提交 98f667c6 编写于 作者: J jmasa

7131629: Generalize the CMS free list code

Summary: Make the FreeChunk, FreeList, TreeList, and BinaryTreeDictionary classes usable outside CMS.
Reviewed-by: brutisso, johnc, jwilhelm
Contributed-by: coleen.phillimore@oracle.com
上级 0e527a20
......@@ -38,7 +38,7 @@
CMSPermGen::CMSPermGen(ReservedSpace rs, size_t initial_byte_size,
CardTableRS* ct,
FreeBlockDictionary::DictionaryChoice dictionaryChoice) {
FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) {
CMSPermGenGen* g =
new CMSPermGenGen(rs, initial_byte_size, -1, ct);
if (g == NULL) {
......
......@@ -45,7 +45,7 @@ class CMSPermGen: public PermGen {
public:
CMSPermGen(ReservedSpace rs, size_t initial_byte_size,
CardTableRS* ct, FreeBlockDictionary::DictionaryChoice);
CardTableRS* ct, FreeBlockDictionary<FreeChunk>::DictionaryChoice);
HeapWord* mem_allocate(size_t size);
......@@ -65,7 +65,7 @@ public:
// regarding not using adaptive free lists for a perm gen.
ConcurrentMarkSweepGeneration(rs, initial_byte_size, // MinPermHeapExapnsion
level, ct, false /* use adaptive freelists */,
(FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice)
(FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice)
{}
void initialize_performance_counters();
......
......@@ -69,7 +69,7 @@ void CompactibleFreeListSpace::set_cms_values() {
// Constructor
CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
MemRegion mr, bool use_adaptive_freelists,
FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
_dictionaryChoice(dictionaryChoice),
_adaptive_freelists(use_adaptive_freelists),
_bt(bs, mr),
......@@ -87,6 +87,8 @@ CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
CMSConcMarkMultiple),
_collector(NULL)
{
assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize,
"FreeChunk is larger than expected");
_bt.set_space(this);
initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
// We have all of "mr", all of which we place in the dictionary
......@@ -96,13 +98,13 @@ CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
// implementation, namely, the simple binary tree (splaying
// temporarily disabled).
switch (dictionaryChoice) {
case FreeBlockDictionary::dictionarySplayTree:
case FreeBlockDictionary::dictionarySkipList:
case FreeBlockDictionary<FreeChunk>::dictionarySplayTree:
case FreeBlockDictionary<FreeChunk>::dictionarySkipList:
default:
warning("dictionaryChoice: selected option not understood; using"
" default BinaryTreeDictionary implementation instead.");
case FreeBlockDictionary::dictionaryBinaryTree:
_dictionary = new BinaryTreeDictionary(mr);
case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree:
_dictionary = new BinaryTreeDictionary<FreeChunk>(mr, use_adaptive_freelists);
break;
}
assert(_dictionary != NULL, "CMS dictionary initialization");
......@@ -448,7 +450,7 @@ const {
reportIndexedFreeListStatistics();
gclog_or_tty->print_cr("Layout of Indexed Freelists");
gclog_or_tty->print_cr("---------------------------");
FreeList::print_labels_on(st, "size");
FreeList<FreeChunk>::print_labels_on(st, "size");
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
_indexedFreeList[i].print_on(gclog_or_tty);
for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
......@@ -1331,7 +1333,7 @@ FreeChunk* CompactibleFreeListSpace::getChunkFromGreater(size_t numWords) {
size_t currSize = numWords + MinChunkSize;
assert(currSize % MinObjAlignment == 0, "currSize should be aligned");
for (i = currSize; i < IndexSetSize; i += IndexSetStride) {
FreeList* fl = &_indexedFreeList[i];
FreeList<FreeChunk>* fl = &_indexedFreeList[i];
if (fl->head()) {
ret = getFromListGreater(fl, numWords);
assert(ret == NULL || ret->isFree(), "Should be returning a free chunk");
......@@ -1714,7 +1716,7 @@ CompactibleFreeListSpace::returnChunkToDictionary(FreeChunk* chunk) {
_dictionary->returnChunk(chunk);
#ifndef PRODUCT
if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
TreeChunk::as_TreeChunk(chunk)->list()->verify_stats();
TreeChunk<FreeChunk>::as_TreeChunk(chunk)->list()->verify_stats();
}
#endif // PRODUCT
}
......@@ -1862,11 +1864,11 @@ FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) {
the excess is >= MIN_CHUNK. */
size_t start = align_object_size(numWords + MinChunkSize);
if (start < IndexSetSize) {
FreeList* it = _indexedFreeList;
FreeList<FreeChunk>* it = _indexedFreeList;
size_t hint = _indexedFreeList[start].hint();
while (hint < IndexSetSize) {
assert(hint % MinObjAlignment == 0, "hint should be aligned");
FreeList *fl = &_indexedFreeList[hint];
FreeList<FreeChunk> *fl = &_indexedFreeList[hint];
if (fl->surplus() > 0 && fl->head() != NULL) {
// Found a list with surplus, reset original hint
// and split out a free chunk which is returned.
......@@ -1885,7 +1887,7 @@ FreeChunk* CompactibleFreeListSpace::bestFitSmall(size_t numWords) {
}
/* Requires fl->size >= numWords + MinChunkSize */
FreeChunk* CompactibleFreeListSpace::getFromListGreater(FreeList* fl,
FreeChunk* CompactibleFreeListSpace::getFromListGreater(FreeList<FreeChunk>* fl,
size_t numWords) {
FreeChunk *curr = fl->head();
size_t oldNumWords = curr->size();
......@@ -2167,7 +2169,7 @@ void CompactibleFreeListSpace::beginSweepFLCensus(
assert_locked();
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
FreeList* fl = &_indexedFreeList[i];
FreeList<FreeChunk>* fl = &_indexedFreeList[i];
if (PrintFLSStatistics > 1) {
gclog_or_tty->print("size[%d] : ", i);
}
......@@ -2186,7 +2188,7 @@ void CompactibleFreeListSpace::setFLSurplus() {
assert_locked();
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
FreeList *fl = &_indexedFreeList[i];
FreeList<FreeChunk> *fl = &_indexedFreeList[i];
fl->set_surplus(fl->count() -
(ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent));
}
......@@ -2197,7 +2199,7 @@ void CompactibleFreeListSpace::setFLHints() {
size_t i;
size_t h = IndexSetSize;
for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
FreeList *fl = &_indexedFreeList[i];
FreeList<FreeChunk> *fl = &_indexedFreeList[i];
fl->set_hint(h);
if (fl->surplus() > 0) {
h = i;
......@@ -2209,7 +2211,7 @@ void CompactibleFreeListSpace::clearFLCensus() {
assert_locked();
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
FreeList *fl = &_indexedFreeList[i];
FreeList<FreeChunk> *fl = &_indexedFreeList[i];
fl->set_prevSweep(fl->count());
fl->set_coalBirths(0);
fl->set_coalDeaths(0);
......@@ -2236,7 +2238,7 @@ void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
if (size < SmallForDictionary) {
FreeList *fl = &_indexedFreeList[size];
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
return (fl->coalDesired() < 0) ||
((int)fl->count() > fl->coalDesired());
} else {
......@@ -2246,14 +2248,14 @@ bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
FreeList *fl = &_indexedFreeList[size];
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
fl->increment_coalBirths();
fl->increment_surplus();
}
void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
FreeList *fl = &_indexedFreeList[size];
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
fl->increment_coalDeaths();
fl->decrement_surplus();
}
......@@ -2280,14 +2282,14 @@ void CompactibleFreeListSpace::coalDeath(size_t size) {
void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
FreeList *fl = &_indexedFreeList[size];
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
fl->increment_splitBirths();
fl->increment_surplus();
}
void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
FreeList *fl = &_indexedFreeList[size];
FreeList<FreeChunk> *fl = &_indexedFreeList[size];
fl->increment_splitDeaths();
fl->decrement_surplus();
}
......@@ -2530,7 +2532,7 @@ void CompactibleFreeListSpace::check_free_list_consistency() const {
assert(_dictionary->minSize() <= IndexSetSize,
"Some sizes can't be allocated without recourse to"
" linear allocation buffers");
assert(MIN_TREE_CHUNK_SIZE*HeapWordSize == sizeof(TreeChunk),
assert(BinaryTreeDictionary<FreeChunk>::min_tree_chunk_size*HeapWordSize == sizeof(TreeChunk<FreeChunk>),
"else MIN_TREE_CHUNK_SIZE is wrong");
assert((IndexSetStride == 2 && IndexSetStart == 4) || // 32-bit
(IndexSetStride == 1 && IndexSetStart == 3), "just checking"); // 64-bit
......@@ -2543,15 +2545,15 @@ void CompactibleFreeListSpace::check_free_list_consistency() const {
void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
assert_lock_strong(&_freelistLock);
FreeList total;
FreeList<FreeChunk> total;
gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
FreeList::print_labels_on(gclog_or_tty, "size");
FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
size_t totalFree = 0;
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
const FreeList *fl = &_indexedFreeList[i];
const FreeList<FreeChunk> *fl = &_indexedFreeList[i];
totalFree += fl->count() * fl->size();
if (i % (40*IndexSetStride) == 0) {
FreeList::print_labels_on(gclog_or_tty, "size");
FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
}
fl->print_on(gclog_or_tty);
total.set_bfrSurp( total.bfrSurp() + fl->bfrSurp() );
......@@ -2634,7 +2636,7 @@ HeapWord* CFLS_LAB::alloc(size_t word_sz) {
res = _cfls->getChunkFromDictionaryExact(word_sz);
if (res == NULL) return NULL;
} else {
FreeList* fl = &_indexedFreeList[word_sz];
FreeList<FreeChunk>* fl = &_indexedFreeList[word_sz];
if (fl->count() == 0) {
// Attempt to refill this local free list.
get_from_global_pool(word_sz, fl);
......@@ -2654,7 +2656,7 @@ HeapWord* CFLS_LAB::alloc(size_t word_sz) {
// Get a chunk of blocks of the right size and update related
// book-keeping stats
void CFLS_LAB::get_from_global_pool(size_t word_sz, FreeList* fl) {
void CFLS_LAB::get_from_global_pool(size_t word_sz, FreeList<FreeChunk>* fl) {
// Get the #blocks we want to claim
size_t n_blks = (size_t)_blocks_to_claim[word_sz].average();
assert(n_blks > 0, "Error");
......@@ -2736,7 +2738,7 @@ void CFLS_LAB::retire(int tid) {
if (num_retire > 0) {
_cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
// Reset this list.
_indexedFreeList[i] = FreeList();
_indexedFreeList[i] = FreeList<FreeChunk>();
_indexedFreeList[i].set_size(i);
}
}
......@@ -2750,7 +2752,7 @@ void CFLS_LAB::retire(int tid) {
}
}
void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl) {
void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList<FreeChunk>* fl) {
assert(fl->count() == 0, "Precondition.");
assert(word_sz < CompactibleFreeListSpace::IndexSetSize,
"Precondition");
......@@ -2766,12 +2768,12 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
(cur_sz < CompactibleFreeListSpace::IndexSetSize) &&
(CMSSplitIndexedFreeListBlocks || k <= 1);
k++, cur_sz = k * word_sz) {
FreeList fl_for_cur_sz; // Empty.
FreeList<FreeChunk> fl_for_cur_sz; // Empty.
fl_for_cur_sz.set_size(cur_sz);
{
MutexLockerEx x(_indexedFreeListParLocks[cur_sz],
Mutex::_no_safepoint_check_flag);
FreeList* gfl = &_indexedFreeList[cur_sz];
FreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz];
if (gfl->count() != 0) {
// nn is the number of chunks of size cur_sz that
// we'd need to split k-ways each, in order to create
......@@ -2848,7 +2850,7 @@ void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n
while (n > 0) {
fc = dictionary()->getChunk(MAX2(n * word_sz,
_dictionary->minSize()),
FreeBlockDictionary::atLeast);
FreeBlockDictionary<FreeChunk>::atLeast);
if (fc != NULL) {
_bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk
dictionary()->dictCensusUpdate(fc->size(),
......
......@@ -25,10 +25,10 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
#include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
#include "gc_implementation/concurrentMarkSweep/freeList.hpp"
#include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
#include "memory/binaryTreeDictionary.hpp"
#include "memory/blockOffsetTable.inline.hpp"
#include "memory/freeList.hpp"
#include "memory/space.hpp"
// Classes in support of keeping track of promotions into a non-Contiguous
......@@ -129,10 +129,10 @@ class CompactibleFreeListSpace: public CompactibleSpace {
// Linear allocation blocks
LinearAllocBlock _smallLinearAllocBlock;
FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
FreeBlockDictionary* _dictionary; // ptr to dictionary for large size blocks
FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
FreeBlockDictionary<FreeChunk>* _dictionary; // ptr to dictionary for large size blocks
FreeList _indexedFreeList[IndexSetSize];
FreeList<FreeChunk> _indexedFreeList[IndexSetSize];
// indexed array for small size blocks
// allocation stategy
bool _fitStrategy; // Use best fit strategy.
......@@ -169,7 +169,7 @@ class CompactibleFreeListSpace: public CompactibleSpace {
// If the count of "fl" is negative, it's absolute value indicates a
// number of free chunks that had been previously "borrowed" from global
// list of size "word_sz", and must now be decremented.
void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList<FreeChunk>* fl);
// Allocation helper functions
// Allocate using a strategy that takes from the indexed free lists
......@@ -215,7 +215,7 @@ class CompactibleFreeListSpace: public CompactibleSpace {
// and return it. The split off remainder is returned to
// the free lists. The old name for getFromListGreater
// was lookInListGreater.
FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
FreeChunk* getFromListGreater(FreeList<FreeChunk>* fl, size_t numWords);
// Get a chunk in the indexed free list or dictionary,
// by considering a larger chunk and splitting it.
FreeChunk* getChunkFromGreater(size_t numWords);
......@@ -286,10 +286,10 @@ class CompactibleFreeListSpace: public CompactibleSpace {
// Constructor...
CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
bool use_adaptive_freelists,
FreeBlockDictionary::DictionaryChoice);
FreeBlockDictionary<FreeChunk>::DictionaryChoice);
// accessors
bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
FreeBlockDictionary* dictionary() const { return _dictionary; }
FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
......@@ -622,7 +622,7 @@ class CFLS_LAB : public CHeapObj {
CompactibleFreeListSpace* _cfls;
// Our local free lists.
FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
FreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
// Initialized from a command-line arg.
......@@ -635,7 +635,7 @@ class CFLS_LAB : public CHeapObj {
size_t _num_blocks [CompactibleFreeListSpace::IndexSetSize];
// Internal work method
void get_from_global_pool(size_t word_sz, FreeList* fl);
void get_from_global_pool(size_t word_sz, FreeList<FreeChunk>* fl);
public:
CFLS_LAB(CompactibleFreeListSpace* cfls);
......
......@@ -188,7 +188,7 @@ class CMSParGCThreadState: public CHeapObj {
ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
ReservedSpace rs, size_t initial_byte_size, int level,
CardTableRS* ct, bool use_adaptive_freelists,
FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
CardGeneration(rs, initial_byte_size, level, ct),
_dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
_debug_collection_type(Concurrent_collection_type)
......
......@@ -25,10 +25,10 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#include "gc_implementation/shared/gSpaceCounters.hpp"
#include "gc_implementation/shared/gcStats.hpp"
#include "gc_implementation/shared/generationCounters.hpp"
#include "memory/freeBlockDictionary.hpp"
#include "memory/generation.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/virtualspace.hpp"
......@@ -1106,7 +1106,7 @@ class ConcurrentMarkSweepGeneration: public CardGeneration {
ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
int level, CardTableRS* ct,
bool use_adaptive_freelists,
FreeBlockDictionary::DictionaryChoice);
FreeBlockDictionary<FreeChunk>::DictionaryChoice);
// Accessors
CMSCollector* collector() const { return _collector; }
......@@ -1328,7 +1328,7 @@ class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
int level, CardTableRS* ct,
bool use_adaptive_freelists,
FreeBlockDictionary::DictionaryChoice
FreeBlockDictionary<FreeChunk>::DictionaryChoice
dictionaryChoice) :
ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
use_adaptive_freelists, dictionaryChoice) {}
......
......@@ -23,7 +23,8 @@
*/
#include "precompiled.hpp"
#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
#include "memory/freeBlockDictionary.hpp"
#include "utilities/copy.hpp"
#ifndef PRODUCT
......
......@@ -44,11 +44,11 @@
nonstatic_field(FreeChunk, _next, FreeChunk*) \
nonstatic_field(FreeChunk, _prev, FreeChunk*) \
nonstatic_field(LinearAllocBlock, _word_size, size_t) \
nonstatic_field(FreeList, _size, size_t) \
nonstatic_field(FreeList, _count, ssize_t) \
nonstatic_field(BinaryTreeDictionary, _totalSize, size_t) \
nonstatic_field(CompactibleFreeListSpace, _dictionary, FreeBlockDictionary*) \
nonstatic_field(CompactibleFreeListSpace, _indexedFreeList[0], FreeList) \
nonstatic_field(FreeList<FreeChunk>, _size, size_t) \
nonstatic_field(FreeList<FreeChunk>, _count, ssize_t) \
nonstatic_field(BinaryTreeDictionary<FreeChunk>,_totalSize, size_t) \
nonstatic_field(CompactibleFreeListSpace, _dictionary, FreeBlockDictionary<FreeChunk>*) \
nonstatic_field(CompactibleFreeListSpace, _indexedFreeList[0], FreeList<FreeChunk>) \
nonstatic_field(CompactibleFreeListSpace, _smallLinearAllocBlock, LinearAllocBlock)
......@@ -70,13 +70,13 @@
declare_toplevel_type(CompactibleFreeListSpace*) \
declare_toplevel_type(CMSCollector*) \
declare_toplevel_type(FreeChunk*) \
declare_toplevel_type(BinaryTreeDictionary*) \
declare_toplevel_type(FreeBlockDictionary*) \
declare_toplevel_type(FreeList*) \
declare_toplevel_type(FreeList) \
declare_toplevel_type(BinaryTreeDictionary<FreeChunk>*) \
declare_toplevel_type(FreeBlockDictionary<FreeChunk>*) \
declare_toplevel_type(FreeList<FreeChunk>*) \
declare_toplevel_type(FreeList<FreeChunk>) \
declare_toplevel_type(LinearAllocBlock) \
declare_toplevel_type(FreeBlockDictionary) \
declare_type(BinaryTreeDictionary, FreeBlockDictionary)
declare_toplevel_type(FreeBlockDictionary<FreeChunk>) \
declare_type(BinaryTreeDictionary<FreeChunk>, FreeBlockDictionary<FreeChunk>)
#define VM_INT_CONSTANTS_CMS(declare_constant) \
declare_constant(Generation::ConcurrentMarkSweep) \
......
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
......@@ -22,51 +22,65 @@
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_BINARYTREEDICTIONARY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_BINARYTREEDICTIONARY_HPP
#ifndef SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
#define SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#include "gc_implementation/concurrentMarkSweep/freeList.hpp"
#include "memory/freeBlockDictionary.hpp"
#include "memory/freeList.hpp"
/*
* A binary tree based search structure for free blocks.
* This is currently used in the Concurrent Mark&Sweep implementation.
* This is currently used in the Concurrent Mark&Sweep implementation, but
* will be used for free block management for metadata.
*/
// A TreeList is a FreeList which can be used to maintain a
// binary tree of free lists.
class TreeChunk;
class BinaryTreeDictionary;
class AscendTreeCensusClosure;
class DescendTreeCensusClosure;
class DescendTreeSearchClosure;
template <class Chunk> class TreeChunk;
template <class Chunk> class BinaryTreeDictionary;
template <class Chunk> class AscendTreeCensusClosure;
template <class Chunk> class DescendTreeCensusClosure;
template <class Chunk> class DescendTreeSearchClosure;
class TreeList: public FreeList {
friend class TreeChunk;
friend class BinaryTreeDictionary;
friend class AscendTreeCensusClosure;
friend class DescendTreeCensusClosure;
friend class DescendTreeSearchClosure;
template <class Chunk>
class TreeList: public FreeList<Chunk> {
friend class TreeChunk<Chunk>;
friend class BinaryTreeDictionary<Chunk>;
friend class AscendTreeCensusClosure<Chunk>;
friend class DescendTreeCensusClosure<Chunk>;
friend class DescendTreeSearchClosure<Chunk>;
TreeList<Chunk>* _parent;
TreeList<Chunk>* _left;
TreeList<Chunk>* _right;
protected:
TreeList* parent() const { return _parent; }
TreeList* left() const { return _left; }
TreeList* right() const { return _right; }
TreeList<Chunk>* parent() const { return _parent; }
TreeList<Chunk>* left() const { return _left; }
TreeList<Chunk>* right() const { return _right; }
// Wrapper on call to base class, to get the template to compile.
Chunk* head() const { return FreeList<Chunk>::head(); }
Chunk* tail() const { return FreeList<Chunk>::tail(); }
void set_head(Chunk* head) { FreeList<Chunk>::set_head(head); }
void set_tail(Chunk* tail) { FreeList<Chunk>::set_tail(tail); }
size_t size() const { return FreeList<Chunk>::size(); }
// Accessors for links in tree.
void setLeft(TreeList* tl) {
void setLeft(TreeList<Chunk>* tl) {
_left = tl;
if (tl != NULL)
tl->setParent(this);
}
void setRight(TreeList* tl) {
void setRight(TreeList<Chunk>* tl) {
_right = tl;
if (tl != NULL)
tl->setParent(this);
}
void setParent(TreeList* tl) { _parent = tl; }
void setParent(TreeList<Chunk>* tl) { _parent = tl; }
void clearLeft() { _left = NULL; }
void clearRight() { _right = NULL; }
......@@ -75,20 +89,20 @@ class TreeList: public FreeList {
// For constructing a TreeList from a Tree chunk or
// address and size.
static TreeList* as_TreeList(TreeChunk* tc);
static TreeList* as_TreeList(HeapWord* addr, size_t size);
static TreeList<Chunk>* as_TreeList(TreeChunk<Chunk>* tc);
static TreeList<Chunk>* as_TreeList(HeapWord* addr, size_t size);
// Returns the head of the free list as a pointer to a TreeChunk.
TreeChunk* head_as_TreeChunk();
TreeChunk<Chunk>* head_as_TreeChunk();
// Returns the first available chunk in the free list as a pointer
// to a TreeChunk.
TreeChunk* first_available();
TreeChunk<Chunk>* first_available();
// Returns the block with the largest heap address amongst
// those in the list for this size; potentially slow and expensive,
// use with caution!
TreeChunk* largest_address();
TreeChunk<Chunk>* largest_address();
// removeChunkReplaceIfNeeded() removes the given "tc" from the TreeList.
// If "tc" is the first chunk in the list, it is also the
......@@ -96,13 +110,13 @@ class TreeList: public FreeList {
// returns the possibly replaced TreeList* for the node in
// the tree. It also updates the parent of the original
// node to point to the new node.
TreeList* removeChunkReplaceIfNeeded(TreeChunk* tc);
TreeList<Chunk>* removeChunkReplaceIfNeeded(TreeChunk<Chunk>* tc);
// See FreeList.
void returnChunkAtHead(TreeChunk* tc);
void returnChunkAtTail(TreeChunk* tc);
void returnChunkAtHead(TreeChunk<Chunk>* tc);
void returnChunkAtTail(TreeChunk<Chunk>* tc);
};
// A TreeChunk is a subclass of a FreeChunk that additionally
// A TreeChunk is a subclass of a Chunk that additionally
// maintains a pointer to the free list on which it is currently
// linked.
// A TreeChunk is also used as a node in the binary tree. This
......@@ -115,92 +129,111 @@ class TreeList: public FreeList {
// on the free list for a node in the tree and is only removed if
// it is the last chunk on the free list.
class TreeChunk : public FreeChunk {
friend class TreeList;
TreeList* _list;
TreeList _embedded_list; // if non-null, this chunk is on _list
template <class Chunk>
class TreeChunk : public Chunk {
friend class TreeList<Chunk>;
TreeList<Chunk>* _list;
TreeList<Chunk> _embedded_list; // if non-null, this chunk is on _list
protected:
TreeList* embedded_list() const { return (TreeList*) &_embedded_list; }
void set_embedded_list(TreeList* v) { _embedded_list = *v; }
TreeList<Chunk>* embedded_list() const { return (TreeList<Chunk>*) &_embedded_list; }
void set_embedded_list(TreeList<Chunk>* v) { _embedded_list = *v; }
public:
TreeList* list() { return _list; }
void set_list(TreeList* v) { _list = v; }
static TreeChunk* as_TreeChunk(FreeChunk* fc);
TreeList<Chunk>* list() { return _list; }
void set_list(TreeList<Chunk>* v) { _list = v; }
static TreeChunk<Chunk>* as_TreeChunk(Chunk* fc);
// Initialize fields in a TreeChunk that should be
// initialized when the TreeChunk is being added to
// a free list in the tree.
void initialize() { embedded_list()->initialize(); }
Chunk* next() const { return Chunk::next(); }
Chunk* prev() const { return Chunk::prev(); }
size_t size() const volatile { return Chunk::size(); }
// debugging
void verifyTreeChunkList() const;
};
const size_t MIN_TREE_CHUNK_SIZE = sizeof(TreeChunk)/HeapWordSize;
class BinaryTreeDictionary: public FreeBlockDictionary {
template <class Chunk>
class BinaryTreeDictionary: public FreeBlockDictionary<Chunk> {
friend class VMStructs;
bool _splay;
size_t _totalSize;
size_t _totalFreeBlocks;
TreeList* _root;
TreeList<Chunk>* _root;
bool _adaptive_freelists;
// private accessors
bool splay() const { return _splay; }
void set_splay(bool v) { _splay = v; }
size_t totalSize() const { return _totalSize; }
void set_totalSize(size_t v) { _totalSize = v; }
virtual void inc_totalSize(size_t v);
virtual void dec_totalSize(size_t v);
size_t totalFreeBlocks() const { return _totalFreeBlocks; }
void set_totalFreeBlocks(size_t v) { _totalFreeBlocks = v; }
TreeList* root() const { return _root; }
void set_root(TreeList* v) { _root = v; }
TreeList<Chunk>* root() const { return _root; }
void set_root(TreeList<Chunk>* v) { _root = v; }
bool adaptive_freelists() { return _adaptive_freelists; }
// This field is added and can be set to point to the
// the Mutex used to synchronize access to the
// dictionary so that assertion checking can be done.
// For example it is set to point to _parDictionaryAllocLock.
NOT_PRODUCT(Mutex* _lock;)
// Remove a chunk of size "size" or larger from the tree and
// return it. If the chunk
// is the last chunk of that size, remove the node for that size
// from the tree.
TreeChunk* getChunkFromTree(size_t size, Dither dither, bool splay);
TreeChunk<Chunk>* getChunkFromTree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay);
// Return a list of the specified size or NULL from the tree.
// The list is not removed from the tree.
TreeList* findList (size_t size) const;
TreeList<Chunk>* findList (size_t size) const;
// Remove this chunk from the tree. If the removal results
// in an empty list in the tree, remove the empty list.
TreeChunk* removeChunkFromTree(TreeChunk* tc);
TreeChunk<Chunk>* removeChunkFromTree(TreeChunk<Chunk>* tc);
// Remove the node in the trees starting at tl that has the
// minimum value and return it. Repair the tree as needed.
TreeList* removeTreeMinimum(TreeList* tl);
void semiSplayStep(TreeList* tl);
TreeList<Chunk>* removeTreeMinimum(TreeList<Chunk>* tl);
void semiSplayStep(TreeList<Chunk>* tl);
// Add this free chunk to the tree.
void insertChunkInTree(FreeChunk* freeChunk);
void insertChunkInTree(Chunk* freeChunk);
public:
static const size_t min_tree_chunk_size = sizeof(TreeChunk<Chunk>)/HeapWordSize;
void verifyTree() const;
// verify that the given chunk is in the tree.
bool verifyChunkInFreeLists(FreeChunk* tc) const;
bool verifyChunkInFreeLists(Chunk* tc) const;
private:
void verifyTreeHelper(TreeList* tl) const;
static size_t verifyPrevFreePtrs(TreeList* tl);
void verifyTreeHelper(TreeList<Chunk>* tl) const;
static size_t verifyPrevFreePtrs(TreeList<Chunk>* tl);
// Returns the total number of chunks in the list.
size_t totalListLength(TreeList* tl) const;
size_t totalListLength(TreeList<Chunk>* tl) const;
// Returns the total number of words in the chunks in the tree
// starting at "tl".
size_t totalSizeInTree(TreeList* tl) const;
size_t totalSizeInTree(TreeList<Chunk>* tl) const;
// Returns the sum of the square of the size of each block
// in the tree starting at "tl".
double sum_of_squared_block_sizes(TreeList* const tl) const;
double sum_of_squared_block_sizes(TreeList<Chunk>* const tl) const;
// Returns the total number of free blocks in the tree starting
// at "tl".
size_t totalFreeBlocksInTree(TreeList* tl) const;
size_t totalFreeBlocksInTree(TreeList<Chunk>* tl) const;
size_t numFreeBlocks() const;
size_t treeHeight() const;
size_t treeHeightHelper(TreeList* tl) const;
size_t totalNodesInTree(TreeList* tl) const;
size_t totalNodesHelper(TreeList* tl) const;
size_t treeHeightHelper(TreeList<Chunk>* tl) const;
size_t totalNodesInTree(TreeList<Chunk>* tl) const;
size_t totalNodesHelper(TreeList<Chunk>* tl) const;
public:
// Constructor
BinaryTreeDictionary(MemRegion mr, bool splay = false);
BinaryTreeDictionary(bool adaptive_freelists, bool splay = false);
BinaryTreeDictionary(MemRegion mr, bool adaptive_freelists, bool splay = false);
// Public accessors
size_t totalSize() const { return _totalSize; }
// Reset the dictionary to the initial conditions with
// a single free chunk.
......@@ -212,22 +245,22 @@ class BinaryTreeDictionary: public FreeBlockDictionary {
// Return a chunk of size "size" or greater from
// the tree.
// want a better dynamic splay strategy for the future.
FreeChunk* getChunk(size_t size, Dither dither) {
verify_par_locked();
FreeChunk* res = getChunkFromTree(size, dither, splay());
Chunk* getChunk(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither) {
FreeBlockDictionary<Chunk>::verify_par_locked();
Chunk* res = getChunkFromTree(size, dither, splay());
assert(res == NULL || res->isFree(),
"Should be returning a free chunk");
return res;
}
void returnChunk(FreeChunk* chunk) {
verify_par_locked();
void returnChunk(Chunk* chunk) {
FreeBlockDictionary<Chunk>::verify_par_locked();
insertChunkInTree(chunk);
}
void removeChunk(FreeChunk* chunk) {
verify_par_locked();
removeChunkFromTree((TreeChunk*)chunk);
void removeChunk(Chunk* chunk) {
FreeBlockDictionary<Chunk>::verify_par_locked();
removeChunkFromTree((TreeChunk<Chunk>*)chunk);
assert(chunk->isFree(), "Should still be a free chunk");
}
......@@ -243,14 +276,14 @@ class BinaryTreeDictionary: public FreeBlockDictionary {
}
size_t minSize() const {
return MIN_TREE_CHUNK_SIZE;
return min_tree_chunk_size;
}
double sum_of_squared_block_sizes() const {
return sum_of_squared_block_sizes(root());
}
FreeChunk* find_chunk_ends_at(HeapWord* target) const;
Chunk* find_chunk_ends_at(HeapWord* target) const;
// Find the list with size "size" in the binary tree and update
// the statistics in the list according to "split" (chunk was
......@@ -269,7 +302,7 @@ class BinaryTreeDictionary: public FreeBlockDictionary {
// statistics for the sweep.
void endSweepDictCensus(double splitSurplusPercent);
// Return the largest free chunk in the tree.
FreeChunk* findLargestDict() const;
Chunk* findLargestDict() const;
// Accessors for statistics
void setTreeSurplus(double splitSurplusPercent);
void setTreeHints(void);
......@@ -293,4 +326,4 @@ class BinaryTreeDictionary: public FreeBlockDictionary {
void verify() const;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_BINARYTREEDICTIONARY_HPP
#endif // SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
......@@ -23,7 +23,10 @@
*/
#include "precompiled.hpp"
#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#ifndef SERIALGC
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
#endif // SERIALGC
#include "memory/freeBlockDictionary.hpp"
#ifdef TARGET_OS_FAMILY_linux
# include "thread_linux.inline.hpp"
#endif
......@@ -38,15 +41,15 @@
#endif
#ifndef PRODUCT
Mutex* FreeBlockDictionary::par_lock() const {
template <class Chunk> Mutex* FreeBlockDictionary<Chunk>::par_lock() const {
return _lock;
}
void FreeBlockDictionary::set_par_lock(Mutex* lock) {
template <class Chunk> void FreeBlockDictionary<Chunk>::set_par_lock(Mutex* lock) {
_lock = lock;
}
void FreeBlockDictionary::verify_par_locked() const {
template <class Chunk> void FreeBlockDictionary<Chunk>::verify_par_locked() const {
#ifdef ASSERT
if (ParallelGCThreads > 0) {
Thread* myThread = Thread::current();
......@@ -58,3 +61,8 @@ void FreeBlockDictionary::verify_par_locked() const {
#endif // ASSERT
}
#endif
#ifndef SERIALGC
// Explicitly instantiate for FreeChunk
template class FreeBlockDictionary<FreeChunk>;
#endif // SERIALGC
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
......@@ -22,12 +22,10 @@
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREEBLOCKDICTIONARY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREEBLOCKDICTIONARY_HPP
#ifndef SHARE_VM_MEMORY_FREEBLOCKDICTIONARY_HPP
#define SHARE_VM_MEMORY_FREEBLOCKDICTIONARY_HPP
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
#include "memory/allocation.hpp"
#include "memory/memRegion.hpp"
#include "runtime/mutex.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
......@@ -35,6 +33,7 @@
// A FreeBlockDictionary is an abstract superclass that will allow
// a number of alternative implementations in the future.
template <class Chunk>
class FreeBlockDictionary: public CHeapObj {
public:
enum Dither {
......@@ -52,9 +51,9 @@ class FreeBlockDictionary: public CHeapObj {
NOT_PRODUCT(Mutex* _lock;)
public:
virtual void removeChunk(FreeChunk* fc) = 0;
virtual FreeChunk* getChunk(size_t size, Dither dither = atLeast) = 0;
virtual void returnChunk(FreeChunk* chunk) = 0;
virtual void removeChunk(Chunk* fc) = 0;
virtual Chunk* getChunk(size_t size, Dither dither = atLeast) = 0;
virtual void returnChunk(Chunk* chunk) = 0;
virtual size_t totalChunkSize(debug_only(const Mutex* lock)) const = 0;
virtual size_t maxChunkSize() const = 0;
virtual size_t minSize() const = 0;
......@@ -69,14 +68,14 @@ class FreeBlockDictionary: public CHeapObj {
float inter_sweep_current, float inter_sweep_estimate,
float intra__sweep_current) = 0;
virtual void endSweepDictCensus(double splitSurplusPercent) = 0;
virtual FreeChunk* findLargestDict() const = 0;
virtual Chunk* findLargestDict() const = 0;
// verify that the given chunk is in the dictionary.
virtual bool verifyChunkInFreeLists(FreeChunk* tc) const = 0;
virtual bool verifyChunkInFreeLists(Chunk* tc) const = 0;
// Sigma_{all_free_blocks} (block_size^2)
virtual double sum_of_squared_block_sizes() const = 0;
virtual FreeChunk* find_chunk_ends_at(HeapWord* target) const = 0;
virtual Chunk* find_chunk_ends_at(HeapWord* target) const = 0;
virtual void inc_totalSize(size_t v) = 0;
virtual void dec_totalSize(size_t v) = 0;
......@@ -100,4 +99,4 @@ class FreeBlockDictionary: public CHeapObj {
void verify_par_locked() const PRODUCT_RETURN;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREEBLOCKDICTIONARY_HPP
#endif // SHARE_VM_MEMORY_FREEBLOCKDICTIONARY_HPP
......@@ -23,20 +23,25 @@
*/
#include "precompiled.hpp"
#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#include "gc_implementation/concurrentMarkSweep/freeList.hpp"
#include "memory/freeBlockDictionary.hpp"
#include "memory/freeList.hpp"
#include "memory/sharedHeap.hpp"
#include "runtime/globals.hpp"
#include "runtime/mutex.hpp"
#include "runtime/vmThread.hpp"
#ifndef SERIALGC
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
#endif // SERIALGC
// Free list. A FreeList is used to access a linked list of chunks
// of space in the heap. The head and tail are maintained so that
// items can be (as in the current implementation) added at the
// at the tail of the list and removed from the head of the list to
// maintain a FIFO queue.
FreeList::FreeList() :
template <class Chunk>
FreeList<Chunk>::FreeList() :
_head(NULL), _tail(NULL)
#ifdef ASSERT
, _protecting_lock(NULL)
......@@ -48,7 +53,8 @@ FreeList::FreeList() :
init_statistics();
}
FreeList::FreeList(FreeChunk* fc) :
template <class Chunk>
FreeList<Chunk>::FreeList(Chunk* fc) :
_head(fc), _tail(fc)
#ifdef ASSERT
, _protecting_lock(NULL)
......@@ -63,40 +69,27 @@ FreeList::FreeList(FreeChunk* fc) :
#endif
}
FreeList::FreeList(HeapWord* addr, size_t size) :
_head((FreeChunk*) addr), _tail((FreeChunk*) addr)
#ifdef ASSERT
, _protecting_lock(NULL)
#endif
{
assert(size > sizeof(FreeChunk), "size is too small");
head()->setSize(size);
_size = size;
_count = 1;
init_statistics();
#ifndef PRODUCT
_allocation_stats.set_returnedBytes(_size * HeapWordSize);
#endif
}
void FreeList::reset(size_t hint) {
template <class Chunk>
void FreeList<Chunk>::reset(size_t hint) {
set_count(0);
set_head(NULL);
set_tail(NULL);
set_hint(hint);
}
void FreeList::init_statistics(bool split_birth) {
template <class Chunk>
void FreeList<Chunk>::init_statistics(bool split_birth) {
_allocation_stats.initialize(split_birth);
}
FreeChunk* FreeList::getChunkAtHead() {
template <class Chunk>
Chunk* FreeList<Chunk>::getChunkAtHead() {
assert_proper_lock_protection();
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
FreeChunk* fc = head();
Chunk* fc = head();
if (fc != NULL) {
FreeChunk* nextFC = fc->next();
Chunk* nextFC = fc->next();
if (nextFC != NULL) {
// The chunk fc being removed has a "next". Set the "next" to the
// "prev" of fc.
......@@ -113,20 +106,21 @@ FreeChunk* FreeList::getChunkAtHead() {
}
void FreeList::getFirstNChunksFromList(size_t n, FreeList* fl) {
template <class Chunk>
void FreeList<Chunk>::getFirstNChunksFromList(size_t n, FreeList<Chunk>* fl) {
assert_proper_lock_protection();
assert(fl->count() == 0, "Precondition");
if (count() > 0) {
int k = 1;
fl->set_head(head()); n--;
FreeChunk* tl = head();
Chunk* tl = head();
while (tl->next() != NULL && n > 0) {
tl = tl->next(); n--; k++;
}
assert(tl != NULL, "Loop Inv.");
// First, fix up the list we took from.
FreeChunk* new_head = tl->next();
Chunk* new_head = tl->next();
set_head(new_head);
set_count(count() - k);
if (new_head == NULL) {
......@@ -143,7 +137,8 @@ void FreeList::getFirstNChunksFromList(size_t n, FreeList* fl) {
}
// Remove this chunk from the list
void FreeList::removeChunk(FreeChunk*fc) {
template <class Chunk>
void FreeList<Chunk>::removeChunk(Chunk*fc) {
assert_proper_lock_protection();
assert(head() != NULL, "Remove from empty list");
assert(fc != NULL, "Remove a NULL chunk");
......@@ -151,8 +146,8 @@ void FreeList::removeChunk(FreeChunk*fc) {
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
FreeChunk* prevFC = fc->prev();
FreeChunk* nextFC = fc->next();
Chunk* prevFC = fc->prev();
Chunk* nextFC = fc->next();
if (nextFC != NULL) {
// The chunk fc being removed has a "next". Set the "next" to the
// "prev" of fc.
......@@ -185,14 +180,15 @@ void FreeList::removeChunk(FreeChunk*fc) {
}
// Add this chunk at the head of the list.
void FreeList::returnChunkAtHead(FreeChunk* chunk, bool record_return) {
template <class Chunk>
void FreeList<Chunk>::returnChunkAtHead(Chunk* chunk, bool record_return) {
assert_proper_lock_protection();
assert(chunk != NULL, "insert a NULL chunk");
assert(size() == chunk->size(), "Wrong size");
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
FreeChunk* oldHead = head();
Chunk* oldHead = head();
assert(chunk != oldHead, "double insertion");
chunk->linkAfter(oldHead);
link_head(chunk);
......@@ -212,20 +208,22 @@ void FreeList::returnChunkAtHead(FreeChunk* chunk, bool record_return) {
assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
}
void FreeList::returnChunkAtHead(FreeChunk* chunk) {
template <class Chunk>
void FreeList<Chunk>::returnChunkAtHead(Chunk* chunk) {
assert_proper_lock_protection();
returnChunkAtHead(chunk, true);
}
// Add this chunk at the tail of the list.
void FreeList::returnChunkAtTail(FreeChunk* chunk, bool record_return) {
template <class Chunk>
void FreeList<Chunk>::returnChunkAtTail(Chunk* chunk, bool record_return) {
assert_proper_lock_protection();
assert(head() == NULL || head()->prev() == NULL, "list invariant");
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
assert(chunk != NULL, "insert a NULL chunk");
assert(size() == chunk->size(), "wrong size");
FreeChunk* oldTail = tail();
Chunk* oldTail = tail();
assert(chunk != oldTail, "double insertion");
if (oldTail != NULL) {
oldTail->linkAfter(chunk);
......@@ -246,11 +244,13 @@ void FreeList::returnChunkAtTail(FreeChunk* chunk, bool record_return) {
assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
}
void FreeList::returnChunkAtTail(FreeChunk* chunk) {
template <class Chunk>
void FreeList<Chunk>::returnChunkAtTail(Chunk* chunk) {
returnChunkAtTail(chunk, true);
}
void FreeList::prepend(FreeList* fl) {
template <class Chunk>
void FreeList<Chunk>::prepend(FreeList<Chunk>* fl) {
assert_proper_lock_protection();
if (fl->count() > 0) {
if (count() == 0) {
......@@ -259,8 +259,8 @@ void FreeList::prepend(FreeList* fl) {
set_count(fl->count());
} else {
// Both are non-empty.
FreeChunk* fl_tail = fl->tail();
FreeChunk* this_head = head();
Chunk* fl_tail = fl->tail();
Chunk* this_head = head();
assert(fl_tail->next() == NULL, "Well-formedness of fl");
fl_tail->linkNext(this_head);
this_head->linkPrev(fl_tail);
......@@ -275,11 +275,12 @@ void FreeList::prepend(FreeList* fl) {
// verifyChunkInFreeLists() is used to verify that an item is in this free list.
// It is used as a debugging aid.
bool FreeList::verifyChunkInFreeLists(FreeChunk* fc) const {
template <class Chunk>
bool FreeList<Chunk>::verifyChunkInFreeLists(Chunk* fc) const {
// This is an internal consistency check, not part of the check that the
// chunk is in the free lists.
guarantee(fc->size() == size(), "Wrong list is being searched");
FreeChunk* curFC = head();
Chunk* curFC = head();
while (curFC) {
// This is an internal consistency check.
guarantee(size() == curFC->size(), "Chunk is in wrong list.");
......@@ -292,7 +293,8 @@ bool FreeList::verifyChunkInFreeLists(FreeChunk* fc) const {
}
#ifndef PRODUCT
void FreeList::verify_stats() const {
template <class Chunk>
void FreeList<Chunk>::verify_stats() const {
// The +1 of the LH comparand is to allow some "looseness" in
// checking: we usually call this interface when adding a block
// and we'll subsequently update the stats; we cannot update the
......@@ -317,7 +319,8 @@ void FreeList::verify_stats() const {
_allocation_stats.coalDeaths(), count()));
}
void FreeList::assert_proper_lock_protection_work() const {
template <class Chunk>
void FreeList<Chunk>::assert_proper_lock_protection_work() const {
assert(_protecting_lock != NULL, "Don't call this directly");
assert(ParallelGCThreads > 0, "Don't call this directly");
Thread* thr = Thread::current();
......@@ -334,7 +337,8 @@ void FreeList::assert_proper_lock_protection_work() const {
#endif
// Print the "label line" for free list stats.
void FreeList::print_labels_on(outputStream* st, const char* c) {
template <class Chunk>
void FreeList<Chunk>::print_labels_on(outputStream* st, const char* c) {
st->print("%16s\t", c);
st->print("%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t"
"%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t" "\n",
......@@ -346,7 +350,8 @@ void FreeList::print_labels_on(outputStream* st, const char* c) {
// to the call is a non-null string, it is printed in the first column;
// otherwise, if the argument is null (the default), then the size of the
// (free list) block is printed in the first column.
void FreeList::print_on(outputStream* st, const char* c) const {
template <class Chunk>
void FreeList<Chunk>::print_on(outputStream* st, const char* c) const {
if (c != NULL) {
st->print("%16s", c);
} else {
......@@ -358,3 +363,8 @@ void FreeList::print_on(outputStream* st, const char* c) const {
bfrSurp(), surplus(), desired(), prevSweep(), beforeSweep(),
count(), coalBirths(), coalDeaths(), splitBirths(), splitDeaths());
}
#ifndef SERIALGC
// Needs to be after the definitions have been seen.
template class FreeList<FreeChunk>;
#endif // SERIALGC
......@@ -22,39 +22,36 @@
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREELIST_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREELIST_HPP
#ifndef SHARE_VM_MEMORY_FREELIST_HPP
#define SHARE_VM_MEMORY_FREELIST_HPP
#include "gc_implementation/shared/allocationStats.hpp"
class CompactibleFreeListSpace;
// A class for maintaining a free list of FreeChunk's. The FreeList
// A class for maintaining a free list of Chunk's. The FreeList
// maintains a the structure of the list (head, tail, etc.) plus
// statistics for allocations from the list. The links between items
// are not part of FreeList. The statistics are
// used to make decisions about coalescing FreeChunk's when they
// used to make decisions about coalescing Chunk's when they
// are swept during collection.
//
// See the corresponding .cpp file for a description of the specifics
// for that implementation.
class Mutex;
class TreeList;
template <class Chunk> class TreeList;
template <class Chunk> class PrintTreeCensusClosure;
template <class Chunk>
class FreeList VALUE_OBJ_CLASS_SPEC {
friend class CompactibleFreeListSpace;
friend class VMStructs;
friend class PrintTreeCensusClosure;
protected:
TreeList* _parent;
TreeList* _left;
TreeList* _right;
friend class PrintTreeCensusClosure<Chunk>;
private:
FreeChunk* _head; // Head of list of free chunks
FreeChunk* _tail; // Tail of list of free chunks
Chunk* _head; // Head of list of free chunks
Chunk* _tail; // Tail of list of free chunks
size_t _size; // Size in Heap words of each chunk
ssize_t _count; // Number of entries in list
size_t _hint; // next larger size list with a positive surplus
......@@ -92,10 +89,7 @@ class FreeList VALUE_OBJ_CLASS_SPEC {
// Construct a list without any entries.
FreeList();
// Construct a list with "fc" as the first (and lone) entry in the list.
FreeList(FreeChunk* fc);
// Construct a list which will have a FreeChunk at address "addr" and
// of size "size" as the first (and lone) entry in the list.
FreeList(HeapWord* addr, size_t size);
FreeList(Chunk* fc);
// Reset the head, tail, hint, and count of a free list.
void reset(size_t hint);
......@@ -108,18 +102,18 @@ class FreeList VALUE_OBJ_CLASS_SPEC {
#endif
// Accessors.
FreeChunk* head() const {
Chunk* head() const {
assert_proper_lock_protection();
return _head;
}
void set_head(FreeChunk* v) {
void set_head(Chunk* v) {
assert_proper_lock_protection();
_head = v;
assert(!_head || _head->size() == _size, "bad chunk size");
}
// Set the head of the list and set the prev field of non-null
// values to NULL.
void link_head(FreeChunk* v) {
void link_head(Chunk* v) {
assert_proper_lock_protection();
set_head(v);
// If this method is not used (just set the head instead),
......@@ -129,18 +123,18 @@ class FreeList VALUE_OBJ_CLASS_SPEC {
}
}
FreeChunk* tail() const {
Chunk* tail() const {
assert_proper_lock_protection();
return _tail;
}
void set_tail(FreeChunk* v) {
void set_tail(Chunk* v) {
assert_proper_lock_protection();
_tail = v;
assert(!_tail || _tail->size() == _size, "bad chunk size");
}
// Set the tail of the list and set the next field of non-null
// values to NULL.
void link_tail(FreeChunk* v) {
void link_tail(Chunk* v) {
assert_proper_lock_protection();
set_tail(v);
if (v != NULL) {
......@@ -298,31 +292,31 @@ class FreeList VALUE_OBJ_CLASS_SPEC {
// Unlink head of list and return it. Returns NULL if
// the list is empty.
FreeChunk* getChunkAtHead();
Chunk* getChunkAtHead();
// Remove the first "n" or "count", whichever is smaller, chunks from the
// list, setting "fl", which is required to be empty, to point to them.
void getFirstNChunksFromList(size_t n, FreeList* fl);
void getFirstNChunksFromList(size_t n, FreeList<Chunk>* fl);
// Unlink this chunk from it's free list
void removeChunk(FreeChunk* fc);
void removeChunk(Chunk* fc);
// Add this chunk to this free list.
void returnChunkAtHead(FreeChunk* fc);
void returnChunkAtTail(FreeChunk* fc);
void returnChunkAtHead(Chunk* fc);
void returnChunkAtTail(Chunk* fc);
// Similar to returnChunk* but also records some diagnostic
// information.
void returnChunkAtHead(FreeChunk* fc, bool record_return);
void returnChunkAtTail(FreeChunk* fc, bool record_return);
void returnChunkAtHead(Chunk* fc, bool record_return);
void returnChunkAtTail(Chunk* fc, bool record_return);
// Prepend "fl" (whose size is required to be the same as that of "this")
// to the front of "this" list.
void prepend(FreeList* fl);
void prepend(FreeList<Chunk>* fl);
// Verify that the chunk is in the list.
// found. Return NULL if "fc" is not found.
bool verifyChunkInFreeLists(FreeChunk* fc) const;
bool verifyChunkInFreeLists(Chunk* fc) const;
// Stats verification
void verify_stats() const PRODUCT_RETURN;
......@@ -332,4 +326,4 @@ class FreeList VALUE_OBJ_CLASS_SPEC {
void print_on(outputStream* st, const char* c = NULL) const;
};
#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREELIST_HPP
#endif // SHARE_VM_MEMORY_FREELIST_HPP
......@@ -68,7 +68,7 @@ Generation* GenerationSpec::init(ReservedSpace rs, int level,
ConcurrentMarkSweepGeneration* g = NULL;
g = new ConcurrentMarkSweepGeneration(rs,
init_size(), level, ctrs, UseCMSAdaptiveFreeLists,
(FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice);
(FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice);
g->initialize_performance_counters();
......@@ -88,7 +88,7 @@ Generation* GenerationSpec::init(ReservedSpace rs, int level,
ASConcurrentMarkSweepGeneration* g = NULL;
g = new ASConcurrentMarkSweepGeneration(rs,
init_size(), level, ctrs, UseCMSAdaptiveFreeLists,
(FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice);
(FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice);
g->initialize_performance_counters();
......@@ -175,7 +175,7 @@ PermGen* PermanentGenerationSpec::init(ReservedSpace rs,
}
// XXXPERM
return new CMSPermGen(perm_rs, init_size, ctrs,
(FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice);
(FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice);
}
#endif // SERIALGC
default:
......
......@@ -293,13 +293,10 @@
# include "c1/c1_globals.hpp"
#endif // COMPILER1
#ifndef SERIALGC
# include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
# include "gc_implementation/concurrentMarkSweep/cmsOopClosures.hpp"
# include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
# include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
# include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
# include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
# include "gc_implementation/concurrentMarkSweep/freeList.hpp"
# include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
# include "gc_implementation/g1/dirtyCardQueue.hpp"
# include "gc_implementation/g1/g1BlockOffsetTable.hpp"
......
......@@ -44,7 +44,6 @@
#include "code/vmreg.hpp"
#include "compiler/oopMap.hpp"
#include "compiler/compileBroker.hpp"
#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#include "gc_implementation/shared/immutableSpace.hpp"
#include "gc_implementation/shared/markSweep.hpp"
#include "gc_implementation/shared/mutableSpace.hpp"
......@@ -55,6 +54,7 @@
#include "memory/cardTableRS.hpp"
#include "memory/compactPermGen.hpp"
#include "memory/defNewGeneration.hpp"
#include "memory/freeBlockDictionary.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/generation.hpp"
#include "memory/generationSpec.hpp"
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册