提交 ddd94335 编写于 作者: T thartmann

8078497: C2's superword optimization causes unaligned memory accesses

Summary: Prevent vectorization of memory operations with different invariant offsets if unaligned memory accesses are not allowed.
Reviewed-by: kvn
上级 b50de4a5
...@@ -232,6 +232,13 @@ void SuperWord::find_adjacent_refs() { ...@@ -232,6 +232,13 @@ void SuperWord::find_adjacent_refs() {
// if unaligned memory access is not allowed because number of // if unaligned memory access is not allowed because number of
// iterations in pre-loop will be not enough to align it. // iterations in pre-loop will be not enough to align it.
create_pack = false; create_pack = false;
} else {
SWPointer p2(best_align_to_mem_ref, this);
if (align_to_ref_p.invar() != p2.invar()) {
// Do not vectorize memory accesses with different invariants
// if unaligned memory accesses are not allowed.
create_pack = false;
}
} }
} }
} else { } else {
...@@ -452,24 +459,50 @@ bool SuperWord::ref_is_alignable(SWPointer& p) { ...@@ -452,24 +459,50 @@ bool SuperWord::ref_is_alignable(SWPointer& p) {
if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) { if (ABS(span) == mem_size && (ABS(offset) % mem_size) == 0) {
return true; return true;
} }
// If initial offset from start of object is computable, // If the initial offset from start of the object is computable,
// compute alignment within the vector. // check if the pre-loop can align the final offset accordingly.
//
// In other words: Can we find an i such that the offset
// after i pre-loop iterations is aligned to vw?
// (init_offset + pre_loop) % vw == 0 (1)
// where
// pre_loop = i * span
// is the number of bytes added to the offset by i pre-loop iterations.
//
// For this to hold we need pre_loop to increase init_offset by
// pre_loop = vw - (init_offset % vw)
//
// This is only possible if pre_loop is divisible by span because each
// pre-loop iteration increases the initial offset by 'span' bytes:
// (vw - (init_offset % vw)) % span == 0
//
int vw = vector_width_in_bytes(p.mem()); int vw = vector_width_in_bytes(p.mem());
assert(vw > 1, "sanity"); assert(vw > 1, "sanity");
if (vw % span == 0) { Node* init_nd = pre_end->init_trip();
Node* init_nd = pre_end->init_trip(); if (init_nd->is_Con() && p.invar() == NULL) {
if (init_nd->is_Con() && p.invar() == NULL) { int init = init_nd->bottom_type()->is_int()->get_con();
int init = init_nd->bottom_type()->is_int()->get_con(); int init_offset = init * p.scale_in_bytes() + offset;
assert(init_offset >= 0, "positive offset from object start");
int init_offset = init * p.scale_in_bytes() + offset; if (vw % span == 0) {
assert(init_offset >= 0, "positive offset from object start"); // If vm is a multiple of span, we use formula (1).
if (span > 0) { if (span > 0) {
return (vw - (init_offset % vw)) % span == 0; return (vw - (init_offset % vw)) % span == 0;
} else { } else {
assert(span < 0, "nonzero stride * scale"); assert(span < 0, "nonzero stride * scale");
return (init_offset % vw) % -span == 0; return (init_offset % vw) % -span == 0;
} }
} else if (span % vw == 0) {
// If span is a multiple of vw, we can simplify formula (1) to:
// (init_offset + i * span) % vw == 0
// =>
// (init_offset % vw) + ((i * span) % vw) == 0
// =>
// init_offset % vw == 0
//
// Because we add a multiple of vw to the initial offset, the final
// offset is a multiple of vw if and only if init_offset is a multiple.
//
return (init_offset % vw) == 0;
} }
} }
return false; return false;
...@@ -481,17 +514,23 @@ int SuperWord::get_iv_adjustment(MemNode* mem_ref) { ...@@ -481,17 +514,23 @@ int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
SWPointer align_to_ref_p(mem_ref, this); SWPointer align_to_ref_p(mem_ref, this);
int offset = align_to_ref_p.offset_in_bytes(); int offset = align_to_ref_p.offset_in_bytes();
int scale = align_to_ref_p.scale_in_bytes(); int scale = align_to_ref_p.scale_in_bytes();
int elt_size = align_to_ref_p.memory_size();
int vw = vector_width_in_bytes(mem_ref); int vw = vector_width_in_bytes(mem_ref);
assert(vw > 1, "sanity"); assert(vw > 1, "sanity");
int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1; int iv_adjustment;
// At least one iteration is executed in pre-loop by default. As result if (scale != 0) {
// several iterations are needed to align memory operations in main-loop even int stride_sign = (scale * iv_stride()) > 0 ? 1 : -1;
// if offset is 0. // At least one iteration is executed in pre-loop by default. As result
int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw)); // several iterations are needed to align memory operations in main-loop even
int elt_size = align_to_ref_p.memory_size(); // if offset is 0.
assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0), int iv_adjustment_in_bytes = (stride_sign * vw - (offset % vw));
err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size)); assert(((ABS(iv_adjustment_in_bytes) % elt_size) == 0),
int iv_adjustment = iv_adjustment_in_bytes/elt_size; err_msg_res("(%d) should be divisible by (%d)", iv_adjustment_in_bytes, elt_size));
iv_adjustment = iv_adjustment_in_bytes/elt_size;
} else {
// This memory op is not dependent on iv (scale == 0)
iv_adjustment = 0;
}
#ifndef PRODUCT #ifndef PRODUCT
if (TraceSuperWord) if (TraceSuperWord)
......
...@@ -41,7 +41,7 @@ ...@@ -41,7 +41,7 @@
// Exploiting SuperWord Level Parallelism with // Exploiting SuperWord Level Parallelism with
// Multimedia Instruction Sets // Multimedia Instruction Sets
// by // by
// Samuel Larsen and Saman Amarasighe // Samuel Larsen and Saman Amarasinghe
// MIT Laboratory for Computer Science // MIT Laboratory for Computer Science
// date // date
// May 2000 // May 2000
...@@ -432,7 +432,7 @@ class SWPointer VALUE_OBJ_CLASS_SPEC { ...@@ -432,7 +432,7 @@ class SWPointer VALUE_OBJ_CLASS_SPEC {
Node* _base; // NULL if unsafe nonheap reference Node* _base; // NULL if unsafe nonheap reference
Node* _adr; // address pointer Node* _adr; // address pointer
jint _scale; // multipler for iv (in bytes), 0 if no loop iv jint _scale; // multiplier for iv (in bytes), 0 if no loop iv
jint _offset; // constant offset (in bytes) jint _offset; // constant offset (in bytes)
Node* _invar; // invariant offset (in bytes), NULL if none Node* _invar; // invariant offset (in bytes), NULL if none
bool _negate_invar; // if true then use: (0 - _invar) bool _negate_invar; // if true then use: (0 - _invar)
......
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
import com.oracle.java.testlibrary.*;
import sun.misc.Unsafe;
/**
* @test
* @bug 8078497
* @summary Tests correct alignment of vectors with loop invariant offset.
* @library /testlibrary
* @run main TestVectorizationWithInvariant
*/
public class TestVectorizationWithInvariant {
private static Unsafe unsafe;
private static final long BYTE_ARRAY_OFFSET;
private static final long CHAR_ARRAY_OFFSET;
static {
unsafe = Utils.getUnsafe();
BYTE_ARRAY_OFFSET = unsafe.arrayBaseOffset(byte[].class);
CHAR_ARRAY_OFFSET = unsafe.arrayBaseOffset(char[].class);
}
public static void main(String[] args) throws Exception {
byte[] byte_array1 = new byte[1000];
byte[] byte_array2 = new byte[1000];
char[] char_array = new char[1000];
for (int i = 0; i < 20_000; ++i) {
copyByteToChar(byte_array1, byte_array2, char_array, 1);
copyCharToByte(char_array, byte_array1, 1);
copyCharToByteAligned(char_array, byte_array1);
copyCharToByteUnaligned(char_array, byte_array1);
}
}
/*
* Copy multiple consecutive chars from a byte array to a given offset in a char array
* to trigger C2's superword optimization. The offset in the byte array is independent
* of the loop induction variable and can be set to an arbitrary value. It may then not
* be possible to both align the LoadUS and the StoreC operations. Therefore, vectorization
* should only be done in this case if unaligned memory accesses are allowed.
*/
public static void copyByteToChar(byte[] src1, byte[] src2, char[] dst, int off) {
off = (int) BYTE_ARRAY_OFFSET + (off << 1);
byte[] src = src1;
for (int i = (int) CHAR_ARRAY_OFFSET; i < 100; i = i + 8) {
// Copy 8 chars from src to dst
unsafe.putChar(dst, i + 0, unsafe.getChar(src, off + 0));
unsafe.putChar(dst, i + 2, unsafe.getChar(src, off + 2));
unsafe.putChar(dst, i + 4, unsafe.getChar(src, off + 4));
unsafe.putChar(dst, i + 6, unsafe.getChar(src, off + 6));
unsafe.putChar(dst, i + 8, unsafe.getChar(src, off + 8));
unsafe.putChar(dst, i + 10, unsafe.getChar(src, off + 10));
unsafe.putChar(dst, i + 12, unsafe.getChar(src, off + 12));
unsafe.putChar(dst, i + 14, unsafe.getChar(src, off + 14));
// Prevent loop invariant code motion of char read.
src = (src == src1) ? src2 : src1;
}
}
/*
* Copy multiple consecutive chars from a char array to a given offset in a byte array
* to trigger C2's superword optimization. Checks for similar problems as 'copyByteToChar'.
*/
public static void copyCharToByte(char[] src, byte[] dst, int off) {
off = (int) BYTE_ARRAY_OFFSET + (off << 1);
for (int i = 0; i < 100; i = i + 8) {
// Copy 8 chars from src to dst
unsafe.putChar(dst, off + 0, src[i + 0]);
unsafe.putChar(dst, off + 2, src[i + 1]);
unsafe.putChar(dst, off + 4, src[i + 2]);
unsafe.putChar(dst, off + 6, src[i + 3]);
unsafe.putChar(dst, off + 8, src[i + 4]);
unsafe.putChar(dst, off + 10, src[i + 5]);
unsafe.putChar(dst, off + 12, src[i + 6]);
unsafe.putChar(dst, off + 14, src[i + 7]);
}
}
/*
* Variant of copyCharToByte with a constant destination array offset.
* The loop should always be vectorized because both the LoadUS and StoreC
* operations can be aligned.
*/
public static void copyCharToByteAligned(char[] src, byte[] dst) {
final int off = (int) BYTE_ARRAY_OFFSET;
for (int i = 8; i < 100; i = i + 8) {
// Copy 8 chars from src to dst
unsafe.putChar(dst, off + 0, src[i + 0]);
unsafe.putChar(dst, off + 2, src[i + 1]);
unsafe.putChar(dst, off + 4, src[i + 2]);
unsafe.putChar(dst, off + 6, src[i + 3]);
unsafe.putChar(dst, off + 8, src[i + 4]);
unsafe.putChar(dst, off + 10, src[i + 5]);
unsafe.putChar(dst, off + 12, src[i + 6]);
unsafe.putChar(dst, off + 14, src[i + 7]);
}
}
/*
* Variant of copyCharToByte with a constant destination array offset. The
* loop should only be vectorized if unaligned memory operations are allowed
* because not both the LoadUS and the StoreC can be aligned.
*/
public static void copyCharToByteUnaligned(char[] src, byte[] dst) {
final int off = (int) BYTE_ARRAY_OFFSET + 2;
for (int i = 0; i < 100; i = i + 8) {
// Copy 8 chars from src to dst
unsafe.putChar(dst, off + 0, src[i + 0]);
unsafe.putChar(dst, off + 2, src[i + 1]);
unsafe.putChar(dst, off + 4, src[i + 2]);
unsafe.putChar(dst, off + 6, src[i + 3]);
unsafe.putChar(dst, off + 8, src[i + 4]);
unsafe.putChar(dst, off + 10, src[i + 5]);
unsafe.putChar(dst, off + 12, src[i + 6]);
unsafe.putChar(dst, off + 14, src[i + 7]);
}
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册