MethodHandle.java 74.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.  Oracle designates this
8
 * particular file as subject to the "Classpath" exception as provided
9
 * by Oracle in the LICENSE file that accompanied this code.
10 11 12 13 14 15 16 17 18 19 20
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
21 22 23
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
24 25
 */

26
package java.lang.invoke;
27 28


29 30
import java.util.*;

31
import static java.lang.invoke.MethodHandleStatics.*;
32

33
/**
34
 * A method handle is a typed, directly executable reference to an underlying method,
35
 * constructor, field, or similar low-level operation, with optional
36
 * transformations of arguments or return values.
37 38 39
 * These transformations are quite general, and include such patterns as
 * {@linkplain #asType conversion},
 * {@linkplain #bindTo insertion},
40 41
 * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
 * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
42
 *
43
 * <h1>Method handle contents</h1>
44 45 46 47
 * Method handles are dynamically and strongly typed according to their parameter and return types.
 * They are not distinguished by the name or the defining class of their underlying methods.
 * A method handle must be invoked using a symbolic type descriptor which matches
 * the method handle's own {@linkplain #type type descriptor}.
48
 * <p>
49
 * Every method handle reports its type descriptor via the {@link #type type} accessor.
50
 * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
51
 * whose structure is a series of classes, one of which is
52
 * the return type of the method (or {@code void.class} if none).
53
 * <p>
54 55 56 57
 * A method handle's type controls the types of invocations it accepts,
 * and the kinds of transformations that apply to it.
 * <p>
 * A method handle contains a pair of special invoker methods
58
 * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
59 60 61 62
 * Both invoker methods provide direct access to the method handle's
 * underlying method, constructor, field, or other operation,
 * as modified by transformations of arguments and return values.
 * Both invokers accept calls which exactly match the method handle's own type.
63
 * The plain, inexact invoker also accepts a range of other call types.
64
 * <p>
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
 * Method handles are immutable and have no visible state.
 * Of course, they can be bound to underlying methods or data which exhibit state.
 * With respect to the Java Memory Model, any method handle will behave
 * as if all of its (internal) fields are final variables.  This means that any method
 * handle made visible to the application will always be fully formed.
 * This is true even if the method handle is published through a shared
 * variable in a data race.
 * <p>
 * Method handles cannot be subclassed by the user.
 * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
 * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
 * operation.  The programmer should not draw conclusions about a method handle
 * from its specific class, as the method handle class hierarchy (if any)
 * may change from time to time or across implementations from different vendors.
 *
80
 * <h1>Method handle compilation</h1>
81
 * A Java method call expression naming {@code invokeExact} or {@code invoke}
82 83 84 85
 * can invoke a method handle from Java source code.
 * From the viewpoint of source code, these methods can take any arguments
 * and their result can be cast to any return type.
 * Formally this is accomplished by giving the invoker methods
86
 * {@code Object} return types and variable arity {@code Object} arguments,
87
 * but they have an additional quality called <em>signature polymorphism</em>
88 89 90
 * which connects this freedom of invocation directly to the JVM execution stack.
 * <p>
 * As is usual with virtual methods, source-level calls to {@code invokeExact}
91
 * and {@code invoke} compile to an {@code invokevirtual} instruction.
92 93 94 95
 * More unusually, the compiler must record the actual argument types,
 * and may not perform method invocation conversions on the arguments.
 * Instead, it must push them on the stack according to their own unconverted types.
 * The method handle object itself is pushed on the stack before the arguments.
96
 * The compiler then calls the method handle with a symbolic type descriptor which
97 98
 * describes the argument and return types.
 * <p>
99
 * To issue a complete symbolic type descriptor, the compiler must also determine
100 101 102 103 104 105
 * the return type.  This is based on a cast on the method invocation expression,
 * if there is one, or else {@code Object} if the invocation is an expression
 * or else {@code void} if the invocation is a statement.
 * The cast may be to a primitive type (but not {@code void}).
 * <p>
 * As a corner case, an uncasted {@code null} argument is given
106
 * a symbolic type descriptor of {@code java.lang.Void}.
107 108 109
 * The ambiguity with the type {@code Void} is harmless, since there are no references of type
 * {@code Void} except the null reference.
 *
110
 * <h1>Method handle invocation</h1>
111 112 113
 * The first time a {@code invokevirtual} instruction is executed
 * it is linked, by symbolically resolving the names in the instruction
 * and verifying that the method call is statically legal.
114
 * This is true of calls to {@code invokeExact} and {@code invoke}.
115
 * In this case, the symbolic type descriptor emitted by the compiler is checked for
116 117 118
 * correct syntax and names it contains are resolved.
 * Thus, an {@code invokevirtual} instruction which invokes
 * a method handle will always link, as long
119
 * as the symbolic type descriptor is syntactically well-formed
120 121 122 123
 * and the types exist.
 * <p>
 * When the {@code invokevirtual} is executed after linking,
 * the receiving method handle's type is first checked by the JVM
124
 * to ensure that it matches the symbolic type descriptor.
125 126 127 128 129 130 131
 * If the type match fails, it means that the method which the
 * caller is invoking is not present on the individual
 * method handle being invoked.
 * <p>
 * In the case of {@code invokeExact}, the type descriptor of the invocation
 * (after resolving symbolic type names) must exactly match the method type
 * of the receiving method handle.
132
 * In the case of plain, inexact {@code invoke}, the resolved type descriptor
133
 * must be a valid argument to the receiver's {@link #asType asType} method.
134
 * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
135 136 137 138
 * <p>
 * After type matching, a call to {@code invokeExact} directly
 * and immediately invoke the method handle's underlying method
 * (or other behavior, as the case may be).
139
 * <p>
140
 * A call to plain {@code invoke} works the same as a call to
141
 * {@code invokeExact}, if the symbolic type descriptor specified by the caller
142
 * exactly matches the method handle's own type.
143
 * If there is a type mismatch, {@code invoke} attempts
144 145 146
 * to adjust the type of the receiving method handle,
 * as if by a call to {@link #asType asType},
 * to obtain an exactly invokable method handle {@code M2}.
147 148 149
 * This allows a more powerful negotiation of method type
 * between caller and callee.
 * <p>
150
 * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
151 152
 * and implementations are therefore not required to materialize it.)
 *
153
 * <h1>Invocation checking</h1>
154 155 156
 * In typical programs, method handle type matching will usually succeed.
 * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
 * either directly (in the case of {@code invokeExact}) or indirectly as if
157
 * by a failed call to {@code asType} (in the case of {@code invoke}).
158
 * <p>
159 160 161 162
 * Thus, a method type mismatch which might show up as a linkage error
 * in a statically typed program can show up as
 * a dynamic {@code WrongMethodTypeException}
 * in a program which uses method handles.
163
 * <p>
164 165 166 167
 * Because method types contain "live" {@code Class} objects,
 * method type matching takes into account both types names and class loaders.
 * Thus, even if a method handle {@code M} is created in one
 * class loader {@code L1} and used in another {@code L2},
168
 * method handle calls are type-safe, because the caller's symbolic type
169
 * descriptor, as resolved in {@code L2},
170
 * is matched against the original callee method's symbolic type descriptor,
171 172 173 174 175 176 177 178 179 180
 * as resolved in {@code L1}.
 * The resolution in {@code L1} happens when {@code M} is created
 * and its type is assigned, while the resolution in {@code L2} happens
 * when the {@code invokevirtual} instruction is linked.
 * <p>
 * Apart from the checking of type descriptors,
 * a method handle's capability to call its underlying method is unrestricted.
 * If a method handle is formed on a non-public method by a class
 * that has access to that method, the resulting handle can be used
 * in any place by any caller who receives a reference to it.
181
 * <p>
182 183 184 185 186 187 188 189 190 191 192 193
 * Unlike with the Core Reflection API, where access is checked every time
 * a reflective method is invoked,
 * method handle access checking is performed
 * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
 * In the case of {@code ldc} (see below), access checking is performed as part of linking
 * the constant pool entry underlying the constant method handle.
 * <p>
 * Thus, handles to non-public methods, or to methods in non-public classes,
 * should generally be kept secret.
 * They should not be passed to untrusted code unless their use from
 * the untrusted code would be harmless.
 *
194
 * <h1>Method handle creation</h1>
195 196 197
 * Java code can create a method handle that directly accesses
 * any method, constructor, or field that is accessible to that code.
 * This is done via a reflective, capability-based API called
198
 * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}
199
 * For example, a static method handle can be obtained
200
 * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
201
 * There are also conversion methods from Core Reflection API objects,
202
 * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
203 204 205 206 207 208
 * <p>
 * Like classes and strings, method handles that correspond to accessible
 * fields, methods, and constructors can also be represented directly
 * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
 * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
 * refers directly to an associated {@code CONSTANT_Methodref},
209 210
 * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
 * constant pool entry.
211 212
 * (For full details on method handle constants,
 * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.)
213
 * <p>
214 215 216 217 218
 * Method handles produced by lookups or constant loads from methods or
 * constructors with the variable arity modifier bit ({@code 0x0080})
 * have a corresponding variable arity, as if they were defined with
 * the help of {@link #asVarargsCollector asVarargsCollector}.
 * <p>
219 220 221 222 223
 * A method reference may refer either to a static or non-static method.
 * In the non-static case, the method handle type includes an explicit
 * receiver argument, prepended before any other arguments.
 * In the method handle's type, the initial receiver argument is typed
 * according to the class under which the method was initially requested.
224
 * (E.g., if a non-static method handle is obtained via {@code ldc},
225 226
 * the type of the receiver is the class named in the constant pool entry.)
 * <p>
227 228 229 230 231 232 233 234 235 236 237 238 239
 * Method handle constants are subject to the same link-time access checks
 * their corresponding bytecode instructions, and the {@code ldc} instruction
 * will throw corresponding linkage errors if the bytecode behaviors would
 * throw such errors.
 * <p>
 * As a corollary of this, access to protected members is restricted
 * to receivers only of the accessing class, or one of its subclasses,
 * and the accessing class must in turn be a subclass (or package sibling)
 * of the protected member's defining class.
 * If a method reference refers to a protected non-static method or field
 * of a class outside the current package, the receiver argument will
 * be narrowed to the type of the accessing class.
 * <p>
240 241 242
 * When a method handle to a virtual method is invoked, the method is
 * always looked up in the receiver (that is, the first argument).
 * <p>
243
 * A non-virtual method handle to a specific virtual method implementation
244 245
 * can also be created.  These do not perform virtual lookup based on
 * receiver type.  Such a method handle simulates the effect of
246
 * an {@code invokespecial} instruction to the same method.
247
 *
248
 * <h1>Usage examples</h1>
249
 * Here are some examples of usage:
250
 * <blockquote><pre>{@code
251 252 253
Object x, y; String s; int i;
MethodType mt; MethodHandle mh;
MethodHandles.Lookup lookup = MethodHandles.lookup();
254
// mt is (char,char)String
255 256
mt = MethodType.methodType(String.class, char.class, char.class);
mh = lookup.findVirtual(String.class, "replace", mt);
257
s = (String) mh.invokeExact("daddy",'d','n');
258
// invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
259
assertEquals(s, "nanny");
260
// weakly typed invocation (using MHs.invoke)
261
s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
262
assertEquals(s, "savvy");
263
// mt is (Object[])List
264 265
mt = MethodType.methodType(java.util.List.class, Object[].class);
mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
266
assert(mh.isVarargsCollector());
267 268
x = mh.invoke("one", "two");
// invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
269
assertEquals(x, java.util.Arrays.asList("one","two"));
270
// mt is (Object,Object,Object)Object
271
mt = MethodType.genericMethodType(3);
272
mh = mh.asType(mt);
273
x = mh.invokeExact((Object)1, (Object)2, (Object)3);
274
// invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
275 276
assertEquals(x, java.util.Arrays.asList(1,2,3));
// mt is ()int
277 278
mt = MethodType.methodType(int.class);
mh = lookup.findVirtual(java.util.List.class, "size", mt);
279
i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
280
// invokeExact(Ljava/util/List;)I
281
assert(i == 3);
282 283 284
mt = MethodType.methodType(void.class, String.class);
mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
mh.invokeExact(System.out, "Hello, world.");
285
// invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
A
alanb 已提交
286
 * }</pre></blockquote>
287
 * Each of the above calls to {@code invokeExact} or plain {@code invoke}
288
 * generates a single invokevirtual instruction with
289 290
 * the symbolic type descriptor indicated in the following comment.
 * In these examples, the helper method {@code assertEquals} is assumed to
291
 * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
292
 * on its arguments, and asserts that the result is true.
293
 *
294
 * <h1>Exceptions</h1>
295
 * The methods {@code invokeExact} and {@code invoke} are declared
296 297 298 299 300 301 302
 * to throw {@link java.lang.Throwable Throwable},
 * which is to say that there is no static restriction on what a method handle
 * can throw.  Since the JVM does not distinguish between checked
 * and unchecked exceptions (other than by their class, of course),
 * there is no particular effect on bytecode shape from ascribing
 * checked exceptions to method handle invocations.  But in Java source
 * code, methods which perform method handle calls must either explicitly
303
 * throw {@code Throwable}, or else must catch all
304 305 306
 * throwables locally, rethrowing only those which are legal in the context,
 * and wrapping ones which are illegal.
 *
307
 * <h1><a name="sigpoly"></a>Signature polymorphism</h1>
308
 * The unusual compilation and linkage behavior of
309
 * {@code invokeExact} and plain {@code invoke}
310
 * is referenced by the term <em>signature polymorphism</em>.
311 312
 * As defined in the Java Language Specification,
 * a signature polymorphic method is one which can operate with
313 314 315
 * any of a wide range of call signatures and return types.
 * <p>
 * In source code, a call to a signature polymorphic method will
316
 * compile, regardless of the requested symbolic type descriptor.
317
 * As usual, the Java compiler emits an {@code invokevirtual}
318 319
 * instruction with the given symbolic type descriptor against the named method.
 * The unusual part is that the symbolic type descriptor is derived from
320 321 322
 * the actual argument and return types, not from the method declaration.
 * <p>
 * When the JVM processes bytecode containing signature polymorphic calls,
323
 * it will successfully link any such call, regardless of its symbolic type descriptor.
324 325 326 327
 * (In order to retain type safety, the JVM will guard such calls with suitable
 * dynamic type checks, as described elsewhere.)
 * <p>
 * Bytecode generators, including the compiler back end, are required to emit
328
 * untransformed symbolic type descriptors for these methods.
329 330 331
 * Tools which determine symbolic linkage are required to accept such
 * untransformed descriptors, without reporting linkage errors.
 *
332
 * <h1>Interoperation between method handles and the Core Reflection API</h1>
333
 * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
334 335 336 337
 * any class member represented by a Core Reflection API object
 * can be converted to a behaviorally equivalent method handle.
 * For example, a reflective {@link java.lang.reflect.Method Method} can
 * be converted to a method handle using
338
 * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
339 340 341 342 343
 * The resulting method handles generally provide more direct and efficient
 * access to the underlying class members.
 * <p>
 * As a special case,
 * when the Core Reflection API is used to view the signature polymorphic
344 345 346 347 348 349 350 351 352 353
 * methods {@code invokeExact} or plain {@code invoke} in this class,
 * they appear as ordinary non-polymorphic methods.
 * Their reflective appearance, as viewed by
 * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
 * is unaffected by their special status in this API.
 * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
 * will report exactly those modifier bits required for any similarly
 * declared method, including in this case {@code native} and {@code varargs} bits.
 * <p>
 * As with any reflected method, these methods (when reflected) may be
354
 * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
355 356 357 358 359
 * However, such reflective calls do not result in method handle invocations.
 * Such a call, if passed the required argument
 * (a single one, of type {@code Object[]}), will ignore the argument and
 * will throw an {@code UnsupportedOperationException}.
 * <p>
360
 * Since {@code invokevirtual} instructions can natively
361
 * invoke method handles under any symbolic type descriptor, this reflective view conflicts
362 363 364
 * with the normal presentation of these methods via bytecodes.
 * Thus, these two native methods, when reflectively viewed by
 * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
365 366
 * <p>
 * In order to obtain an invoker method for a particular type descriptor,
367
 * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
368
 * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
369
 * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
370
 * API is also able to return a method handle
371
 * to call {@code invokeExact} or plain {@code invoke},
372 373
 * for any specified type descriptor .
 *
374
 * <h1>Interoperation between method handles and Java generics</h1>
375 376 377 378 379 380 381
 * A method handle can be obtained on a method, constructor, or field
 * which is declared with Java generic types.
 * As with the Core Reflection API, the type of the method handle
 * will constructed from the erasure of the source-level type.
 * When a method handle is invoked, the types of its arguments
 * or the return value cast type may be generic types or type instances.
 * If this occurs, the compiler will replace those
382
 * types by their erasures when it constructs the symbolic type descriptor
383
 * for the {@code invokevirtual} instruction.
384
 * <p>
385 386 387
 * Method handles do not represent
 * their function-like types in terms of Java parameterized (generic) types,
 * because there are three mismatches between function-like types and parameterized
388
 * Java types.
389
 * <ul>
390
 * <li>Method types range over all possible arities,
391
 * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
392 393 394 395 396 397 398
 * Generics are not variadic, and so cannot represent this.</li>
 * <li>Method types can specify arguments of primitive types,
 * which Java generic types cannot range over.</li>
 * <li>Higher order functions over method handles (combinators) are
 * often generic across a wide range of function types, including
 * those of multiple arities.  It is impossible to represent such
 * genericity with a Java type parameter.</li>
399
 * </ul>
400
 *
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
 * <h1><a name="maxarity"></a>Arity limits</h1>
 * The JVM imposes on all methods and constructors of any kind an absolute
 * limit of 255 stacked arguments.  This limit can appear more restrictive
 * in certain cases:
 * <ul>
 * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
 * <li>A non-static method consumes an extra argument for the object on which the method is called.
 * <li>A constructor consumes an extra argument for the object which is being constructed.
 * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
 *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
 * </ul>
 * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
 * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
 * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
 * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
 *
417 418 419 420
 * @see MethodType
 * @see MethodHandles
 * @author John Rose, JSR 292 EG
 */
421
public abstract class MethodHandle {
422
    static { MethodHandleImpl.initStatics(); }
423

424 425
    /**
     * Internal marker interface which distinguishes (to the Java compiler)
426
     * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
427
     */
428
    @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
429
    @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
430
    @interface PolymorphicSignature { }
431

432 433 434
    private final MethodType type;
    /*private*/ final LambdaForm form;
    // form is not private so that invokers can easily fetch it
435 436
    /*private*/ MethodHandle asTypeCache;
    // asTypeCache is not private so that invokers can easily fetch it
437 438

    /**
439
     * Reports the type of this method handle.
440
     * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
441 442
     * @return the method handle type
     */
443
    public MethodType type() {
444 445 446 447
        return type;
    }

    /**
448 449
     * Package-private constructor for the method handle implementation hierarchy.
     * Method handle inheritance will be contained completely within
450
     * the {@code java.lang.invoke} package.
451
     */
452
    // @param type type (permanently assigned) of the new method handle
453 454 455
    /*non-public*/ MethodHandle(MethodType type, LambdaForm form) {
        type.getClass();  // explicit NPE
        form.getClass();  // explicit NPE
456
        this.type = type;
457 458 459
        this.form = form;

        form.prepare();  // TO DO:  Try to delay this step until just before invocation.
460
    }
461 462

    /**
463
     * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
464
     * The symbolic type descriptor at the call site of {@code invokeExact} must
465
     * exactly match this method handle's {@link #type type}.
466
     * No conversions are allowed on arguments or return values.
467 468 469 470
     * <p>
     * When this method is observed via the Core Reflection API,
     * it will appear as a single native method, taking an object array and returning an object.
     * If this native method is invoked directly via
471
     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
472
     * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
473
     * it will throw an {@code UnsupportedOperationException}.
474 475
     * @param args the signature-polymorphic parameter list, statically represented using varargs
     * @return the signature-polymorphic result, statically represented using {@code Object}
476
     * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
477
     * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
478
     */
479
    public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
480

481
    /**
482
     * Invokes the method handle, allowing any caller type descriptor,
483
     * and optionally performing conversions on arguments and return values.
484
     * <p>
485
     * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type},
486
     * the call proceeds as if by {@link #invokeExact invokeExact}.
487 488
     * <p>
     * Otherwise, the call proceeds as if this method handle were first
489
     * adjusted by calling {@link #asType asType} to adjust this method handle
490
     * to the required type, and then the call proceeds as if by
491 492 493 494 495 496 497
     * {@link #invokeExact invokeExact} on the adjusted method handle.
     * <p>
     * There is no guarantee that the {@code asType} call is actually made.
     * If the JVM can predict the results of making the call, it may perform
     * adaptations directly on the caller's arguments,
     * and call the target method handle according to its own exact type.
     * <p>
498
     * The resolved type descriptor at the call site of {@code invoke} must
499
     * be a valid argument to the receivers {@code asType} method.
500
     * In particular, the caller must specify the same argument arity
501 502
     * as the callee's type,
     * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
503 504 505 506
     * <p>
     * When this method is observed via the Core Reflection API,
     * it will appear as a single native method, taking an object array and returning an object.
     * If this native method is invoked directly via
507
     * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
508
     * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
509
     * it will throw an {@code UnsupportedOperationException}.
510 511
     * @param args the signature-polymorphic parameter list, statically represented using varargs
     * @return the signature-polymorphic result, statically represented using {@code Object}
512
     * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
513
     * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
514
     * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
515
     */
516 517
    public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;

518 519 520 521 522 523 524 525 526 527 528 529 530 531
    /**
     * Private method for trusted invocation of a method handle respecting simplified signatures.
     * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
     * <p>
     * The caller signature is restricted to the following basic types:
     * Object, int, long, float, double, and void return.
     * <p>
     * The caller is responsible for maintaining type correctness by ensuring
     * that the each outgoing argument value is a member of the range of the corresponding
     * callee argument type.
     * (The caller should therefore issue appropriate casts and integer narrowing
     * operations on outgoing argument values.)
     * The caller can assume that the incoming result value is part of the range
     * of the callee's return type.
532 533
     * @param args the signature-polymorphic parameter list, statically represented using varargs
     * @return the signature-polymorphic result, statically represented using {@code Object}
534 535 536
     */
    /*non-public*/ final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;

537 538 539 540 541 542 543
    /**
     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
     * The caller signature is restricted to basic types as with {@code invokeBasic}.
     * The trailing (not leading) argument must be a MemberName.
     * @param args the signature-polymorphic parameter list, statically represented using varargs
     * @return the signature-polymorphic result, statically represented using {@code Object}
     */
544 545 546 547 548 549
    /*non-public*/ static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;

    /**
     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
     * The caller signature is restricted to basic types as with {@code invokeBasic}.
     * The trailing (not leading) argument must be a MemberName.
550 551
     * @param args the signature-polymorphic parameter list, statically represented using varargs
     * @return the signature-polymorphic result, statically represented using {@code Object}
552 553 554 555 556 557 558
     */
    /*non-public*/ static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;

    /**
     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
     * The caller signature is restricted to basic types as with {@code invokeBasic}.
     * The trailing (not leading) argument must be a MemberName.
559 560
     * @param args the signature-polymorphic parameter list, statically represented using varargs
     * @return the signature-polymorphic result, statically represented using {@code Object}
561 562 563 564 565 566 567
     */
    /*non-public*/ static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;

    /**
     * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
     * The caller signature is restricted to basic types as with {@code invokeBasic}.
     * The trailing (not leading) argument must be a MemberName.
568 569
     * @param args the signature-polymorphic parameter list, statically represented using varargs
     * @return the signature-polymorphic result, statically represented using {@code Object}
570 571 572
     */
    /*non-public*/ static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;

573
    /**
574
     * Performs a variable arity invocation, passing the arguments in the given list
575
     * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
576
     * which mentions only the type {@code Object}, and whose arity is the length
577
     * of the argument list.
578
     * <p>
579 580 581 582 583 584
     * Specifically, execution proceeds as if by the following steps,
     * although the methods are not guaranteed to be called if the JVM
     * can predict their effects.
     * <ul>
     * <li>Determine the length of the argument array as {@code N}.
     *     For a null reference, {@code N=0}. </li>
585
     * <li>Determine the general type {@code TN} of {@code N} arguments as
586 587 588 589 590 591 592 593
     *     as {@code TN=MethodType.genericMethodType(N)}.</li>
     * <li>Force the original target method handle {@code MH0} to the
     *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
     * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li>
     * <li>Invoke the type-adjusted method handle on the unpacked arguments:
     *     MH1.invokeExact(A0, ...). </li>
     * <li>Take the return value as an {@code Object} reference. </li>
     * </ul>
594
     * <p>
595
     * Because of the action of the {@code asType} step, the following argument
596 597 598 599
     * conversions are applied as necessary:
     * <ul>
     * <li>reference casting
     * <li>unboxing
600
     * <li>widening primitive conversions
601
     * </ul>
602
     * <p>
603 604 605 606
     * The result returned by the call is boxed if it is a primitive,
     * or forced to null if the return type is void.
     * <p>
     * This call is equivalent to the following code:
607
     * <blockquote><pre>{@code
608
     * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
609
     * Object result = invoker.invokeExact(this, arguments);
610
     * }</pre></blockquote>
611
     * <p>
612
     * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
613 614 615
     * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
     * It can therefore be used as a bridge between native or reflective code and method handles.
     *
616 617
     * @param arguments the arguments to pass to the target
     * @return the result returned by the target
618 619
     * @throws ClassCastException if an argument cannot be converted by reference casting
     * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
620
     * @throws Throwable anything thrown by the target method invocation
621
     * @see MethodHandles#spreadInvoker
622
     */
623
    public Object invokeWithArguments(Object... arguments) throws Throwable {
624 625
        MethodType invocationType = MethodType.genericMethodType(arguments == null ? 0 : arguments.length);
        return invocationType.invokers().spreadInvoker(0).invokeExact(asType(invocationType), arguments);
626
    }
627 628

    /**
629
     * Performs a variable arity invocation, passing the arguments in the given array
630
     * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
631 632 633 634
     * which mentions only the type {@code Object}, and whose arity is the length
     * of the argument array.
     * <p>
     * This method is also equivalent to the following code:
635 636 637
     * <blockquote><pre>{@code
     *   invokeWithArguments(arguments.toArray()
     * }</pre></blockquote>
638 639 640
     *
     * @param arguments the arguments to pass to the target
     * @return the result returned by the target
641
     * @throws NullPointerException if {@code arguments} is a null reference
642 643 644 645
     * @throws ClassCastException if an argument cannot be converted by reference casting
     * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
     * @throws Throwable anything thrown by the target method invocation
     */
646
    public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
647
        return invokeWithArguments(arguments.toArray());
648 649
    }

650
    /**
651 652
     * Produces an adapter method handle which adapts the type of the
     * current method handle to a new type.
653
     * The resulting method handle is guaranteed to report a type
654 655 656 657
     * which is equal to the desired new type.
     * <p>
     * If the original type and new type are equal, returns {@code this}.
     * <p>
658 659 660 661 662 663 664 665 666 667
     * The new method handle, when invoked, will perform the following
     * steps:
     * <ul>
     * <li>Convert the incoming argument list to match the original
     *     method handle's argument list.
     * <li>Invoke the original method handle on the converted argument list.
     * <li>Convert any result returned by the original method handle
     *     to the return type of new method handle.
     * </ul>
     * <p>
668
     * This method provides the crucial behavioral difference between
669 670 671 672
     * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
     * The two methods
     * perform the same steps when the caller's type descriptor exactly m atches
     * the callee's, but when the types differ, plain {@link #invoke invoke}
673 674
     * also calls {@code asType} (or some internal equivalent) in order
     * to match up the caller's and callee's types.
675
     * <p>
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
     * If the current method is a variable arity method handle
     * argument list conversion may involve the conversion and collection
     * of several arguments into an array, as
     * {@linkplain #asVarargsCollector described elsewhere}.
     * In every other case, all conversions are applied <em>pairwise</em>,
     * which means that each argument or return value is converted to
     * exactly one argument or return value (or no return value).
     * The applied conversions are defined by consulting the
     * the corresponding component types of the old and new
     * method handle types.
     * <p>
     * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
     * or old and new return types.  Specifically, for some valid index {@code i}, let
     * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
     * Or else, going the other way for return values, let
     * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
     * If the types are the same, the new method handle makes no change
     * to the corresponding argument or return value (if any).
     * Otherwise, one of the following conversions is applied
     * if possible:
     * <ul>
     * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
     *     (The types do not need to be related in any particular way.
     *     This is because a dynamic value of null can convert to any reference type.)
     * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
     *     conversion (JLS 5.3) is applied, if one exists.
     *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
     * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
     *     a Java casting conversion (JLS 5.5) is applied if one exists.
     *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
     *     which is then widened as needed to <em>T1</em>.)
     * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
     *     conversion will be applied at runtime, possibly followed
     *     by a Java method invocation conversion (JLS 5.3)
     *     on the primitive value.  (These are the primitive widening conversions.)
     *     <em>T0</em> must be a wrapper class or a supertype of one.
     *     (In the case where <em>T0</em> is Object, these are the conversions
     *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
     *     The unboxing conversion must have a possibility of success, which means that
     *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
     *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
     *     primitive value can be widened to <em>T1</em>.
     * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
     * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
     * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
     *     a zero value is introduced.
     * </ul>
723
     * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
     * because neither corresponds specifically to the <em>dynamic type</em> of any
     * actual argument or return value.)
     * <p>
     * The method handle conversion cannot be made if any one of the required
     * pairwise conversions cannot be made.
     * <p>
     * At runtime, the conversions applied to reference arguments
     * or return values may require additional runtime checks which can fail.
     * An unboxing operation may fail because the original reference is null,
     * causing a {@link java.lang.NullPointerException NullPointerException}.
     * An unboxing operation or a reference cast may also fail on a reference
     * to an object of the wrong type,
     * causing a {@link java.lang.ClassCastException ClassCastException}.
     * Although an unboxing operation may accept several kinds of wrappers,
     * if none are available, a {@code ClassCastException} will be thrown.
739
     *
740 741 742 743
     * @param newType the expected type of the new method handle
     * @return a method handle which delegates to {@code this} after performing
     *           any necessary argument conversions, and arranges for any
     *           necessary return value conversions
744
     * @throws NullPointerException if {@code newType} is a null reference
745
     * @throws WrongMethodTypeException if the conversion cannot be made
746
     * @see MethodHandles#explicitCastArguments
747
     */
748
    public MethodHandle asType(MethodType newType) {
749 750 751 752 753 754
        // Fast path alternative to a heavyweight {@code asType} call.
        // Return 'this' if the conversion will be a no-op.
        if (newType == type) {
            return this;
        }
        // Return 'this.asTypeCache' if the conversion is already memoized.
755 756 757 758 759 760 761 762
        MethodHandle atc = asTypeCached(newType);
        if (atc != null) {
            return atc;
        }
        return asTypeUncached(newType);
    }

    private MethodHandle asTypeCached(MethodType newType) {
763 764 765
        MethodHandle atc = asTypeCache;
        if (atc != null && newType == atc.type) {
            return atc;
766
        }
767
        return null;
768 769 770 771 772 773
    }

    /** Override this to change asType behavior. */
    /*non-public*/ MethodHandle asTypeUncached(MethodType newType) {
        if (!type.isConvertibleTo(newType))
            throw new WrongMethodTypeException("cannot convert "+this+" to "+newType);
774
        return asTypeCache = MethodHandleImpl.makePairwiseConvert(this, newType, true);
775 776 777
    }

    /**
778
     * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
779 780
     * and spreads its elements as positional arguments.
     * The new method handle adapts, as its <i>target</i>,
781
     * the current method handle.  The type of the adapter will be
782 783 784 785 786
     * the same as the type of the target, except that the final
     * {@code arrayLength} parameters of the target's type are replaced
     * by a single array parameter of type {@code arrayType}.
     * <p>
     * If the array element type differs from any of the corresponding
787
     * argument types on the original target,
788 789
     * the original target is adapted to take the array elements directly,
     * as if by a call to {@link #asType asType}.
790 791 792 793 794 795 796 797 798 799 800 801 802
     * <p>
     * When called, the adapter replaces a trailing array argument
     * by the array's elements, each as its own argument to the target.
     * (The order of the arguments is preserved.)
     * They are converted pairwise by casting and/or unboxing
     * to the types of the trailing parameters of the target.
     * Finally the target is called.
     * What the target eventually returns is returned unchanged by the adapter.
     * <p>
     * Before calling the target, the adapter verifies that the array
     * contains exactly enough elements to provide a correct argument count
     * to the target method handle.
     * (The array may also be null when zero elements are required.)
803
     * <p>
804 805 806 807
     * If, when the adapter is called, the supplied array argument does
     * not have the correct number of elements, the adapter will throw
     * an {@link IllegalArgumentException} instead of invoking the target.
     * <p>
808
     * Here are some simple examples of array-spreading method handles:
A
alanb 已提交
809
     * <blockquote><pre>{@code
810 811 812 813 814 815 816 817
MethodHandle equals = publicLookup()
  .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
assert( (boolean) equals.invokeExact("me", (Object)"me"));
assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
// spread both arguments from a 2-array:
MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
818 819 820 821 822 823
// try to spread from anything but a 2-array:
for (int n = 0; n <= 10; n++) {
  Object[] badArityArgs = (n == 2 ? null : new Object[n]);
  try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
  catch (IllegalArgumentException ex) { } // OK
}
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
// spread both arguments from a String array:
MethodHandle eq2s = equals.asSpreader(String[].class, 2);
assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
// spread second arguments from a 1-array:
MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
// spread no arguments from a 0-array or null:
MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
// asSpreader and asCollector are approximate inverses:
for (int n = 0; n <= 2; n++) {
    for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
        MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
        assert( (boolean) equals2.invokeWithArguments("me", "me"));
        assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
    }
}
MethodHandle caToString = publicLookup()
  .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
MethodHandle caString3 = caToString.asCollector(char[].class, 3);
assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
A
alanb 已提交
851
     * }</pre></blockquote>
852 853 854
     * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
     * @param arrayLength the number of arguments to spread from an incoming array argument
     * @return a new method handle which spreads its final array argument,
855
     *         before calling the original method handle
856
     * @throws NullPointerException if {@code arrayType} is a null reference
857 858
     * @throws IllegalArgumentException if {@code arrayType} is not an array type,
     *         or if target does not have at least
859
     *         {@code arrayLength} parameter types,
860 861 862
     *         or if {@code arrayLength} is negative,
     *         or if the resulting method handle's type would have
     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
863
     * @throws WrongMethodTypeException if the implied {@code asType} call fails
864
     * @see #asCollector
865
     */
866
    public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
867 868 869 870 871 872 873 874 875 876 877 878
        MethodType postSpreadType = asSpreaderChecks(arrayType, arrayLength);
        int arity = type().parameterCount();
        int spreadArgPos = arity - arrayLength;
        if (USE_LAMBDA_FORM_EDITOR) {
            MethodHandle afterSpread = this.asType(postSpreadType);
            BoundMethodHandle mh = afterSpread.rebind();
            LambdaForm lform = mh.editor().spreadArgumentsForm(1 + spreadArgPos, arrayType, arrayLength);
            MethodType preSpreadType = postSpreadType.replaceParameterTypes(spreadArgPos, arity, arrayType);
            return mh.copyWith(preSpreadType, lform);
        } else {
            return MethodHandleImpl.makeSpreadArguments(this, arrayType, spreadArgPos, arrayLength);
        }
879 880
    }

881 882 883 884 885
    /**
     * See if {@code asSpreader} can be validly called with the given arguments.
     * Return the type of the method handle call after spreading but before conversions.
     */
    private MethodType asSpreaderChecks(Class<?> arrayType, int arrayLength) {
886
        spreadArrayChecks(arrayType, arrayLength);
887
        int nargs = type().parameterCount();
888 889
        if (nargs < arrayLength || arrayLength < 0)
            throw newIllegalArgumentException("bad spread array length");
890 891 892 893 894 895 896 897 898
        Class<?> arrayElement = arrayType.getComponentType();
        MethodType mtype = type();
        boolean match = true, fail = false;
        for (int i = nargs - arrayLength; i < nargs; i++) {
            Class<?> ptype = mtype.parameterType(i);
            if (ptype != arrayElement) {
                match = false;
                if (!MethodType.canConvert(arrayElement, ptype)) {
                    fail = true;
899 900 901 902
                    break;
                }
            }
        }
903 904 905 906 907 908
        if (match)  return mtype;
        MethodType needType = mtype.asSpreaderType(arrayType, arrayLength);
        if (!fail)  return needType;
        // elicit an error:
        this.asType(needType);
        throw newInternalError("should not return", null);
909 910 911 912 913 914 915 916 917 918 919 920 921 922
    }

    private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
        Class<?> arrayElement = arrayType.getComponentType();
        if (arrayElement == null)
            throw newIllegalArgumentException("not an array type", arrayType);
        if ((arrayLength & 0x7F) != arrayLength) {
            if ((arrayLength & 0xFF) != arrayLength)
                throw newIllegalArgumentException("array length is not legal", arrayLength);
            assert(arrayLength >= 128);
            if (arrayElement == long.class ||
                arrayElement == double.class)
                throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
        }
923 924 925
    }

    /**
926
     * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
927 928
     * positional arguments and collects them into an array argument.
     * The new method handle adapts, as its <i>target</i>,
929 930
     * the current method handle.  The type of the adapter will be
     * the same as the type of the target, except that a single trailing
931 932 933
     * parameter (usually of type {@code arrayType}) is replaced by
     * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
     * <p>
934
     * If the array type differs from the final argument type on the original target,
935 936
     * the original target is adapted to take the array type directly,
     * as if by a call to {@link #asType asType}.
937
     * <p>
938 939
     * When called, the adapter replaces its trailing {@code arrayLength}
     * arguments by a single new array of type {@code arrayType}, whose elements
940 941 942 943
     * comprise (in order) the replaced arguments.
     * Finally the target is called.
     * What the target eventually returns is returned unchanged by the adapter.
     * <p>
944
     * (The array may also be a shared constant when {@code arrayLength} is zero.)
945 946 947 948 949 950 951 952
     * <p>
     * (<em>Note:</em> The {@code arrayType} is often identical to the last
     * parameter type of the original target.
     * It is an explicit argument for symmetry with {@code asSpreader}, and also
     * to allow the target to use a simple {@code Object} as its last parameter type.)
     * <p>
     * In order to create a collecting adapter which is not restricted to a particular
     * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead.
953 954
     * <p>
     * Here are some examples of array-collecting method handles:
A
alanb 已提交
955
     * <blockquote><pre>{@code
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
MethodHandle deepToString = publicLookup()
  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
assertEquals(methodType(String.class, Object.class), ts1.type());
//assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
// arrayType can be a subtype of Object[]
MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
assertEquals(methodType(String.class, String.class, String.class), ts2.type());
assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
assertEquals("[]", (String) ts0.invokeExact());
// collectors can be nested, Lisp-style
MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
// arrayType can be any primitive array type
MethodHandle bytesToString = publicLookup()
  .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
  .asCollector(byte[].class, 3);
assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
MethodHandle longsToString = publicLookup()
  .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
  .asCollector(long[].class, 1);
assertEquals("[123]", (String) longsToString.invokeExact((long)123));
A
alanb 已提交
981
     * }</pre></blockquote>
982
     * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
983
     * @param arrayLength the number of arguments to collect into a new array argument
984 985
     * @return a new method handle which collects some trailing argument
     *         into an array, before calling the original method handle
986
     * @throws NullPointerException if {@code arrayType} is a null reference
987
     * @throws IllegalArgumentException if {@code arrayType} is not an array type
988
     *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
989 990 991
     *         or {@code arrayLength} is not a legal array size,
     *         or the resulting method handle's type would have
     *         <a href="MethodHandle.html#maxarity">too many parameters</a>
992
     * @throws WrongMethodTypeException if the implied {@code asType} call fails
993 994
     * @see #asSpreader
     * @see #asVarargsCollector
995
     */
996
    public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
997
        asCollectorChecks(arrayType, arrayLength);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        int collectArgPos = type().parameterCount() - 1;
        if (USE_LAMBDA_FORM_EDITOR) {
            BoundMethodHandle mh = rebind();
            MethodType resultType = type().asCollectorType(arrayType, arrayLength);
            MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
            LambdaForm lform = mh.editor().collectArgumentArrayForm(1 + collectArgPos, newArray);
            if (lform != null) {
                return mh.copyWith(resultType, lform);
            }
            lform = mh.editor().collectArgumentsForm(1 + collectArgPos, newArray.type().basicType());
            return mh.copyWithExtendL(resultType, lform, newArray);
        } else {
            MethodHandle target = this;
            if (arrayType != type().parameterType(collectArgPos))
                target = MethodHandleImpl.makePairwiseConvert(this, type().changeParameterType(collectArgPos, arrayType), true);
            MethodHandle collector = MethodHandleImpl.varargsArray(arrayType, arrayLength);
            return MethodHandles.collectArguments(target, collectArgPos, collector);
        }
1016 1017
    }

1018 1019 1020 1021 1022
    /**
     * See if {@code asCollector} can be validly called with the given arguments.
     * Return false if the last parameter is not an exact match to arrayType.
     */
    /*non-public*/ boolean asCollectorChecks(Class<?> arrayType, int arrayLength) {
1023
        spreadArrayChecks(arrayType, arrayLength);
1024
        int nargs = type().parameterCount();
1025 1026 1027 1028 1029 1030
        if (nargs != 0) {
            Class<?> lastParam = type().parameterType(nargs-1);
            if (lastParam == arrayType)  return true;
            if (lastParam.isAssignableFrom(arrayType))  return false;
        }
        throw newIllegalArgumentException("array type not assignable to trailing argument", this, arrayType);
1031 1032 1033
    }

    /**
1034
     * Makes a <em>variable arity</em> adapter which is able to accept
1035 1036 1037 1038 1039
     * any number of trailing positional arguments and collect them
     * into an array argument.
     * <p>
     * The type and behavior of the adapter will be the same as
     * the type and behavior of the target, except that certain
1040
     * {@code invoke} and {@code asType} requests can lead to
1041 1042 1043 1044 1045 1046
     * trailing positional arguments being collected into target's
     * trailing parameter.
     * Also, the last parameter type of the adapter will be
     * {@code arrayType}, even if the target has a different
     * last parameter type.
     * <p>
1047 1048 1049 1050
     * This transformation may return {@code this} if the method handle is
     * already of variable arity and its trailing parameter type
     * is identical to {@code arrayType}.
     * <p>
1051 1052 1053 1054 1055 1056 1057
     * When called with {@link #invokeExact invokeExact}, the adapter invokes
     * the target with no argument changes.
     * (<em>Note:</em> This behavior is different from a
     * {@linkplain #asCollector fixed arity collector},
     * since it accepts a whole array of indeterminate length,
     * rather than a fixed number of arguments.)
     * <p>
1058
     * When called with plain, inexact {@link #invoke invoke}, if the caller
1059 1060
     * type is the same as the adapter, the adapter invokes the target as with
     * {@code invokeExact}.
1061
     * (This is the normal behavior for {@code invoke} when types match.)
1062 1063 1064 1065 1066
     * <p>
     * Otherwise, if the caller and adapter arity are the same, and the
     * trailing parameter type of the caller is a reference type identical to
     * or assignable to the trailing parameter type of the adapter,
     * the arguments and return values are converted pairwise,
1067 1068
     * as if by {@link #asType asType} on a fixed arity
     * method handle.
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
     * <p>
     * Otherwise, the arities differ, or the adapter's trailing parameter
     * type is not assignable from the corresponding caller type.
     * In this case, the adapter replaces all trailing arguments from
     * the original trailing argument position onward, by
     * a new array of type {@code arrayType}, whose elements
     * comprise (in order) the replaced arguments.
     * <p>
     * The caller type must provides as least enough arguments,
     * and of the correct type, to satisfy the target's requirement for
     * positional arguments before the trailing array argument.
     * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
     * where {@code N} is the arity of the target.
     * Also, there must exist conversions from the incoming arguments
     * to the target's arguments.
1084
     * As with other uses of plain {@code invoke}, if these basic
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
     * requirements are not fulfilled, a {@code WrongMethodTypeException}
     * may be thrown.
     * <p>
     * In all cases, what the target eventually returns is returned unchanged by the adapter.
     * <p>
     * In the final case, it is exactly as if the target method handle were
     * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
     * to the arity required by the caller type.
     * (As with {@code asCollector}, if the array length is zero,
     * a shared constant may be used instead of a new array.
     * If the implied call to {@code asCollector} would throw
     * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
     * the call to the variable arity adapter must throw
     * {@code WrongMethodTypeException}.)
     * <p>
     * The behavior of {@link #asType asType} is also specialized for
     * variable arity adapters, to maintain the invariant that
1102
     * plain, inexact {@code invoke} is always equivalent to an {@code asType}
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
     * call to adjust the target type, followed by {@code invokeExact}.
     * Therefore, a variable arity adapter responds
     * to an {@code asType} request by building a fixed arity collector,
     * if and only if the adapter and requested type differ either
     * in arity or trailing argument type.
     * The resulting fixed arity collector has its type further adjusted
     * (if necessary) to the requested type by pairwise conversion,
     * as if by another application of {@code asType}.
     * <p>
     * When a method handle is obtained by executing an {@code ldc} instruction
     * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
     * as a variable arity method (with the modifier bit {@code 0x0080}),
     * the method handle will accept multiple arities, as if the method handle
     * constant were created by means of a call to {@code asVarargsCollector}.
     * <p>
     * In order to create a collecting adapter which collects a predetermined
     * number of arguments, and whose type reflects this predetermined number,
     * use {@link #asCollector asCollector} instead.
     * <p>
     * No method handle transformations produce new method handles with
     * variable arity, unless they are documented as doing so.
     * Therefore, besides {@code asVarargsCollector},
     * all methods in {@code MethodHandle} and {@code MethodHandles}
     * will return a method handle with fixed arity,
     * except in the cases where they are specified to return their original
     * operand (e.g., {@code asType} of the method handle's own type).
     * <p>
     * Calling {@code asVarargsCollector} on a method handle which is already
     * of variable arity will produce a method handle with the same type and behavior.
     * It may (or may not) return the original variable arity method handle.
     * <p>
     * Here is an example, of a list-making variable arity method handle:
A
alanb 已提交
1135
     * <blockquote><pre>{@code
1136 1137 1138 1139 1140 1141 1142 1143
MethodHandle deepToString = publicLookup()
  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
// findStatic of Arrays.asList(...) produces a variable arity method handle:
1144
MethodHandle asList = publicLookup()
1145 1146 1147
  .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
assertEquals(methodType(List.class, Object[].class), asList.type());
assert(asList.isVarargsCollector());
1148 1149 1150
assertEquals("[]", asList.invoke().toString());
assertEquals("[1]", asList.invoke(1).toString());
assertEquals("[two, too]", asList.invoke("two", "too").toString());
1151
String[] argv = { "three", "thee", "tee" };
1152
assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
1153
assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
1154
List ls = (List) asList.invoke((Object)argv);
1155 1156
assertEquals(1, ls.size());
assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
A
alanb 已提交
1157
     * }</pre></blockquote>
1158
     * <p style="font-size:smaller;">
1159
     * <em>Discussion:</em>
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
     * These rules are designed as a dynamically-typed variation
     * of the Java rules for variable arity methods.
     * In both cases, callers to a variable arity method or method handle
     * can either pass zero or more positional arguments, or else pass
     * pre-collected arrays of any length.  Users should be aware of the
     * special role of the final argument, and of the effect of a
     * type match on that final argument, which determines whether
     * or not a single trailing argument is interpreted as a whole
     * array or a single element of an array to be collected.
     * Note that the dynamic type of the trailing argument has no
1170 1171
     * effect on this decision, only a comparison between the symbolic
     * type descriptor of the call site and the type descriptor of the method handle.)
1172
     *
1173 1174 1175
     * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
     * @return a new method handle which can collect any number of trailing arguments
     *         into an array, before calling the original method handle
1176
     * @throws NullPointerException if {@code arrayType} is a null reference
1177 1178 1179
     * @throws IllegalArgumentException if {@code arrayType} is not an array type
     *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
     * @see #asCollector
1180
     * @see #isVarargsCollector
1181
     * @see #asFixedArity
1182 1183
     */
    public MethodHandle asVarargsCollector(Class<?> arrayType) {
1184
        arrayType.getClass(); // explicit NPE
1185 1186 1187
        boolean lastMatch = asCollectorChecks(arrayType, 0);
        if (isVarargsCollector() && lastMatch)
            return this;
1188
        return MethodHandleImpl.makeVarargsCollector(this, arrayType);
1189 1190 1191
    }

    /**
1192
     * Determines if this method handle
1193 1194 1195 1196
     * supports {@linkplain #asVarargsCollector variable arity} calls.
     * Such method handles arise from the following sources:
     * <ul>
     * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
1197
     * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
1198 1199 1200 1201
     *     which resolves to a variable arity Java method or constructor
     * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
     *     which resolves to a variable arity Java method or constructor
     * </ul>
1202
     * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
1203
     * @see #asVarargsCollector
1204
     * @see #asFixedArity
1205 1206 1207 1208 1209
     */
    public boolean isVarargsCollector() {
        return false;
    }

1210 1211
    /**
     * Makes a <em>fixed arity</em> method handle which is otherwise
1212
     * equivalent to the current method handle.
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
     * <p>
     * If the current method handle is not of
     * {@linkplain #asVarargsCollector variable arity},
     * the current method handle is returned.
     * This is true even if the current method handle
     * could not be a valid input to {@code asVarargsCollector}.
     * <p>
     * Otherwise, the resulting fixed-arity method handle has the same
     * type and behavior of the current method handle,
     * except that {@link #isVarargsCollector isVarargsCollector}
     * will be false.
     * The fixed-arity method handle may (or may not) be the
     * a previous argument to {@code asVarargsCollector}.
     * <p>
     * Here is an example, of a list-making variable arity method handle:
A
alanb 已提交
1228
     * <blockquote><pre>{@code
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
MethodHandle asListVar = publicLookup()
  .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
  .asVarargsCollector(Object[].class);
MethodHandle asListFix = asListVar.asFixedArity();
assertEquals("[1]", asListVar.invoke(1).toString());
Exception caught = null;
try { asListFix.invoke((Object)1); }
catch (Exception ex) { caught = ex; }
assert(caught instanceof ClassCastException);
assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
try { asListFix.invoke("two", "too"); }
catch (Exception ex) { caught = ex; }
assert(caught instanceof WrongMethodTypeException);
Object[] argv = { "three", "thee", "tee" };
assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
A
alanb 已提交
1247
     * }</pre></blockquote>
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
     *
     * @return a new method handle which accepts only a fixed number of arguments
     * @see #asVarargsCollector
     * @see #isVarargsCollector
     */
    public MethodHandle asFixedArity() {
        assert(!isVarargsCollector());
        return this;
    }

1258
    /**
1259
     * Binds a value {@code x} to the first argument of a method handle, without invoking it.
1260
     * The new method handle adapts, as its <i>target</i>,
1261
     * the current method handle by binding it to the given argument.
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
     * The type of the bound handle will be
     * the same as the type of the target, except that a single leading
     * reference parameter will be omitted.
     * <p>
     * When called, the bound handle inserts the given value {@code x}
     * as a new leading argument to the target.  The other arguments are
     * also passed unchanged.
     * What the target eventually returns is returned unchanged by the bound handle.
     * <p>
     * The reference {@code x} must be convertible to the first parameter
     * type of the target.
1273 1274 1275
     * <p>
     * (<em>Note:</em>  Because method handles are immutable, the target method handle
     * retains its original type and behavior.)
1276
     * @param x  the value to bind to the first argument of the target
1277 1278
     * @return a new method handle which prepends the given value to the incoming
     *         argument list, before calling the original method handle
1279 1280 1281 1282
     * @throws IllegalArgumentException if the target does not have a
     *         leading parameter type that is a reference type
     * @throws ClassCastException if {@code x} cannot be converted
     *         to the leading parameter type of the target
1283
     * @see MethodHandles#insertArguments
1284
     */
1285
    public MethodHandle bindTo(Object x) {
1286 1287
        x = type.leadingReferenceParameter().cast(x);  // throw CCE if needed
        return bindArgumentL(0, x);
1288
    }
1289

1290
    /**
1291 1292 1293 1294
     * Returns a string representation of the method handle,
     * starting with the string {@code "MethodHandle"} and
     * ending with the string representation of the method handle's type.
     * In other words, this method returns a string equal to the value of:
1295
     * <blockquote><pre>{@code
1296
     * "MethodHandle" + type().toString()
1297
     * }</pre></blockquote>
1298
     * <p>
1299
     * (<em>Note:</em>  Future releases of this API may add further information
1300
     * to the string representation.
1301
     * Therefore, the present syntax should not be parsed by applications.)
1302 1303
     *
     * @return a string representation of the method handle
1304
     */
1305 1306
    @Override
    public String toString() {
1307
        if (DEBUG_METHOD_HANDLE_NAMES)  return "MethodHandle"+debugString();
1308 1309 1310
        return standardString();
    }
    String standardString() {
1311 1312
        return "MethodHandle"+type;
    }
1313 1314 1315
    /** Return a string with a several lines describing the method handle structure.
     *  This string would be suitable for display in an IDE debugger.
     */
1316
    String debugString() {
1317
        return type+" : "+internalForm()+internalProperties();
1318 1319 1320 1321 1322 1323 1324
    }

    //// Implementation methods.
    //// Sub-classes can override these default implementations.
    //// All these methods assume arguments are already validated.

    // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
1325

1326 1327 1328 1329
    BoundMethodHandle bindArgumentL(int pos, Object value) {
        return rebind().bindArgumentL(pos, value);
    }

1330
    /*non-public*/
1331 1332
    MethodHandle setVarargs(MemberName member) throws IllegalAccessException {
        if (!member.isVarargs())  return this;
1333 1334 1335
        Class<?> arrayType = type().lastParameterType();
        if (arrayType.isArray()) {
            return MethodHandleImpl.makeVarargsCollector(this, arrayType);
1336 1337 1338
        }
        throw member.makeAccessException("cannot make variable arity", null);
    }
1339

1340
    /*non-public*/
1341
    MethodHandle viewAsType(MethodType newType, boolean strict) {
1342
        // No actual conversions, just a new view of the same method.
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        // Note that this operation must not produce a DirectMethodHandle,
        // because retyped DMHs, like any transformed MHs,
        // cannot be cracked into MethodHandleInfo.
        assert viewAsTypeChecks(newType, strict);
        BoundMethodHandle mh = rebind();
        assert(!((MethodHandle)mh instanceof DirectMethodHandle));
        return mh.copyWith(newType, mh.form);
    }

    /*non-public*/
    boolean viewAsTypeChecks(MethodType newType, boolean strict) {
        if (strict) {
            assert(type().isViewableAs(newType, true))
                : Arrays.asList(this, newType);
        } else {
            assert(type().basicType().isViewableAs(newType.basicType(), true))
                : Arrays.asList(this, newType);
        }
        return true;
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
    }

    // Decoding

    /*non-public*/
    LambdaForm internalForm() {
        return form;
    }

    /*non-public*/
    MemberName internalMemberName() {
        return null;  // DMH returns DMH.member
    }

1376 1377 1378 1379 1380
    /*non-public*/
    Class<?> internalCallerClass() {
        return null;  // caller-bound MH for @CallerSensitive method returns caller
    }

1381 1382 1383 1384 1385 1386
    /*non-public*/
    MethodHandleImpl.Intrinsic intrinsicName() {
        // no special intrinsic meaning to most MHs
        return MethodHandleImpl.Intrinsic.NONE;
    }

R
rfield 已提交
1387
    /*non-public*/
1388
    MethodHandle withInternalMemberName(MemberName member, boolean isInvokeSpecial) {
1389
        if (member != null) {
1390
            return MethodHandleImpl.makeWrappedMember(this, member, isInvokeSpecial);
1391 1392 1393 1394 1395 1396 1397 1398 1399
        } else if (internalMemberName() == null) {
            // The required internaMemberName is null, and this MH (like most) doesn't have one.
            return this;
        } else {
            // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH.
            MethodHandle result = rebind();
            assert (result.internalMemberName() == null);
            return result;
        }
R
rfield 已提交
1400 1401
    }

1402 1403 1404 1405 1406
    /*non-public*/
    boolean isInvokeSpecial() {
        return false;  // DMH.Special returns true
    }

1407 1408
    /*non-public*/
    Object internalValues() {
1409 1410 1411 1412 1413
        return null;
    }

    /*non-public*/
    Object internalProperties() {
1414
        // Override to something to follow this.form, like "\n& FOO=bar"
1415 1416 1417 1418 1419 1420 1421
        return "";
    }

    //// Method handle implementation methods.
    //// Sub-classes can override these default implementations.
    //// All these methods assume arguments are already validated.

1422 1423 1424
    /*non-public*/
    abstract MethodHandle copyWith(MethodType mt, LambdaForm lf);

1425 1426 1427
    /** Require this method handle to be a BMH, or else replace it with a "wrapper" BMH.
     *  Many transforms are implemented only for BMHs.
     *  @return a behaviorally equivalent BMH
1428
     */
1429
    abstract BoundMethodHandle rebind();
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

    /**
     * Replace the old lambda form of this method handle with a new one.
     * The new one must be functionally equivalent to the old one.
     * Threads may continue running the old form indefinitely,
     * but it is likely that the new one will be preferred for new executions.
     * Use with discretion.
     */
    /*non-public*/
    void updateForm(LambdaForm newForm) {
        if (form == newForm)  return;
1441
        assert(this instanceof DirectMethodHandle && this.internalMemberName().isStatic());
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
        // ISSUE: Should we have a memory fence here?
        UNSAFE.putObject(this, FORM_OFFSET, newForm);
        this.form.prepare();  // as in MethodHandle.<init>
    }

    private static final long FORM_OFFSET;
    static {
        try {
            FORM_OFFSET = UNSAFE.objectFieldOffset(MethodHandle.class.getDeclaredField("form"));
        } catch (ReflectiveOperationException ex) {
1452
            throw newInternalError(ex);
1453
        }
1454
    }
1455
}