CertAndKeyGen.java 12.0 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1996, 2011, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
D
duke 已提交
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
D
duke 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
24 25
 */

26
package sun.security.tools;
D
duke 已提交
27 28 29 30 31 32 33 34

import java.io.IOException;
import java.security.cert.X509Certificate;
import java.security.cert.CertificateException;
import java.security.cert.CertificateEncodingException;
import java.security.*;
import java.util.Date;

35 36 37 38 39 40 41 42 43 44 45 46 47
import sun.security.pkcs10.PKCS10;
import sun.security.x509.AlgorithmId;
import sun.security.x509.CertificateAlgorithmId;
import sun.security.x509.CertificateIssuerName;
import sun.security.x509.CertificateSerialNumber;
import sun.security.x509.CertificateSubjectName;
import sun.security.x509.CertificateValidity;
import sun.security.x509.CertificateVersion;
import sun.security.x509.CertificateX509Key;
import sun.security.x509.X500Name;
import sun.security.x509.X509CertImpl;
import sun.security.x509.X509CertInfo;
import sun.security.x509.X509Key;
D
duke 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241


/**
 * Generate a pair of keys, and provide access to them.  This class is
 * provided primarily for ease of use.
 *
 * <P>This provides some simple certificate management functionality.
 * Specifically, it allows you to create self-signed X.509 certificates
 * as well as PKCS 10 based certificate signing requests.
 *
 * <P>Keys for some public key signature algorithms have algorithm
 * parameters, such as DSS/DSA.  Some sites' Certificate Authorities
 * adopt fixed algorithm parameters, which speeds up some operations
 * including key generation and signing.  <em>At this time, this interface
 * does not provide a way to provide such algorithm parameters, e.g.
 * by providing the CA certificate which includes those parameters.</em>
 *
 * <P>Also, note that at this time only signature-capable keys may be
 * acquired through this interface.  Diffie-Hellman keys, used for secure
 * key exchange, may be supported later.
 *
 * @author David Brownell
 * @author Hemma Prafullchandra
 * @see PKCS10
 * @see X509CertImpl
 */
public final class CertAndKeyGen {
    /**
     * Creates a CertAndKeyGen object for a particular key type
     * and signature algorithm.
     *
     * @param keyType type of key, e.g. "RSA", "DSA"
     * @param sigAlg name of the signature algorithm, e.g. "MD5WithRSA",
     *          "MD2WithRSA", "SHAwithDSA".
     * @exception NoSuchAlgorithmException on unrecognized algorithms.
     */
    public CertAndKeyGen (String keyType, String sigAlg)
    throws NoSuchAlgorithmException
    {
        keyGen = KeyPairGenerator.getInstance(keyType);
        this.sigAlg = sigAlg;
    }

    /**
     * Creates a CertAndKeyGen object for a particular key type,
     * signature algorithm, and provider.
     *
     * @param keyType type of key, e.g. "RSA", "DSA"
     * @param sigAlg name of the signature algorithm, e.g. "MD5WithRSA",
     *          "MD2WithRSA", "SHAwithDSA".
     * @param providerName name of the provider
     * @exception NoSuchAlgorithmException on unrecognized algorithms.
     * @exception NoSuchProviderException on unrecognized providers.
     */
    public CertAndKeyGen (String keyType, String sigAlg, String providerName)
    throws NoSuchAlgorithmException, NoSuchProviderException
    {
        if (providerName == null) {
            keyGen = KeyPairGenerator.getInstance(keyType);
        } else {
            try {
                keyGen = KeyPairGenerator.getInstance(keyType, providerName);
            } catch (Exception e) {
                // try first available provider instead
                keyGen = KeyPairGenerator.getInstance(keyType);
            }
        }
        this.sigAlg = sigAlg;
    }

    /**
     * Sets the source of random numbers used when generating keys.
     * If you do not provide one, a system default facility is used.
     * You may wish to provide your own source of random numbers
     * to get a reproducible sequence of keys and signatures, or
     * because you may be able to take advantage of strong sources
     * of randomness/entropy in your environment.
     */
    public void         setRandom (SecureRandom generator)
    {
        prng = generator;
    }

    // want "public void generate (X509Certificate)" ... inherit DSA/D-H param

    /**
     * Generates a random public/private key pair, with a given key
     * size.  Different algorithms provide different degrees of security
     * for the same key size, because of the "work factor" involved in
     * brute force attacks.  As computers become faster, it becomes
     * easier to perform such attacks.  Small keys are to be avoided.
     *
     * <P>Note that not all values of "keyBits" are valid for all
     * algorithms, and not all public key algorithms are currently
     * supported for use in X.509 certificates.  If the algorithm
     * you specified does not produce X.509 compatible keys, an
     * invalid key exception is thrown.
     *
     * @param keyBits the number of bits in the keys.
     * @exception InvalidKeyException if the environment does not
     *  provide X.509 public keys for this signature algorithm.
     */
    public void generate (int keyBits)
    throws InvalidKeyException
    {
        KeyPair pair;

        try {
            if (prng == null) {
                prng = new SecureRandom();
            }
            keyGen.initialize(keyBits, prng);
            pair = keyGen.generateKeyPair();

        } catch (Exception e) {
            throw new IllegalArgumentException(e.getMessage());
        }

        publicKey = pair.getPublic();
        privateKey = pair.getPrivate();
    }


    /**
     * Returns the public key of the generated key pair if it is of type
     * <code>X509Key</code>, or null if the public key is of a different type.
     *
     * XXX Note: This behaviour is needed for backwards compatibility.
     * What this method really should return is the public key of the
     * generated key pair, regardless of whether or not it is an instance of
     * <code>X509Key</code>. Accordingly, the return type of this method
     * should be <code>PublicKey</code>.
     */
    public X509Key getPublicKey()
    {
        if (!(publicKey instanceof X509Key)) {
            return null;
        }
        return (X509Key)publicKey;
    }


    /**
     * Returns the private key of the generated key pair.
     *
     * <P><STRONG><em>Be extremely careful when handling private keys.
     * When private keys are not kept secret, they lose their ability
     * to securely authenticate specific entities ... that is a huge
     * security risk!</em></STRONG>
     */
    public PrivateKey getPrivateKey ()
    {
        return privateKey;
    }


    /**
     * Returns a self-signed X.509v3 certificate for the public key.
     * The certificate is immediately valid. No extensions.
     *
     * <P>Such certificates normally are used to identify a "Certificate
     * Authority" (CA).  Accordingly, they will not always be accepted by
     * other parties.  However, such certificates are also useful when
     * you are bootstrapping your security infrastructure, or deploying
     * system prototypes.
     *
     * @param myname X.500 name of the subject (who is also the issuer)
     * @param firstDate the issue time of the certificate
     * @param validity how long the certificate should be valid, in seconds
     * @exception CertificateException on certificate handling errors.
     * @exception InvalidKeyException on key handling errors.
     * @exception SignatureException on signature handling errors.
     * @exception NoSuchAlgorithmException on unrecognized algorithms.
     * @exception NoSuchProviderException on unrecognized providers.
     */
    public X509Certificate getSelfCertificate (
            X500Name myname, Date firstDate, long validity)
    throws CertificateException, InvalidKeyException, SignatureException,
        NoSuchAlgorithmException, NoSuchProviderException
    {
        X509CertImpl    cert;
        Date            lastDate;

        try {
            lastDate = new Date ();
            lastDate.setTime (firstDate.getTime () + validity * 1000);

            CertificateValidity interval =
                                   new CertificateValidity(firstDate,lastDate);

            X509CertInfo info = new X509CertInfo();
            // Add all mandatory attributes
            info.set(X509CertInfo.VERSION,
                     new CertificateVersion(CertificateVersion.V3));
242 243
            info.set(X509CertInfo.SERIAL_NUMBER, new CertificateSerialNumber(
                    new java.util.Random().nextInt() & 0x7fffffff));
244
            AlgorithmId algID = AlgorithmId.get(sigAlg);
D
duke 已提交
245 246 247 248 249
            info.set(X509CertInfo.ALGORITHM_ID,
                     new CertificateAlgorithmId(algID));
            info.set(X509CertInfo.SUBJECT, new CertificateSubjectName(myname));
            info.set(X509CertInfo.KEY, new CertificateX509Key(publicKey));
            info.set(X509CertInfo.VALIDITY, interval);
250
            info.set(X509CertInfo.ISSUER, new CertificateIssuerName(myname));
D
duke 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

            cert = new X509CertImpl(info);
            cert.sign(privateKey, this.sigAlg);

            return (X509Certificate)cert;

        } catch (IOException e) {
             throw new CertificateEncodingException("getSelfCert: " +
                                                    e.getMessage());
        }
    }

    // Keep the old method
    public X509Certificate getSelfCertificate (X500Name myname, long validity)
    throws CertificateException, InvalidKeyException, SignatureException,
        NoSuchAlgorithmException, NoSuchProviderException
    {
        return getSelfCertificate(myname, new Date(), validity);
    }

    /**
     * Returns a PKCS #10 certificate request.  The caller uses either
     * <code>PKCS10.print</code> or <code>PKCS10.toByteArray</code>
     * operations on the result, to get the request in an appropriate
     * transmission format.
     *
     * <P>PKCS #10 certificate requests are sent, along with some proof
     * of identity, to Certificate Authorities (CAs) which then issue
     * X.509 public key certificates.
     *
     * @param myname X.500 name of the subject
     * @exception InvalidKeyException on key handling errors.
     * @exception SignatureException on signature handling errors.
     */
    public PKCS10 getCertRequest (X500Name myname)
    throws InvalidKeyException, SignatureException
    {
        PKCS10  req = new PKCS10 (publicKey);

        try {
291 292 293
            Signature signature = Signature.getInstance(sigAlg);
            signature.initSign (privateKey);
            req.encodeAndSign(myname, signature);
D
duke 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

        } catch (CertificateException e) {
            throw new SignatureException (sigAlg + " CertificateException");

        } catch (IOException e) {
            throw new SignatureException (sigAlg + " IOException");

        } catch (NoSuchAlgorithmException e) {
            // "can't happen"
            throw new SignatureException (sigAlg + " unavailable?");
        }
        return req;
    }

    private SecureRandom        prng;
    private String              sigAlg;
    private KeyPairGenerator    keyGen;
    private PublicKey           publicKey;
    private PrivateKey          privateKey;
}