提交 9838a4da 编写于 作者: K kvn

7029152: Ideal nodes for String intrinsics miss memory edge optimization

Summary: In Ideal() method of String intrinsics nodes look for TypeAryPtr::CHARS memory slice if memory is MergeMem. Do not unroll a loop with String intrinsics code.
Reviewed-by: never
上级 e811d6d2
......@@ -396,16 +396,16 @@ void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
// Return exact loop trip count, or 0 if not maximally unrolling
bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
CountedLoopNode *cl = _head->as_CountedLoop();
assert( cl->is_normal_loop(), "" );
assert(cl->is_normal_loop(), "");
Node *init_n = cl->init_trip();
Node *limit_n = cl->limit();
// Non-constant bounds
if( init_n == NULL || !init_n->is_Con() ||
if (init_n == NULL || !init_n->is_Con() ||
limit_n == NULL || !limit_n->is_Con() ||
// protect against stride not being a constant
!cl->stride_is_con() ) {
!cl->stride_is_con()) {
return false;
}
int init = init_n->get_int();
......@@ -428,7 +428,25 @@ bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
uint unroll_limit = (uint)LoopUnrollLimit * 4;
assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
cl->set_trip_count(trip_count);
if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
if (trip_count > unroll_limit || body_size > unroll_limit) {
return false;
}
// Do not unroll a loop with String intrinsics code.
// String intrinsics are large and have loops.
for (uint k = 0; k < _body.size(); k++) {
Node* n = _body.at(k);
switch (n->Opcode()) {
case Op_StrComp:
case Op_StrEquals:
case Op_StrIndexOf:
case Op_AryEq: {
return false;
}
} // switch
}
if (body_size <= unroll_limit) {
uint new_body_size = body_size * trip_count;
if (new_body_size <= unroll_limit &&
body_size == new_body_size / trip_count &&
......@@ -448,13 +466,13 @@ bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
CountedLoopNode *cl = _head->as_CountedLoop();
assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
assert(cl->is_normal_loop() || cl->is_main_loop(), "");
// protect against stride not being a constant
if( !cl->stride_is_con() ) return false;
if (!cl->stride_is_con()) return false;
// protect against over-unrolling
if( cl->trip_count() <= 1 ) return false;
if (cl->trip_count() <= 1) return false;
int future_unroll_ct = cl->unrolled_count() * 2;
......@@ -485,21 +503,21 @@ bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
// Non-constant bounds.
// Protect against over-unrolling when init or/and limit are not constant
// (so that trip_count's init value is maxint) but iv range is known.
if( init_n == NULL || !init_n->is_Con() ||
limit_n == NULL || !limit_n->is_Con() ) {
if (init_n == NULL || !init_n->is_Con() ||
limit_n == NULL || !limit_n->is_Con()) {
Node* phi = cl->phi();
if( phi != NULL ) {
if (phi != NULL) {
assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
int next_stride = cl->stride_con() * 2; // stride after this unroll
if( next_stride > 0 ) {
if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
iv_type->_lo + next_stride > iv_type->_hi ) {
if (next_stride > 0) {
if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
iv_type->_lo + next_stride > iv_type->_hi) {
return false; // over-unrolling
}
} else if( next_stride < 0 ) {
if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
iv_type->_hi + next_stride < iv_type->_lo ) {
} else if (next_stride < 0) {
if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
iv_type->_hi + next_stride < iv_type->_lo) {
return false; // over-unrolling
}
}
......@@ -511,24 +529,33 @@ bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
// Key test to unroll CaffeineMark's Logic test
int xors_in_loop = 0;
// Also count ModL, DivL and MulL which expand mightly
for( uint k = 0; k < _body.size(); k++ ) {
switch( _body.at(k)->Opcode() ) {
case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
case Op_ModL: body_size += 30; break;
case Op_DivL: body_size += 30; break;
case Op_MulL: body_size += 10; break;
}
for (uint k = 0; k < _body.size(); k++) {
Node* n = _body.at(k);
switch (n->Opcode()) {
case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
case Op_ModL: body_size += 30; break;
case Op_DivL: body_size += 30; break;
case Op_MulL: body_size += 10; break;
case Op_StrComp:
case Op_StrEquals:
case Op_StrIndexOf:
case Op_AryEq: {
// Do not unroll a loop with String intrinsics code.
// String intrinsics are large and have loops.
return false;
}
} // switch
}
// Check for being too big
if( body_size > (uint)LoopUnrollLimit ) {
if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
if (body_size > (uint)LoopUnrollLimit) {
if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
// Normal case: loop too big
return false;
}
// Check for stride being a small enough constant
if( abs(cl->stride_con()) > (1<<3) ) return false;
if (abs(cl->stride_con()) > (1<<3)) return false;
// Unroll once! (Each trip will soon do double iterations)
return true;
......
......@@ -2617,54 +2617,24 @@ Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
}
//=============================================================================
// Do we match on this edge? No memory edges
uint StrCompNode::match_edge(uint idx) const {
return idx == 2 || idx == 3; // StrComp (Binary str1 cnt1) (Binary str2 cnt2)
// Do not match memory edge.
uint StrIntrinsicNode::match_edge(uint idx) const {
return idx == 2 || idx == 3;
}
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node. Strip out
// control copies
Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
return remove_dead_region(phase, can_reshape) ? this : NULL;
}
//=============================================================================
// Do we match on this edge? No memory edges
uint StrEqualsNode::match_edge(uint idx) const {
return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
}
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node. Strip out
// control copies
Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
return remove_dead_region(phase, can_reshape) ? this : NULL;
}
//=============================================================================
// Do we match on this edge? No memory edges
uint StrIndexOfNode::match_edge(uint idx) const {
return idx == 2 || idx == 3; // StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)
}
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node. Strip out
// control copies
Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
return remove_dead_region(phase, can_reshape) ? this : NULL;
}
Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if (remove_dead_region(phase, can_reshape)) return this;
//=============================================================================
// Do we match on this edge? No memory edges
uint AryEqNode::match_edge(uint idx) const {
return idx == 2 || idx == 3; // StrEquals ary1 ary2
}
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node. Strip out
// control copies
Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
return remove_dead_region(phase, can_reshape) ? this : NULL;
Node* mem = phase->transform(in(MemNode::Memory));
// If transformed to a MergeMem, get the desired slice
uint alias_idx = phase->C->get_alias_index(adr_type());
mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
if (mem != in(MemNode::Memory))
set_req(MemNode::Memory, mem);
return NULL;
}
//=============================================================================
......
......@@ -776,67 +776,69 @@ public:
static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
};
//------------------------------StrComp-------------------------------------
class StrCompNode: public Node {
//------------------------------StrIntrinsic-------------------------------
// Base class for Ideal nodes used in String instrinsic code.
class StrIntrinsicNode: public Node {
public:
StrCompNode(Node* control, Node* char_array_mem,
Node* s1, Node* c1,
Node* s2, Node* c2): Node(control, char_array_mem,
s1, c1,
s2, c2) {};
virtual int Opcode() const;
StrIntrinsicNode(Node* control, Node* char_array_mem,
Node* s1, Node* c1, Node* s2, Node* c2):
Node(control, char_array_mem, s1, c1, s2, c2) {
}
StrIntrinsicNode(Node* control, Node* char_array_mem,
Node* s1, Node* s2, Node* c):
Node(control, char_array_mem, s1, s2, c) {
}
StrIntrinsicNode(Node* control, Node* char_array_mem,
Node* s1, Node* s2):
Node(control, char_array_mem, s1, s2) {
}
virtual bool depends_only_on_test() const { return false; }
virtual const Type* bottom_type() const { return TypeInt::INT; }
virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
virtual uint match_edge(uint idx) const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};
//------------------------------StrComp-------------------------------------
class StrCompNode: public StrIntrinsicNode {
public:
StrCompNode(Node* control, Node* char_array_mem,
Node* s1, Node* c1, Node* s2, Node* c2):
StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
virtual int Opcode() const;
virtual const Type* bottom_type() const { return TypeInt::INT; }
};
//------------------------------StrEquals-------------------------------------
class StrEqualsNode: public Node {
class StrEqualsNode: public StrIntrinsicNode {
public:
StrEqualsNode(Node* control, Node* char_array_mem,
Node* s1, Node* s2, Node* c): Node(control, char_array_mem,
s1, s2, c) {};
Node* s1, Node* s2, Node* c):
StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
virtual int Opcode() const;
virtual bool depends_only_on_test() const { return false; }
virtual const Type* bottom_type() const { return TypeInt::BOOL; }
virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
virtual uint match_edge(uint idx) const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};
//------------------------------StrIndexOf-------------------------------------
class StrIndexOfNode: public Node {
class StrIndexOfNode: public StrIntrinsicNode {
public:
StrIndexOfNode(Node* control, Node* char_array_mem,
Node* s1, Node* c1,
Node* s2, Node* c2): Node(control, char_array_mem,
s1, c1,
s2, c2) {};
Node* s1, Node* c1, Node* s2, Node* c2):
StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
virtual int Opcode() const;
virtual bool depends_only_on_test() const { return false; }
virtual const Type* bottom_type() const { return TypeInt::INT; }
virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
virtual uint match_edge(uint idx) const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};
//------------------------------AryEq---------------------------------------
class AryEqNode: public Node {
class AryEqNode: public StrIntrinsicNode {
public:
AryEqNode(Node* control, Node* char_array_mem,
Node* s1, Node* s2): Node(control, char_array_mem, s1, s2) {};
AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
StrIntrinsicNode(control, char_array_mem, s1, s2) {};
virtual int Opcode() const;
virtual bool depends_only_on_test() const { return false; }
virtual const Type* bottom_type() const { return TypeInt::BOOL; }
virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
virtual uint match_edge(uint idx) const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};
//------------------------------MemBar-----------------------------------------
......
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 7029152
* @summary Ideal nodes for String intrinsics miss memory edge optimization
*
* @run main/othervm -Xbatch Test
*/
public class Test {
static final String str = "11111xx11111xx1x";
static int idx = 0;
static int IndexOfTest(String str) {
return str.indexOf("11111xx1x");
}
public static void main(String args[]) {
final int ITERS=2000000;
for (int i=0; i<ITERS; i++) {
idx = IndexOfTest(str);
}
System.out.println("IndexOf = " + idx);
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册