ClassValue.java 33.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2010, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

26
package java.lang;
27

28
import java.lang.ClassValue.ClassValueMap;
29
import java.util.WeakHashMap;
30
import java.lang.ref.WeakReference;
31 32
import java.util.concurrent.atomic.AtomicInteger;

33 34 35
import static java.lang.ClassValue.ClassValueMap.probeHomeLocation;
import static java.lang.ClassValue.ClassValueMap.probeBackupLocations;

36
/**
37 38 39 40 41
 * Lazily associate a computed value with (potentially) every type.
 * For example, if a dynamic language needs to construct a message dispatch
 * table for each class encountered at a message send call site,
 * it can use a {@code ClassValue} to cache information needed to
 * perform the message send quickly, for each class encountered.
42
 * @author John Rose, JSR 292 EG
43
 * @since 1.7
44
 */
45
public abstract class ClassValue<T> {
46 47 48 49 50 51 52
    /**
     * Sole constructor.  (For invocation by subclass constructors, typically
     * implicit.)
     */
    protected ClassValue() {
    }

53
    /**
54
     * Computes the given class's derived value for this {@code ClassValue}.
55 56
     * <p>
     * This method will be invoked within the first thread that accesses
57
     * the value with the {@link #get get} method.
58 59
     * <p>
     * Normally, this method is invoked at most once per class,
60 61 62
     * but it may be invoked again if there has been a call to
     * {@link #remove remove}.
     * <p>
63 64
     * If this method throws an exception, the corresponding call to {@code get}
     * will terminate abnormally with that exception, and no class value will be recorded.
65
     *
66
     * @param type the type whose class value must be computed
67
     * @return the newly computed value associated with this {@code ClassValue}, for the given class or interface
68 69
     * @see #get
     * @see #remove
70
     */
71
    protected abstract T computeValue(Class<?> type);
72 73 74 75

    /**
     * Returns the value for the given class.
     * If no value has yet been computed, it is obtained by
76
     * an invocation of the {@link #computeValue computeValue} method.
77 78
     * <p>
     * The actual installation of the value on the class
79
     * is performed atomically.
80
     * At that point, if several racing threads have
81 82
     * computed values, one is chosen, and returned to
     * all the racing threads.
83 84 85 86 87 88 89 90 91
     * <p>
     * The {@code type} parameter is typically a class, but it may be any type,
     * such as an interface, a primitive type (like {@code int.class}), or {@code void.class}.
     * <p>
     * In the absence of {@code remove} calls, a class value has a simple
     * state diagram:  uninitialized and initialized.
     * When {@code remove} calls are made,
     * the rules for value observation are more complex.
     * See the documentation for {@link #remove remove} for more information.
92
     *
93
     * @param type the type whose class value must be computed or retrieved
94
     * @return the current value associated with this {@code ClassValue}, for the given class or interface
95 96 97
     * @throws NullPointerException if the argument is null
     * @see #remove
     * @see #computeValue
98 99
     */
    public T get(Class<?> type) {
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        // non-racing this.hashCodeForCache : final int
        Entry<?>[] cache;
        Entry<T> e = probeHomeLocation(cache = getCacheCarefully(type), this);
        // racing e : current value <=> stale value from current cache or from stale cache
        // invariant:  e is null or an Entry with readable Entry.version and Entry.value
        if (match(e))
            // invariant:  No false positive matches.  False negatives are OK if rare.
            // The key fact that makes this work: if this.version == e.version,
            // then this thread has a right to observe (final) e.value.
            return e.value();
        // The fast path can fail for any of these reasons:
        // 1. no entry has been computed yet
        // 2. hash code collision (before or after reduction mod cache.length)
        // 3. an entry has been removed (either on this type or another)
        // 4. the GC has somehow managed to delete e.version and clear the reference
        return getFromBackup(cache, type);
116 117 118 119 120
    }

    /**
     * Removes the associated value for the given class.
     * If this value is subsequently {@linkplain #get read} for the same class,
121
     * its value will be reinitialized by invoking its {@link #computeValue computeValue} method.
122
     * This may result in an additional invocation of the
123
     * {@code computeValue} method for the given class.
124
     * <p>
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
     * In order to explain the interaction between {@code get} and {@code remove} calls,
     * we must model the state transitions of a class value to take into account
     * the alternation between uninitialized and initialized states.
     * To do this, number these states sequentially from zero, and note that
     * uninitialized (or removed) states are numbered with even numbers,
     * while initialized (or re-initialized) states have odd numbers.
     * <p>
     * When a thread {@code T} removes a class value in state {@code 2N},
     * nothing happens, since the class value is already uninitialized.
     * Otherwise, the state is advanced atomically to {@code 2N+1}.
     * <p>
     * When a thread {@code T} queries a class value in state {@code 2N},
     * the thread first attempts to initialize the class value to state {@code 2N+1}
     * by invoking {@code computeValue} and installing the resulting value.
     * <p>
     * When {@code T} attempts to install the newly computed value,
     * if the state is still at {@code 2N}, the class value will be initialized
     * with the computed value, advancing it to state {@code 2N+1}.
     * <p>
     * Otherwise, whether the new state is even or odd,
     * {@code T} will discard the newly computed value
     * and retry the {@code get} operation.
     * <p>
     * Discarding and retrying is an important proviso,
     * since otherwise {@code T} could potentially install
     * a disastrously stale value.  For example:
     * <ul>
     * <li>{@code T} calls {@code CV.get(C)} and sees state {@code 2N}
     * <li>{@code T} quickly computes a time-dependent value {@code V0} and gets ready to install it
     * <li>{@code T} is hit by an unlucky paging or scheduling event, and goes to sleep for a long time
     * <li>...meanwhile, {@code T2} also calls {@code CV.get(C)} and sees state {@code 2N}
     * <li>{@code T2} quickly computes a similar time-dependent value {@code V1} and installs it on {@code CV.get(C)}
     * <li>{@code T2} (or a third thread) then calls {@code CV.remove(C)}, undoing {@code T2}'s work
     * <li> the previous actions of {@code T2} are repeated several times
     * <li> also, the relevant computed values change over time: {@code V1}, {@code V2}, ...
     * <li>...meanwhile, {@code T} wakes up and attempts to install {@code V0}; <em>this must fail</em>
     * </ul>
     * We can assume in the above scenario that {@code CV.computeValue} uses locks to properly
     * observe the time-dependent states as it computes {@code V1}, etc.
     * This does not remove the threat of a stale value, since there is a window of time
     * between the return of {@code computeValue} in {@code T} and the installation
     * of the the new value.  No user synchronization is possible during this time.
     *
     * @param type the type whose class value must be removed
     * @throws NullPointerException if the argument is null
170 171 172
     */
    public void remove(Class<?> type) {
        ClassValueMap map = getMap(type);
173
        map.removeEntry(this);
174 175
    }

176 177 178 179 180 181 182
    // Possible functionality for JSR 292 MR 1
    /*public*/ void put(Class<?> type, T value) {
        ClassValueMap map = getMap(type);
        map.changeEntry(this, value);
    }

    /// --------
183
    /// Implementation...
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    /// --------

    /** Return the cache, if it exists, else a dummy empty cache. */
    private static Entry<?>[] getCacheCarefully(Class<?> type) {
        // racing type.classValueMap{.cacheArray} : null => new Entry[X] <=> new Entry[Y]
        ClassValueMap map = type.classValueMap;
        if (map == null)  return EMPTY_CACHE;
        Entry<?>[] cache = map.getCache();
        return cache;
        // invariant:  returned value is safe to dereference and check for an Entry
    }

    /** Initial, one-element, empty cache used by all Class instances.  Must never be filled. */
    private static final Entry<?>[] EMPTY_CACHE = { null };

    /**
     * Slow tail of ClassValue.get to retry at nearby locations in the cache,
     * or take a slow lock and check the hash table.
     * Called only if the first probe was empty or a collision.
     * This is a separate method, so compilers can process it independently.
     */
    private T getFromBackup(Entry<?>[] cache, Class<?> type) {
        Entry<T> e = probeBackupLocations(cache, this);
        if (e != null)
            return e.value();
        return getFromHashMap(type);
    }
211

212 213 214
    // Hack to suppress warnings on the (T) cast, which is a no-op.
    @SuppressWarnings("unchecked")
    Entry<T> castEntry(Entry<?> e) { return (Entry<T>) e; }
215

216 217 218 219
    /** Called when the fast path of get fails, and cache reprobe also fails.
     */
    private T getFromHashMap(Class<?> type) {
        // The fail-safe recovery is to fall back to the underlying classValueMap.
220
        ClassValueMap map = getMap(type);
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        for (;;) {
            Entry<T> e = map.startEntry(this);
            if (!e.isPromise())
                return e.value();
            try {
                // Try to make a real entry for the promised version.
                e = makeEntry(e.version(), computeValue(type));
            } finally {
                // Whether computeValue throws or returns normally,
                // be sure to remove the empty entry.
                e = map.finishEntry(this, e);
            }
            if (e != null)
                return e.value();
            // else try again, in case a racing thread called remove (so e == null)
        }
    }

    /** Check that e is non-null, matches this ClassValue, and is live. */
    boolean match(Entry<?> e) {
        // racing e.version : null (blank) => unique Version token => null (GC-ed version)
        // non-racing this.version : v1 => v2 => ... (updates are read faithfully from volatile)
        return (e != null && e.get() == this.version);
        // invariant:  No false positives on version match.  Null is OK for false negative.
        // invariant:  If version matches, then e.value is readable (final set in Entry.<init>)
    }

    /** Internal hash code for accessing Class.classValueMap.cacheArray. */
    final int hashCodeForCache = nextHashCode.getAndAdd(HASH_INCREMENT) & HASH_MASK;

    /** Value stream for hashCodeForCache.  See similar structure in ThreadLocal. */
    private static final AtomicInteger nextHashCode = new AtomicInteger();

    /** Good for power-of-two tables.  See similar structure in ThreadLocal. */
    private static final int HASH_INCREMENT = 0x61c88647;

    /** Mask a hash code to be positive but not too large, to prevent wraparound. */
    static final int HASH_MASK = (-1 >>> 2);

    /**
     * Private key for retrieval of this object from ClassValueMap.
     */
    static class Identity {
264
    }
265 266 267 268 269 270 271
    /**
     * This ClassValue's identity, expressed as an opaque object.
     * The main object {@code ClassValue.this} is incorrect since
     * subclasses may override {@code ClassValue.equals}, which
     * could confuse keys in the ClassValueMap.
     */
    final Identity identity = new Identity();
272

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    /**
     * Current version for retrieving this class value from the cache.
     * Any number of computeValue calls can be cached in association with one version.
     * But the version changes when a remove (on any type) is executed.
     * A version change invalidates all cache entries for the affected ClassValue,
     * by marking them as stale.  Stale cache entries do not force another call
     * to computeValue, but they do require a synchronized visit to a backing map.
     * <p>
     * All user-visible state changes on the ClassValue take place under
     * a lock inside the synchronized methods of ClassValueMap.
     * Readers (of ClassValue.get) are notified of such state changes
     * when this.version is bumped to a new token.
     * This variable must be volatile so that an unsynchronized reader
     * will receive the notification without delay.
     * <p>
     * If version were not volatile, one thread T1 could persistently hold onto
     * a stale value this.value == V1, while while another thread T2 advances
     * (under a lock) to this.value == V2.  This will typically be harmless,
     * but if T1 and T2 interact causally via some other channel, such that
     * T1's further actions are constrained (in the JMM) to happen after
     * the V2 event, then T1's observation of V1 will be an error.
     * <p>
     * The practical effect of making this.version be volatile is that it cannot
     * be hoisted out of a loop (by an optimizing JIT) or otherwise cached.
     * Some machines may also require a barrier instruction to execute
     * before this.version.
     */
    private volatile Version<T> version = new Version<>(this);
    Version<T> version() { return version; }
    void bumpVersion() { version = new Version<>(this); }
    static class Version<T> {
        private final ClassValue<T> classValue;
        private final Entry<T> promise = new Entry<>(this);
        Version(ClassValue<T> classValue) { this.classValue = classValue; }
        ClassValue<T> classValue() { return classValue; }
        Entry<T> promise() { return promise; }
        boolean isLive() { return classValue.version() == this; }
    }

    /** One binding of a value to a class via a ClassValue.
     *  States are:<ul>
     *  <li> promise if value == Entry.this
     *  <li> else dead if version == null
     *  <li> else stale if version != classValue.version
     *  <li> else live </ul>
     *  Promises are never put into the cache; they only live in the
     *  backing map while a computeValue call is in flight.
     *  Once an entry goes stale, it can be reset at any time
     *  into the dead state.
     */
    static class Entry<T> extends WeakReference<Version<T>> {
        final Object value;  // usually of type T, but sometimes (Entry)this
        Entry(Version<T> version, T value) {
            super(version);
            this.value = value;  // for a regular entry, value is of type T
        }
        private void assertNotPromise() { assert(!isPromise()); }
        /** For creating a promise. */
        Entry(Version<T> version) {
            super(version);
            this.value = this;  // for a promise, value is not of type T, but Entry!
        }
        /** Fetch the value.  This entry must not be a promise. */
        @SuppressWarnings("unchecked")  // if !isPromise, type is T
        T value() { assertNotPromise(); return (T) value; }
        boolean isPromise() { return value == this; }
        Version<T> version() { return get(); }
        ClassValue<T> classValueOrNull() {
            Version<T> v = version();
            return (v == null) ? null : v.classValue();
        }
        boolean isLive() {
            Version<T> v = version();
            if (v == null)  return false;
            if (v.isLive())  return true;
            clear();
            return false;
        }
        Entry<T> refreshVersion(Version<T> v2) {
            assertNotPromise();
            @SuppressWarnings("unchecked")  // if !isPromise, type is T
            Entry<T> e2 = new Entry<>(v2, (T) value);
            clear();
            // value = null -- caller must drop
            return e2;
        }
        static final Entry<?> DEAD_ENTRY = new Entry<>(null, null);
    }
361

362
    /** Return the backing map associated with this type. */
363
    private static ClassValueMap getMap(Class<?> type) {
364 365 366 367 368 369
        // racing type.classValueMap : null (blank) => unique ClassValueMap
        // if a null is observed, a map is created (lazily, synchronously, uniquely)
        // all further access to that map is synchronized
        ClassValueMap map = type.classValueMap;
        if (map != null)  return map;
        return initializeMap(type);
370 371
    }

372
    private static final Object CRITICAL_SECTION = new Object();
373
    private static ClassValueMap initializeMap(Class<?> type) {
374 375 376 377 378 379
        ClassValueMap map;
        synchronized (CRITICAL_SECTION) {  // private object to avoid deadlocks
            // happens about once per type
            if ((map = type.classValueMap) == null)
                type.classValueMap = map = new ClassValueMap(type);
        }
380 381
            return map;
        }
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    static <T> Entry<T> makeEntry(Version<T> explicitVersion, T value) {
        // Note that explicitVersion might be different from this.version.
        return new Entry<>(explicitVersion, value);

        // As soon as the Entry is put into the cache, the value will be
        // reachable via a data race (as defined by the Java Memory Model).
        // This race is benign, assuming the value object itself can be
        // read safely by multiple threads.  This is up to the user.
        //
        // The entry and version fields themselves can be safely read via
        // a race because they are either final or have controlled states.
        // If the pointer from the entry to the version is still null,
        // or if the version goes immediately dead and is nulled out,
        // the reader will take the slow path and retry under a lock.
397 398
    }

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    // The following class could also be top level and non-public:

    /** A backing map for all ClassValues, relative a single given type.
     *  Gives a fully serialized "true state" for each pair (ClassValue cv, Class type).
     *  Also manages an unserialized fast-path cache.
     */
    static class ClassValueMap extends WeakHashMap<ClassValue.Identity, Entry<?>> {
        private final Class<?> type;
        private Entry<?>[] cacheArray;
        private int cacheLoad, cacheLoadLimit;

        /** Number of entries initially allocated to each type when first used with any ClassValue.
         *  It would be pointless to make this much smaller than the Class and ClassValueMap objects themselves.
         *  Must be a power of 2.
         */
        private static final int INITIAL_ENTRIES = 32;

        /** Build a backing map for ClassValues, relative the given type.
         *  Also, create an empty cache array and install it on the class.
         */
        ClassValueMap(Class<?> type) {
            this.type = type;
            sizeCache(INITIAL_ENTRIES);
        }

        Entry<?>[] getCache() { return cacheArray; }

        /** Initiate a query.  Store a promise (placeholder) if there is no value yet. */
        synchronized
        <T> Entry<T> startEntry(ClassValue<T> classValue) {
            @SuppressWarnings("unchecked")  // one map has entries for all value types <T>
            Entry<T> e = (Entry<T>) get(classValue.identity);
            Version<T> v = classValue.version();
            if (e == null) {
                e = v.promise();
                // The presence of a promise means that a value is pending for v.
                // Eventually, finishEntry will overwrite the promise.
                put(classValue.identity, e);
                // Note that the promise is never entered into the cache!
                return e;
            } else if (e.isPromise()) {
                // Somebody else has asked the same question.
                // Let the races begin!
                if (e.version() != v) {
                    e = v.promise();
                    put(classValue.identity, e);
                }
                return e;
            } else {
                // there is already a completed entry here; report it
                if (e.version() != v) {
                    // There is a stale but valid entry here; make it fresh again.
                    // Once an entry is in the hash table, we don't care what its version is.
                    e = e.refreshVersion(v);
                    put(classValue.identity, e);
                }
                // Add to the cache, to enable the fast path, next time.
                checkCacheLoad();
                addToCache(classValue, e);
                return e;
            }
        }

        /** Finish a query.  Overwrite a matching placeholder.  Drop stale incoming values. */
        synchronized
        <T> Entry<T> finishEntry(ClassValue<T> classValue, Entry<T> e) {
            @SuppressWarnings("unchecked")  // one map has entries for all value types <T>
            Entry<T> e0 = (Entry<T>) get(classValue.identity);
            if (e == e0) {
                // We can get here during exception processing, unwinding from computeValue.
                assert(e.isPromise());
                remove(classValue.identity);
                return null;
            } else if (e0 != null && e0.isPromise() && e0.version() == e.version()) {
                // If e0 matches the intended entry, there has not been a remove call
                // between the previous startEntry and now.  So now overwrite e0.
                Version<T> v = classValue.version();
                if (e.version() != v)
                    e = e.refreshVersion(v);
                put(classValue.identity, e);
                // Add to the cache, to enable the fast path, next time.
                checkCacheLoad();
                addToCache(classValue, e);
                return e;
            } else {
                // Some sort of mismatch; caller must try again.
                return null;
            }
        }

        /** Remove an entry. */
        synchronized
        void removeEntry(ClassValue<?> classValue) {
            // make all cache elements for this guy go stale:
            if (remove(classValue.identity) != null) {
                classValue.bumpVersion();
                removeStaleEntries(classValue);
            }
        }

        /** Change the value for an entry. */
        synchronized
        <T> void changeEntry(ClassValue<T> classValue, T value) {
            @SuppressWarnings("unchecked")  // one map has entries for all value types <T>
            Entry<T> e0 = (Entry<T>) get(classValue.identity);
            Version<T> version = classValue.version();
            if (e0 != null) {
                if (e0.version() == version && e0.value() == value)
                    // no value change => no version change needed
                    return;
                classValue.bumpVersion();
                removeStaleEntries(classValue);
            }
            Entry<T> e = makeEntry(version, value);
            put(classValue.identity, e);
            // Add to the cache, to enable the fast path, next time.
            checkCacheLoad();
            addToCache(classValue, e);
        }

        /// --------
        /// Cache management.
        /// --------

        // Statics do not need synchronization.

        /** Load the cache entry at the given (hashed) location. */
        static Entry<?> loadFromCache(Entry<?>[] cache, int i) {
            // non-racing cache.length : constant
            // racing cache[i & (mask)] : null <=> Entry
            return cache[i & (cache.length-1)];
            // invariant:  returned value is null or well-constructed (ready to match)
        }

        /** Look in the cache, at the home location for the given ClassValue. */
        static <T> Entry<T> probeHomeLocation(Entry<?>[] cache, ClassValue<T> classValue) {
            return classValue.castEntry(loadFromCache(cache, classValue.hashCodeForCache));
        }

        /** Given that first probe was a collision, retry at nearby locations. */
        static <T> Entry<T> probeBackupLocations(Entry<?>[] cache, ClassValue<T> classValue) {
            if (PROBE_LIMIT <= 0)  return null;
            // Probe the cache carefully, in a range of slots.
            int mask = (cache.length-1);
            int home = (classValue.hashCodeForCache & mask);
            Entry<?> e2 = cache[home];  // victim, if we find the real guy
            if (e2 == null) {
                return null;   // if nobody is at home, no need to search nearby
            }
            // assume !classValue.match(e2), but do not assert, because of races
            int pos2 = -1;
            for (int i = home + 1; i < home + PROBE_LIMIT; i++) {
                Entry<?> e = cache[i & mask];
                if (e == null) {
                    break;   // only search within non-null runs
                }
                if (classValue.match(e)) {
                    // relocate colliding entry e2 (from cache[home]) to first empty slot
                    cache[home] = e;
                    if (pos2 >= 0) {
                        cache[i & mask] = Entry.DEAD_ENTRY;
                    } else {
                        pos2 = i;
                    }
                    cache[pos2 & mask] = ((entryDislocation(cache, pos2, e2) < PROBE_LIMIT)
                                          ? e2                  // put e2 here if it fits
                                          : Entry.DEAD_ENTRY);
                    return classValue.castEntry(e);
                }
                // Remember first empty slot, if any:
                if (!e.isLive() && pos2 < 0)  pos2 = i;
570
            }
571
            return null;
572 573
        }

574 575 576 577 578 579
        /** How far out of place is e? */
        private static int entryDislocation(Entry<?>[] cache, int pos, Entry<?> e) {
            ClassValue<?> cv = e.classValueOrNull();
            if (cv == null)  return 0;  // entry is not live!
            int mask = (cache.length-1);
            return (pos - cv.hashCodeForCache) & mask;
580
        }
581 582 583 584 585 586 587 588 589 590

        /// --------
        /// Below this line all functions are private, and assume synchronized access.
        /// --------

        private void sizeCache(int length) {
            assert((length & (length-1)) == 0);  // must be power of 2
            cacheLoad = 0;
            cacheLoadLimit = (int) ((double) length * CACHE_LOAD_LIMIT / 100);
            cacheArray = new Entry<?>[length];
591
        }
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

        /** Make sure the cache load stays below its limit, if possible. */
        private void checkCacheLoad() {
            if (cacheLoad >= cacheLoadLimit) {
                reduceCacheLoad();
            }
        }
        private void reduceCacheLoad() {
            removeStaleEntries();
            if (cacheLoad < cacheLoadLimit)
                return;  // win
            Entry<?>[] oldCache = getCache();
            if (oldCache.length > HASH_MASK)
                return;  // lose
            sizeCache(oldCache.length * 2);
            for (Entry<?> e : oldCache) {
                if (e != null && e.isLive()) {
                    addToCache(e);
                }
            }
        }

        /** Remove stale entries in the given range.
         *  Should be executed under a Map lock.
         */
        private void removeStaleEntries(Entry<?>[] cache, int begin, int count) {
            if (PROBE_LIMIT <= 0)  return;
            int mask = (cache.length-1);
            int removed = 0;
            for (int i = begin; i < begin + count; i++) {
                Entry<?> e = cache[i & mask];
                if (e == null || e.isLive())
                    continue;  // skip null and live entries
                Entry<?> replacement = null;
                if (PROBE_LIMIT > 1) {
                    // avoid breaking up a non-null run
                    replacement = findReplacement(cache, i);
                }
                cache[i & mask] = replacement;
                if (replacement == null)  removed += 1;
            }
            cacheLoad = Math.max(0, cacheLoad - removed);
        }

        /** Clearing a cache slot risks disconnecting following entries
         *  from the head of a non-null run, which would allow them
         *  to be found via reprobes.  Find an entry after cache[begin]
         *  to plug into the hole, or return null if none is needed.
         */
        private Entry<?> findReplacement(Entry<?>[] cache, int home1) {
            Entry<?> replacement = null;
            int haveReplacement = -1, replacementPos = 0;
            int mask = (cache.length-1);
            for (int i2 = home1 + 1; i2 < home1 + PROBE_LIMIT; i2++) {
                Entry<?> e2 = cache[i2 & mask];
                if (e2 == null)  break;  // End of non-null run.
                if (!e2.isLive())  continue;  // Doomed anyway.
                int dis2 = entryDislocation(cache, i2, e2);
                if (dis2 == 0)  continue;  // e2 already optimally placed
                int home2 = i2 - dis2;
                if (home2 <= home1) {
                    // e2 can replace entry at cache[home1]
                    if (home2 == home1) {
                        // Put e2 exactly where he belongs.
                        haveReplacement = 1;
                        replacementPos = i2;
                        replacement = e2;
                    } else if (haveReplacement <= 0) {
                        haveReplacement = 0;
                        replacementPos = i2;
                        replacement = e2;
                    }
                    // And keep going, so we can favor larger dislocations.
                }
            }
            if (haveReplacement >= 0) {
                if (cache[(replacementPos+1) & mask] != null) {
                    // Be conservative, to avoid breaking up a non-null run.
                    cache[replacementPos & mask] = (Entry<?>) Entry.DEAD_ENTRY;
                } else {
                    cache[replacementPos & mask] = null;
                    cacheLoad -= 1;
                }
            }
            return replacement;
        }

        /** Remove stale entries in the range near classValue. */
        private void removeStaleEntries(ClassValue<?> classValue) {
            removeStaleEntries(getCache(), classValue.hashCodeForCache, PROBE_LIMIT);
        }

        /** Remove all stale entries, everywhere. */
        private void removeStaleEntries() {
            Entry[] cache = getCache();
            removeStaleEntries(cache, 0, cache.length + PROBE_LIMIT - 1);
        }

        /** Add the given entry to the cache, in its home location, unless it is out of date. */
        private <T> void addToCache(Entry<T> e) {
            ClassValue<T> classValue = e.classValueOrNull();
            if (classValue != null)
                addToCache(classValue, e);
        }

        /** Add the given entry to the cache, in its home location. */
        private <T> void addToCache(ClassValue<T> classValue, Entry<T> e) {
            if (PROBE_LIMIT <= 0)  return;  // do not fill cache
            // Add e to the cache.
            Entry<?>[] cache = getCache();
            int mask = (cache.length-1);
            int home = classValue.hashCodeForCache & mask;
            Entry<?> e2 = placeInCache(cache, home, e, false);
            if (e2 == null)  return;  // done
            if (PROBE_LIMIT > 1) {
                // try to move e2 somewhere else in his probe range
                int dis2 = entryDislocation(cache, home, e2);
                int home2 = home - dis2;
                for (int i2 = home2; i2 < home2 + PROBE_LIMIT; i2++) {
                    if (placeInCache(cache, i2 & mask, e2, true) == null) {
                        return;
                    }
                }
            }
            // Note:  At this point, e2 is just dropped from the cache.
        }

        /** Store the given entry.  Update cacheLoad, and return any live victim.
         *  'Gently' means return self rather than dislocating a live victim.
         */
        private Entry<?> placeInCache(Entry<?>[] cache, int pos, Entry<?> e, boolean gently) {
            Entry<?> e2 = overwrittenEntry(cache[pos]);
            if (gently && e2 != null) {
                // do not overwrite a live entry
                return e;
            } else {
                cache[pos] = e;
                return e2;
            }
        }

        /** Note an entry that is about to be overwritten.
         *  If it is not live, quietly replace it by null.
         *  If it is an actual null, increment cacheLoad,
         *  because the caller is going to store something
         *  in its place.
         */
        private <T> Entry<T> overwrittenEntry(Entry<T> e2) {
            if (e2 == null)  cacheLoad += 1;
            else if (e2.isLive())  return e2;
            return null;
        }

        /** Percent loading of cache before resize. */
        private static final int CACHE_LOAD_LIMIT = 67;  // 0..100
        /** Maximum number of probes to attempt. */
        private static final int PROBE_LIMIT      =  6;       // 1..
        // N.B.  Set PROBE_LIMIT=0 to disable all fast paths.
750 751
    }
}