tt>
     * @since 1.5
     */
    public static int hashCode(long a[]) {
        if (a == null)
            return 0;

        int result = 1;
        for (long element : a) {
            int elementHash = (int)(element ^ (element >>> 32));
            result = 31 * result + elementHash;
        }

        return result;
    }

    /**
     * Returns a hash code based on the contents of the specified array.
     * For any two non-null <tt>int</tt> arrays <tt>a</tt> and <tt>b</tt>
     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
     *
     * <p>The value returned by this method is the same value that would be
     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
     * method on a {@link List} containing a sequence of {@link Integer}
     * instances representing the elements of <tt>a</tt> in the same order.
     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
     *
     * @param a the array whose hash value to compute
     * @return a content-based hash code for <tt>a</tt>
     * @since 1.5
     */
    public static int hashCode(int a[]) {
        if (a == null)
            return 0;

        int result = 1;
        for (int element : a)
            result = 31 * result + element;

        return result;
    }

    /**
     * Returns a hash code based on the contents of the specified array.
     * For any two <tt>short</tt> arrays <tt>a</tt> and <tt>b</tt>
     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
     *
     * <p>The value returned by this method is the same value that would be
     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
     * method on a {@link List} containing a sequence of {@link Short}
     * instances representing the elements of <tt>a</tt> in the same order.
     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
     *
     * @param a the array whose hash value to compute
     * @return a content-based hash code for <tt>a</tt>
     * @since 1.5
     */
    public static int hashCode(short a[]) {
        if (a == null)
            return 0;

        int result = 1;
        for (short element : a)
            result = 31 * result + element;

        return result;
    }

    /**
     * Returns a hash code based on the contents of the specified array.
     * For any two <tt>char</tt> arrays <tt>a</tt> and <tt>b</tt>
     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
     *
     * <p>The value returned by this method is the same value that would be
     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
     * method on a {@link List} containing a sequence of {@link Character}
     * instances representing the elements of <tt>a</tt> in the same order.
     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
     *
     * @param a the array whose hash value to compute
     * @return a content-based hash code for <tt>a</tt>
     * @since 1.5
     */
    public static int hashCode(char a[]) {
        if (a == null)
            return 0;

        int result = 1;
        for (char element : a)
            result = 31 * result + element;

        return result;
    }

    /**
     * Returns a hash code based on the contents of the specified array.
     * For any two <tt>byte</tt> arrays <tt>a</tt> and <tt>b</tt>
     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
     *
     * <p>The value returned by this method is the same value that would be
     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
     * method on a {@link List} containing a sequence of {@link Byte}
     * instances representing the elements of <tt>a</tt> in the same order.
     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
     *
     * @param a the array whose hash value to compute
     * @return a content-based hash code for <tt>a</tt>
     * @since 1.5
     */
    public static int hashCode(byte a[]) {
        if (a == null)
            return 0;

        int result = 1;
        for (byte element : a)
            result = 31 * result + element;

        return result;
    }

    /**
     * Returns a hash code based on the contents of the specified array.
     * For any two <tt>boolean</tt> arrays <tt>a</tt> and <tt>b</tt>
     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
     *
     * <p>The value returned by this method is the same value that would be
     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
     * method on a {@link List} containing a sequence of {@link Boolean}
     * instances representing the elements of <tt>a</tt> in the same order.
     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
     *
     * @param a the array whose hash value to compute
     * @return a content-based hash code for <tt>a</tt>
     * @since 1.5
     */
    public static int hashCode(boolean a[]) {
        if (a == null)
            return 0;

        int result = 1;
        for (boolean element : a)
            result = 31 * result + (element ? 1231 : 1237);

        return result;
    }

    /**
     * Returns a hash code based on the contents of the specified array.
     * For any two <tt>float</tt> arrays <tt>a</tt> and <tt>b</tt>
     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
     *
     * <p>The value returned by this method is the same value that would be
     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
     * method on a {@link List} containing a sequence of {@link Float}
     * instances representing the elements of <tt>a</tt> in the same order.
     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
     *
     * @param a the array whose hash value to compute
     * @return a content-based hash code for <tt>a</tt>
     * @since 1.5
     */
    public static int hashCode(float a[]) {
        if (a == null)
            return 0;

        int result = 1;
        for (float element : a)
            result = 31 * result + Float.floatToIntBits(element);

        return result;
    }

    /**
     * Returns a hash code based on the contents of the specified array.
     * For any two <tt>double</tt> arrays <tt>a</tt> and <tt>b</tt>
     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
     *
     * <p>The value returned by this method is the same value that would be
     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
     * method on a {@link List} containing a sequence of {@link Double}
     * instances representing the elements of <tt>a</tt> in the same order.
     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
     *
     * @param a the array whose hash value to compute
     * @return a content-based hash code for <tt>a</tt>
     * @since 1.5
     */
    public static int hashCode(double a[]) {
        if (a == null)
            return 0;

        int result = 1;
        for (double element : a) {
            long bits = Double.doubleToLongBits(element);
            result = 31 * result + (int)(bits ^ (bits >>> 32));
        }
        return result;
    }

    /**
     * Returns a hash code based on the contents of the specified array.  If
     * the array contains other arrays as elements, the hash code is based on
     * their identities rather than their contents.  It is therefore
     * acceptable to invoke this method on an array that contains itself as an
     * element,  either directly or indirectly through one or more levels of
     * arrays.
     *
     * <p>For any two arrays <tt>a</tt> and <tt>b</tt> such that
     * <tt>Arrays.equals(a, b)</tt>, it is also the case that
     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
     *
     * <p>The value returned by this method is equal to the value that would
     * be returned by <tt>Arrays.asList(a).hashCode()</tt>, unless <tt>a</tt>
     * is <tt>null</tt>, in which case <tt>0</tt> is returned.
     *
     * @param a the array whose content-based hash code to compute
     * @return a content-based hash code for <tt>a</tt>
     * @see #deepHashCode(Object[])
     * @since 1.5
     */
    public static int hashCode(Object a[]) {
        if (a == null)
            return 0;

        int result = 1;

        for (Object element : a)
            result = 31 * result + (element == null ? 0 : element.hashCode());

        return result;
    }

    /**
     * Returns a hash code based on the "deep contents" of the specified
     * array.  If the array contains other arrays as elements, the
     * hash code is based on their contents and so on, ad infinitum.
     * It is therefore unacceptable to invoke this method on an array that
     * contains itself as an element, either directly or indirectly through
     * one or more levels of arrays.  The behavior of such an invocation is
     * undefined.
     *
     * <p>For any two arrays <tt>a</tt> and <tt>b</tt> such that
     * <tt>Arrays.deepEquals(a, b)</tt>, it is also the case that
     * <tt>Arrays.deepHashCode(a) == Arrays.deepHashCode(b)</tt>.
     *
     * <p>The computation of the value returned by this method is similar to
     * that of the value returned by {@link List#hashCode()} on a list
     * containing the same elements as <tt>a</tt> in the same order, with one
     * difference: If an element <tt>e</tt> of <tt>a</tt> is itself an array,
     * its hash code is computed not by calling <tt>e.hashCode()</tt>, but as
     * by calling the appropriate overloading of <tt>Arrays.hashCode(e)</tt>
     * if <tt>e</tt> is an array of a primitive type, or as by calling
     * <tt>Arrays.deepHashCode(e)</tt> recursively if <tt>e</tt> is an array
     * of a reference type.  If <tt>a</tt> is <tt>null</tt>, this method
     * returns 0.
     *
     * @param a the array whose deep-content-based hash code to compute
     * @return a deep-content-based hash code for <tt>a</tt>
     * @see #hashCode(Object[])
     * @since 1.5
     */
    public static int deepHashCode(Object a[]) {
        if (a == null)
            return 0;

        int result = 1;

        for (Object element : a) {
            int elementHash = 0;
            if (element instanceof Object[])
                elementHash = deepHashCode((Object[]) element);
            else if (element instanceof byte[])
                elementHash = hashCode((byte[]) element);
            else if (element instanceof short[])
                elementHash = hashCode((short[]) element);
            else if (element instanceof int[])
                elementHash = hashCode((int[]) element);
            else if (element instanceof long[])
                elementHash = hashCode((long[]) element);
            else if (element instanceof char[])
                elementHash = hashCode((char[]) element);
            else if (element instanceof float[])
                elementHash = hashCode((float[]) element);
            else if (element instanceof double[])
                elementHash = hashCode((double[]) element);
            else if (element instanceof boolean[])
                elementHash = hashCode((boolean[]) element);
            else if (element != null)
                elementHash = element.hashCode();

            result = 31 * result + elementHash;
        }

        return result;
    }

    /**
     * Returns <tt>true</tt> if the two specified arrays are <i>deeply
     * equal</i> to one another.  Unlike the {@link #equals(Object[],Object[])}
     * method, this method is appropriate for use with nested arrays of
     * arbitrary depth.
     *
     * <p>Two array references are considered deeply equal if both
     * are <tt>null</tt>, or if they refer to arrays that contain the same
     * number of elements and all corresponding pairs of elements in the two
     * arrays are deeply equal.
     *
     * <p>Two possibly <tt>null</tt> elements <tt>e1</tt> and <tt>e2</tt> are
     * deeply equal if any of the following conditions hold:
     * <ul>
     *    <li> <tt>e1</tt> and <tt>e2</tt> are both arrays of object reference
     *         types, and <tt>Arrays.deepEquals(e1, e2) would return true</tt>
     *    <li> <tt>e1</tt> and <tt>e2</tt> are arrays of the same primitive
     *         type, and the appropriate overloading of
     *         <tt>Arrays.equals(e1, e2)</tt> would return true.
     *    <li> <tt>e1 == e2</tt>
     *    <li> <tt>e1.equals(e2)</tt> would return true.
     * </ul>
     * Note that this definition permits <tt>null</tt> elements at any depth.
     *
     * <p>If either of the specified arrays contain themselves as elements
     * either directly or indirectly through one or more levels of arrays,
     * the behavior of this method is undefined.
     *
     * @param a1 one array to be tested for equality
     * @param a2 the other array to be tested for equality
     * @return <tt>true</tt> if the two arrays are equal
     * @see #equals(Object[],Object[])
3234
     * @see Objects#deepEquals(Object, Object)
D
duke 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
     * @since 1.5
     */
    public static boolean deepEquals(Object[] a1, Object[] a2) {
        if (a1 == a2)
            return true;
        if (a1 == null || a2==null)
            return false;
        int length = a1.length;
        if (a2.length != length)
            return false;

        for (int i = 0; i < length; i++) {
            Object e1 = a1[i];
            Object e2 = a2[i];

            if (e1 == e2)
                continue;
            if (e1 == null)
                return false;

            // Figure out whether the two elements are equal
3256
            boolean eq = deepEquals0(e1, e2);
D
duke 已提交
3257 3258 3259 3260 3261 3262 3263

            if (!eq)
                return false;
        }
        return true;
    }

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
    static boolean deepEquals0(Object e1, Object e2) {
        assert e1 != null;
        boolean eq;
        if (e1 instanceof Object[] && e2 instanceof Object[])
            eq = deepEquals ((Object[]) e1, (Object[]) e2);
        else if (e1 instanceof byte[] && e2 instanceof byte[])
            eq = equals((byte[]) e1, (byte[]) e2);
        else if (e1 instanceof short[] && e2 instanceof short[])
            eq = equals((short[]) e1, (short[]) e2);
        else if (e1 instanceof int[] && e2 instanceof int[])
            eq = equals((int[]) e1, (int[]) e2);
        else if (e1 instanceof long[] && e2 instanceof long[])
            eq = equals((long[]) e1, (long[]) e2);
        else if (e1 instanceof char[] && e2 instanceof char[])
            eq = equals((char[]) e1, (char[]) e2);
        else if (e1 instanceof float[] && e2 instanceof float[])
            eq = equals((float[]) e1, (float[]) e2);
        else if (e1 instanceof double[] && e2 instanceof double[])
            eq = equals((double[]) e1, (double[]) e2);
        else if (e1 instanceof boolean[] && e2 instanceof boolean[])
            eq = equals((boolean[]) e1, (boolean[]) e2);
        else
            eq = e1.equals(e2);
        return eq;
    }

D
duke 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
    /**
     * Returns a string representation of the contents of the specified array.
     * The string representation consists of a list of the array's elements,
     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
     * separated by the characters <tt>", "</tt> (a comma followed by a
     * space).  Elements are converted to strings as by
     * <tt>String.valueOf(long)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
     * is <tt>null</tt>.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @since 1.5
     */
    public static String toString(long[] a) {
        if (a == null)
            return "null";
        int iMax = a.length - 1;
        if (iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for (int i = 0; ; i++) {
            b.append(a[i]);
            if (i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }

    /**
     * Returns a string representation of the contents of the specified array.
     * The string representation consists of a list of the array's elements,
     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
     * separated by the characters <tt>", "</tt> (a comma followed by a
     * space).  Elements are converted to strings as by
     * <tt>String.valueOf(int)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt> is
     * <tt>null</tt>.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @since 1.5
     */
    public static String toString(int[] a) {
        if (a == null)
            return "null";
        int iMax = a.length - 1;
        if (iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for (int i = 0; ; i++) {
            b.append(a[i]);
            if (i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }

    /**
     * Returns a string representation of the contents of the specified array.
     * The string representation consists of a list of the array's elements,
     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
     * separated by the characters <tt>", "</tt> (a comma followed by a
     * space).  Elements are converted to strings as by
     * <tt>String.valueOf(short)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
     * is <tt>null</tt>.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @since 1.5
     */
    public static String toString(short[] a) {
        if (a == null)
            return "null";
        int iMax = a.length - 1;
        if (iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for (int i = 0; ; i++) {
            b.append(a[i]);
            if (i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }

    /**
     * Returns a string representation of the contents of the specified array.
     * The string representation consists of a list of the array's elements,
     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
     * separated by the characters <tt>", "</tt> (a comma followed by a
     * space).  Elements are converted to strings as by
     * <tt>String.valueOf(char)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
     * is <tt>null</tt>.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @since 1.5
     */
    public static String toString(char[] a) {
        if (a == null)
            return "null";
        int iMax = a.length - 1;
        if (iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for (int i = 0; ; i++) {
            b.append(a[i]);
            if (i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }

    /**
     * Returns a string representation of the contents of the specified array.
     * The string representation consists of a list of the array's elements,
     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements
     * are separated by the characters <tt>", "</tt> (a comma followed
     * by a space).  Elements are converted to strings as by
     * <tt>String.valueOf(byte)</tt>.  Returns <tt>"null"</tt> if
     * <tt>a</tt> is <tt>null</tt>.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @since 1.5
     */
    public static String toString(byte[] a) {
        if (a == null)
            return "null";
        int iMax = a.length - 1;
        if (iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for (int i = 0; ; i++) {
            b.append(a[i]);
            if (i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }

    /**
     * Returns a string representation of the contents of the specified array.
     * The string representation consists of a list of the array's elements,
     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
     * separated by the characters <tt>", "</tt> (a comma followed by a
     * space).  Elements are converted to strings as by
     * <tt>String.valueOf(boolean)</tt>.  Returns <tt>"null"</tt> if
     * <tt>a</tt> is <tt>null</tt>.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @since 1.5
     */
    public static String toString(boolean[] a) {
        if (a == null)
            return "null";
        int iMax = a.length - 1;
        if (iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for (int i = 0; ; i++) {
            b.append(a[i]);
            if (i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }

    /**
     * Returns a string representation of the contents of the specified array.
     * The string representation consists of a list of the array's elements,
     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
     * separated by the characters <tt>", "</tt> (a comma followed by a
     * space).  Elements are converted to strings as by
     * <tt>String.valueOf(float)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
     * is <tt>null</tt>.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @since 1.5
     */
    public static String toString(float[] a) {
        if (a == null)
            return "null";
3486

D
duke 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
        int iMax = a.length - 1;
        if (iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for (int i = 0; ; i++) {
            b.append(a[i]);
            if (i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }

    /**
     * Returns a string representation of the contents of the specified array.
     * The string representation consists of a list of the array's elements,
     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
     * separated by the characters <tt>", "</tt> (a comma followed by a
     * space).  Elements are converted to strings as by
     * <tt>String.valueOf(double)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
     * is <tt>null</tt>.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @since 1.5
     */
    public static String toString(double[] a) {
        if (a == null)
            return "null";
        int iMax = a.length - 1;
        if (iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for (int i = 0; ; i++) {
            b.append(a[i]);
            if (i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }

    /**
     * Returns a string representation of the contents of the specified array.
     * If the array contains other arrays as elements, they are converted to
     * strings by the {@link Object#toString} method inherited from
     * <tt>Object</tt>, which describes their <i>identities</i> rather than
     * their contents.
     *
     * <p>The value returned by this method is equal to the value that would
     * be returned by <tt>Arrays.asList(a).toString()</tt>, unless <tt>a</tt>
     * is <tt>null</tt>, in which case <tt>"null"</tt> is returned.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @see #deepToString(Object[])
     * @since 1.5
     */
    public static String toString(Object[] a) {
        if (a == null)
            return "null";
3550

D
duke 已提交
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
        int iMax = a.length - 1;
        if (iMax == -1)
            return "[]";

        StringBuilder b = new StringBuilder();
        b.append('[');
        for (int i = 0; ; i++) {
            b.append(String.valueOf(a[i]));
            if (i == iMax)
                return b.append(']').toString();
            b.append(", ");
        }
    }

    /**
     * Returns a string representation of the "deep contents" of the specified
     * array.  If the array contains other arrays as elements, the string
     * representation contains their contents and so on.  This method is
     * designed for converting multidimensional arrays to strings.
     *
     * <p>The string representation consists of a list of the array's
     * elements, enclosed in square brackets (<tt>"[]"</tt>).  Adjacent
     * elements are separated by the characters <tt>", "</tt> (a comma
     * followed by a space).  Elements are converted to strings as by
     * <tt>String.valueOf(Object)</tt>, unless they are themselves
     * arrays.
     *
     * <p>If an element <tt>e</tt> is an array of a primitive type, it is
     * converted to a string as by invoking the appropriate overloading of
     * <tt>Arrays.toString(e)</tt>.  If an element <tt>e</tt> is an array of a
     * reference type, it is converted to a string as by invoking
     * this method recursively.
     *
     * <p>To avoid infinite recursion, if the specified array contains itself
     * as an element, or contains an indirect reference to itself through one
     * or more levels of arrays, the self-reference is converted to the string
     * <tt>"[...]"</tt>.  For example, an array containing only a reference
     * to itself would be rendered as <tt>"[[...]]"</tt>.
     *
     * <p>This method returns <tt>"null"</tt> if the specified array
     * is <tt>null</tt>.
     *
     * @param a the array whose string representation to return
     * @return a string representation of <tt>a</tt>
     * @see #toString(Object[])
     * @since 1.5
     */
    public static String deepToString(Object[] a) {
        if (a == null)
            return "null";

        int bufLen = 20 * a.length;
        if (a.length != 0 && bufLen <= 0)
            bufLen = Integer.MAX_VALUE;
        StringBuilder buf = new StringBuilder(bufLen);
3606
        deepToString(a, buf, new HashSet<Object[]>());
D
duke 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
        return buf.toString();
    }

    private static void deepToString(Object[] a, StringBuilder buf,
                                     Set<Object[]> dejaVu) {
        if (a == null) {
            buf.append("null");
            return;
        }
        int iMax = a.length - 1;
        if (iMax == -1) {
            buf.append("[]");
            return;
        }

        dejaVu.add(a);
        buf.append('[');
        for (int i = 0; ; i++) {

            Object element = a[i];
            if (element == null) {
                buf.append("null");
            } else {
                Class eClass = element.getClass();

                if (eClass.isArray()) {
                    if (eClass == byte[].class)
                        buf.append(toString((byte[]) element));
                    else if (eClass == short[].class)
                        buf.append(toString((short[]) element));
                    else if (eClass == int[].class)
                        buf.append(toString((int[]) element));
                    else if (eClass == long[].class)
                        buf.append(toString((long[]) element));
                    else if (eClass == char[].class)
                        buf.append(toString((char[]) element));
                    else if (eClass == float[].class)
                        buf.append(toString((float[]) element));
                    else if (eClass == double[].class)
                        buf.append(toString((double[]) element));
                    else if (eClass == boolean[].class)
                        buf.append(toString((boolean[]) element));
                    else { // element is an array of object references
                        if (dejaVu.contains(element))
                            buf.append("[...]");
                        else
                            deepToString((Object[])element, buf, dejaVu);
                    }
                } else {  // element is non-null and not an array
                    buf.append(element.toString());
                }
            }
            if (i == iMax)
                break;
            buf.append(", ");
        }
        buf.append(']');
        dejaVu.remove(a);
    }
}