提交 5a82c0b0 编写于 作者: C coleenp

Merge

......@@ -1051,6 +1051,7 @@ public:
void work(int worker_i) {
assert(Thread::current()->is_ConcurrentGC_thread(),
"this should only be done by a conc GC thread");
ResourceMark rm;
double start_vtime = os::elapsedVTime();
......@@ -1888,6 +1889,9 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
ReferenceProcessor* rp = g1h->ref_processor();
// See the comment in G1CollectedHeap::ref_processing_init()
// about how reference processing currently works in G1.
// Process weak references.
rp->setup_policy(clear_all_soft_refs);
assert(_markStack.isEmpty(), "mark stack should be empty");
......@@ -2918,7 +2922,11 @@ public:
CMOopClosure(G1CollectedHeap* g1h,
ConcurrentMark* cm,
CMTask* task)
: _g1h(g1h), _cm(cm), _task(task) { }
: _g1h(g1h), _cm(cm), _task(task)
{
_ref_processor = g1h->ref_processor();
assert(_ref_processor != NULL, "should not be NULL");
}
};
void CMTask::setup_for_region(HeapRegion* hr) {
......
......@@ -290,6 +290,63 @@ private:
// started is maintained in _total_full_collections in CollectedHeap.
volatile unsigned int _full_collections_completed;
// These are macros so that, if the assert fires, we get the correct
// line number, file, etc.
#define heap_locking_asserts_err_msg(__extra_message) \
err_msg("%s : Heap_lock %slocked, %sat a safepoint", \
(__extra_message), \
(!Heap_lock->owned_by_self()) ? "NOT " : "", \
(!SafepointSynchronize::is_at_safepoint()) ? "NOT " : "")
#define assert_heap_locked() \
do { \
assert(Heap_lock->owned_by_self(), \
heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
} while (0)
#define assert_heap_locked_or_at_safepoint() \
do { \
assert(Heap_lock->owned_by_self() || \
SafepointSynchronize::is_at_safepoint(), \
heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
"should be at a safepoint")); \
} while (0)
#define assert_heap_locked_and_not_at_safepoint() \
do { \
assert(Heap_lock->owned_by_self() && \
!SafepointSynchronize::is_at_safepoint(), \
heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
"should not be at a safepoint")); \
} while (0)
#define assert_heap_not_locked() \
do { \
assert(!Heap_lock->owned_by_self(), \
heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
} while (0)
#define assert_heap_not_locked_and_not_at_safepoint() \
do { \
assert(!Heap_lock->owned_by_self() && \
!SafepointSynchronize::is_at_safepoint(), \
heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
"should not be at a safepoint")); \
} while (0)
#define assert_at_safepoint() \
do { \
assert(SafepointSynchronize::is_at_safepoint(), \
heap_locking_asserts_err_msg("should be at a safepoint")); \
} while (0)
#define assert_not_at_safepoint() \
do { \
assert(!SafepointSynchronize::is_at_safepoint(), \
heap_locking_asserts_err_msg("should not be at a safepoint")); \
} while (0)
protected:
// Returns "true" iff none of the gc alloc regions have any allocations
......@@ -329,31 +386,162 @@ protected:
// Attempt to allocate an object of the given (very large) "word_size".
// Returns "NULL" on failure.
virtual HeapWord* humongousObjAllocate(size_t word_size);
// If possible, allocate a block of the given word_size, else return "NULL".
// Returning NULL will trigger GC or heap expansion.
// These two methods have rather awkward pre- and
// post-conditions. If they are called outside a safepoint, then
// they assume that the caller is holding the heap lock. Upon return
// they release the heap lock, if they are returning a non-NULL
// value. attempt_allocation_slow() also dirties the cards of a
// newly-allocated young region after it releases the heap
// lock. This change in interface was the neatest way to achieve
// this card dirtying without affecting mem_allocate(), which is a
// more frequently called method. We tried two or three different
// approaches, but they were even more hacky.
HeapWord* attempt_allocation(size_t word_size,
bool permit_collection_pause = true);
HeapWord* attempt_allocation_slow(size_t word_size,
bool permit_collection_pause = true);
virtual HeapWord* humongous_obj_allocate(size_t word_size);
// The following two methods, allocate_new_tlab() and
// mem_allocate(), are the two main entry points from the runtime
// into the G1's allocation routines. They have the following
// assumptions:
//
// * They should both be called outside safepoints.
//
// * They should both be called without holding the Heap_lock.
//
// * All allocation requests for new TLABs should go to
// allocate_new_tlab().
//
// * All non-TLAB allocation requests should go to mem_allocate()
// and mem_allocate() should never be called with is_tlab == true.
//
// * If the GC locker is active we currently stall until we can
// allocate a new young region. This will be changed in the
// near future (see CR 6994056).
//
// * If either call cannot satisfy the allocation request using the
// current allocating region, they will try to get a new one. If
// this fails, they will attempt to do an evacuation pause and
// retry the allocation.
//
// * If all allocation attempts fail, even after trying to schedule
// an evacuation pause, allocate_new_tlab() will return NULL,
// whereas mem_allocate() will attempt a heap expansion and/or
// schedule a Full GC.
//
// * We do not allow humongous-sized TLABs. So, allocate_new_tlab
// should never be called with word_size being humongous. All
// humongous allocation requests should go to mem_allocate() which
// will satisfy them with a special path.
virtual HeapWord* allocate_new_tlab(size_t word_size);
virtual HeapWord* mem_allocate(size_t word_size,
bool is_noref,
bool is_tlab, /* expected to be false */
bool* gc_overhead_limit_was_exceeded);
// The following methods, allocate_from_cur_allocation_region(),
// attempt_allocation(), replace_cur_alloc_region_and_allocate(),
// attempt_allocation_slow(), and attempt_allocation_humongous()
// have very awkward pre- and post-conditions with respect to
// locking:
//
// If they are called outside a safepoint they assume the caller
// holds the Heap_lock when it calls them. However, on exit they
// will release the Heap_lock if they return a non-NULL result, but
// keep holding the Heap_lock if they return a NULL result. The
// reason for this is that we need to dirty the cards that span
// allocated blocks on young regions to avoid having to take the
// slow path of the write barrier (for performance reasons we don't
// update RSets for references whose source is a young region, so we
// don't need to look at dirty cards on young regions). But, doing
// this card dirtying while holding the Heap_lock can be a
// scalability bottleneck, especially given that some allocation
// requests might be of non-trivial size (and the larger the region
// size is, the fewer allocations requests will be considered
// humongous, as the humongous size limit is a fraction of the
// region size). So, when one of these calls succeeds in allocating
// a block it does the card dirtying after it releases the Heap_lock
// which is why it will return without holding it.
//
// The above assymetry is the reason why locking / unlocking is done
// explicitly (i.e., with Heap_lock->lock() and
// Heap_lock->unlocked()) instead of using MutexLocker and
// MutexUnlocker objects. The latter would ensure that the lock is
// unlocked / re-locked at every possible exit out of the basic
// block. However, we only want that action to happen in selected
// places.
//
// Further, if the above methods are called during a safepoint, then
// naturally there's no assumption about the Heap_lock being held or
// there's no attempt to unlock it. The parameter at_safepoint
// indicates whether the call is made during a safepoint or not (as
// an optimization, to avoid reading the global flag with
// SafepointSynchronize::is_at_safepoint()).
//
// The methods share these parameters:
//
// * word_size : the size of the allocation request in words
// * at_safepoint : whether the call is done at a safepoint; this
// also determines whether a GC is permitted
// (at_safepoint == false) or not (at_safepoint == true)
// * do_dirtying : whether the method should dirty the allocated
// block before returning
//
// They all return either the address of the block, if they
// successfully manage to allocate it, or NULL.
// It tries to satisfy an allocation request out of the current
// allocating region, which is passed as a parameter. It assumes
// that the caller has checked that the current allocating region is
// not NULL. Given that the caller has to check the current
// allocating region for at least NULL, it might as well pass it as
// the first parameter so that the method doesn't have to read it
// from the _cur_alloc_region field again.
inline HeapWord* allocate_from_cur_alloc_region(HeapRegion* cur_alloc_region,
size_t word_size);
// It attempts to allocate out of the current alloc region. If that
// fails, it retires the current alloc region (if there is one),
// tries to get a new one and retries the allocation.
inline HeapWord* attempt_allocation(size_t word_size);
// It assumes that the current alloc region has been retired and
// tries to allocate a new one. If it's successful, it performs
// the allocation out of the new current alloc region and updates
// _cur_alloc_region.
HeapWord* replace_cur_alloc_region_and_allocate(size_t word_size,
bool at_safepoint,
bool do_dirtying);
// The slow path when we are unable to allocate a new current alloc
// region to satisfy an allocation request (i.e., when
// attempt_allocation() fails). It will try to do an evacuation
// pause, which might stall due to the GC locker, and retry the
// allocation attempt when appropriate.
HeapWord* attempt_allocation_slow(size_t word_size);
// The method that tries to satisfy a humongous allocation
// request. If it cannot satisfy it it will try to do an evacuation
// pause to perhaps reclaim enough space to be able to satisfy the
// allocation request afterwards.
HeapWord* attempt_allocation_humongous(size_t word_size,
bool at_safepoint);
// It does the common work when we are retiring the current alloc region.
inline void retire_cur_alloc_region_common(HeapRegion* cur_alloc_region);
// It retires the current alloc region, which is passed as a
// parameter (since, typically, the caller is already holding on to
// it). It sets _cur_alloc_region to NULL.
void retire_cur_alloc_region(HeapRegion* cur_alloc_region);
// It attempts to do an allocation immediately before or after an
// evacuation pause and can only be called by the VM thread. It has
// slightly different assumptions that the ones before (i.e.,
// assumes that the current alloc region has been retired).
HeapWord* attempt_allocation_at_safepoint(size_t word_size,
bool expect_null_cur_alloc_region);
// It dirties the cards that cover the block so that so that the post
// write barrier never queues anything when updating objects on this
// block. It is assumed (and in fact we assert) that the block
// belongs to a young region.
inline void dirty_young_block(HeapWord* start, size_t word_size);
// Allocate blocks during garbage collection. Will ensure an
// allocation region, either by picking one or expanding the
// heap, and then allocate a block of the given size. The block
// may not be a humongous - it must fit into a single heap region.
HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
......@@ -370,12 +558,14 @@ protected:
void retire_alloc_region(HeapRegion* alloc_region, bool par);
// - if explicit_gc is true, the GC is for a System.gc() or a heap
// inspection request and should collect the entire heap
// - if clear_all_soft_refs is true, all soft references are cleared
// during the GC
// inspection request and should collect the entire heap
// - if clear_all_soft_refs is true, all soft references should be
// cleared during the GC
// - if explicit_gc is false, word_size describes the allocation that
// the GC should attempt (at least) to satisfy
void do_collection(bool explicit_gc,
// the GC should attempt (at least) to satisfy
// - it returns false if it is unable to do the collection due to the
// GC locker being active, true otherwise
bool do_collection(bool explicit_gc,
bool clear_all_soft_refs,
size_t word_size);
......@@ -391,13 +581,13 @@ protected:
// Callback from VM_G1CollectForAllocation operation.
// This function does everything necessary/possible to satisfy a
// failed allocation request (including collection, expansion, etc.)
HeapWord* satisfy_failed_allocation(size_t word_size);
HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size". If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".
virtual HeapWord* expand_and_allocate(size_t word_size);
HeapWord* expand_and_allocate(size_t word_size);
public:
// Expand the garbage-first heap by at least the given size (in bytes!).
......@@ -478,21 +668,27 @@ protected:
void reset_taskqueue_stats();
#endif // TASKQUEUE_STATS
// Do an incremental collection: identify a collection set, and evacuate
// its live objects elsewhere.
virtual void do_collection_pause();
// Schedule the VM operation that will do an evacuation pause to
// satisfy an allocation request of word_size. *succeeded will
// return whether the VM operation was successful (it did do an
// evacuation pause) or not (another thread beat us to it or the GC
// locker was active). Given that we should not be holding the
// Heap_lock when we enter this method, we will pass the
// gc_count_before (i.e., total_collections()) as a parameter since
// it has to be read while holding the Heap_lock. Currently, both
// methods that call do_collection_pause() release the Heap_lock
// before the call, so it's easy to read gc_count_before just before.
HeapWord* do_collection_pause(size_t word_size,
unsigned int gc_count_before,
bool* succeeded);
// The guts of the incremental collection pause, executed by the vm
// thread.
virtual void do_collection_pause_at_safepoint(double target_pause_time_ms);
// thread. It returns false if it is unable to do the collection due
// to the GC locker being active, true otherwise
bool do_collection_pause_at_safepoint(double target_pause_time_ms);
// Actually do the work of evacuating the collection set.
virtual void evacuate_collection_set();
// If this is an appropriate right time, do a collection pause.
// The "word_size" argument, if non-zero, indicates the size of an
// allocation request that is prompting this query.
void do_collection_pause_if_appropriate(size_t word_size);
void evacuate_collection_set();
// The g1 remembered set of the heap.
G1RemSet* _g1_rem_set;
......@@ -762,11 +958,6 @@ public:
#endif // PRODUCT
// These virtual functions do the actual allocation.
virtual HeapWord* mem_allocate(size_t word_size,
bool is_noref,
bool is_tlab,
bool* gc_overhead_limit_was_exceeded);
// Some heaps may offer a contiguous region for shared non-blocking
// allocation, via inlined code (by exporting the address of the top and
// end fields defining the extent of the contiguous allocation region.)
......@@ -1046,7 +1237,6 @@ public:
virtual bool supports_tlab_allocation() const;
virtual size_t tlab_capacity(Thread* thr) const;
virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
virtual HeapWord* allocate_new_tlab(size_t word_size);
// Can a compiler initialize a new object without store barriers?
// This permission only extends from the creation of a new object
......@@ -1186,7 +1376,6 @@ public:
static G1CollectedHeap* heap();
void empty_young_list();
bool should_set_young_locked();
void set_region_short_lived_locked(HeapRegion* hr);
// add appropriate methods for any other surv rate groups
......@@ -1339,8 +1528,6 @@ public:
protected:
size_t _max_heap_capacity;
// debug_only(static void check_for_valid_allocation_state();)
public:
// Temporary: call to mark things unimplemented for the G1 heap (e.g.,
// MemoryService). In productization, we can make this assert false
......
......@@ -27,6 +27,7 @@
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/heapRegionSeq.hpp"
#include "utilities/taskqueue.hpp"
......@@ -58,37 +59,114 @@ inline bool G1CollectedHeap::obj_in_cs(oop obj) {
return r != NULL && r->in_collection_set();
}
inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
bool permit_collection_pause) {
HeapWord* res = NULL;
assert( SafepointSynchronize::is_at_safepoint() ||
Heap_lock->owned_by_self(), "pre-condition of the call" );
// All humongous allocation requests should go through the slow path in
// attempt_allocation_slow().
if (!isHumongous(word_size) && _cur_alloc_region != NULL) {
// If this allocation causes a region to become non empty,
// then we need to update our free_regions count.
if (_cur_alloc_region->is_empty()) {
res = _cur_alloc_region->allocate(word_size);
if (res != NULL)
_free_regions--;
} else {
res = _cur_alloc_region->allocate(word_size);
}
// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
inline HeapWord*
G1CollectedHeap::allocate_from_cur_alloc_region(HeapRegion* cur_alloc_region,
size_t word_size) {
assert_heap_locked_and_not_at_safepoint();
assert(cur_alloc_region != NULL, "pre-condition of the method");
assert(cur_alloc_region == _cur_alloc_region, "pre-condition of the method");
assert(cur_alloc_region->is_young(),
"we only support young current alloc regions");
assert(!isHumongous(word_size), "allocate_from_cur_alloc_region() "
"should not be used for humongous allocations");
assert(!cur_alloc_region->isHumongous(), "Catch a regression of this bug.");
assert(!cur_alloc_region->is_empty(),
err_msg("region ["PTR_FORMAT","PTR_FORMAT"] should not be empty",
cur_alloc_region->bottom(), cur_alloc_region->end()));
// This allocate method does BOT updates and we don't need them in
// the young generation. This will be fixed in the near future by
// CR 6994297.
HeapWord* result = cur_alloc_region->allocate(word_size);
if (result != NULL) {
assert(is_in(result), "result should be in the heap");
Heap_lock->unlock();
// Do the dirtying after we release the Heap_lock.
dirty_young_block(result, word_size);
return result;
}
assert_heap_locked();
return NULL;
}
if (res != NULL) {
if (!SafepointSynchronize::is_at_safepoint()) {
assert( Heap_lock->owned_by_self(), "invariant" );
Heap_lock->unlock();
}
return res;
// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
inline HeapWord*
G1CollectedHeap::attempt_allocation(size_t word_size) {
assert_heap_locked_and_not_at_safepoint();
assert(!isHumongous(word_size), "attempt_allocation() should not be called "
"for humongous allocation requests");
HeapRegion* cur_alloc_region = _cur_alloc_region;
if (cur_alloc_region != NULL) {
HeapWord* result = allocate_from_cur_alloc_region(cur_alloc_region,
word_size);
if (result != NULL) {
assert_heap_not_locked();
return result;
}
assert_heap_locked();
// Since we couldn't successfully allocate into it, retire the
// current alloc region.
retire_cur_alloc_region(cur_alloc_region);
}
// attempt_allocation_slow will also unlock the heap lock when appropriate.
return attempt_allocation_slow(word_size, permit_collection_pause);
// Try to get a new region and allocate out of it
HeapWord* result = replace_cur_alloc_region_and_allocate(word_size,
false, /* at safepoint */
true /* do_dirtying */);
if (result != NULL) {
assert_heap_not_locked();
return result;
}
assert_heap_locked();
return NULL;
}
inline void
G1CollectedHeap::retire_cur_alloc_region_common(HeapRegion* cur_alloc_region) {
assert_heap_locked_or_at_safepoint();
assert(cur_alloc_region != NULL && cur_alloc_region == _cur_alloc_region,
"pre-condition of the call");
assert(cur_alloc_region->is_young(),
"we only support young current alloc regions");
// The region is guaranteed to be young
g1_policy()->add_region_to_incremental_cset_lhs(cur_alloc_region);
_summary_bytes_used += cur_alloc_region->used();
_cur_alloc_region = NULL;
}
// It dirties the cards that cover the block so that so that the post
// write barrier never queues anything when updating objects on this
// block. It is assumed (and in fact we assert) that the block
// belongs to a young region.
inline void
G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
assert_heap_not_locked();
// Assign the containing region to containing_hr so that we don't
// have to keep calling heap_region_containing_raw() in the
// asserts below.
DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
assert(containing_hr != NULL && start != NULL && word_size > 0,
"pre-condition");
assert(containing_hr->is_in(start), "it should contain start");
assert(containing_hr->is_young(), "it should be young");
assert(!containing_hr->isHumongous(), "it should not be humongous");
HeapWord* end = start + word_size;
assert(containing_hr->is_in(end - 1), "it should also contain end - 1");
MemRegion mr(start, end);
((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
}
inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
......
......@@ -458,8 +458,8 @@ void G1CollectorPolicy::calculate_young_list_min_length() {
double now_sec = os::elapsedTime();
double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
double alloc_rate_ms = predict_alloc_rate_ms();
int min_regions = (int) ceil(alloc_rate_ms * when_ms);
int current_region_num = (int) _g1->young_list()->length();
size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
size_t current_region_num = _g1->young_list()->length();
_young_list_min_length = min_regions + current_region_num;
}
}
......@@ -473,9 +473,12 @@ void G1CollectorPolicy::calculate_young_list_target_length() {
_young_list_target_length = _young_list_fixed_length;
else
_young_list_target_length = _young_list_fixed_length / 2;
_young_list_target_length = MAX2(_young_list_target_length, (size_t)1);
}
// Make sure we allow the application to allocate at least one
// region before we need to do a collection again.
size_t min_length = _g1->young_list()->length() + 1;
_young_list_target_length = MAX2(_young_list_target_length, min_length);
calculate_survivors_policy();
}
......@@ -568,7 +571,7 @@ void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
// we should have at least one region in the target young length
_young_list_target_length =
MAX2((size_t) 1, final_young_length + _recorded_survivor_regions);
final_young_length + _recorded_survivor_regions;
// let's keep an eye of how long we spend on this calculation
// right now, I assume that we'll print it when we need it; we
......@@ -617,8 +620,7 @@ void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
_young_list_min_length);
#endif // TRACE_CALC_YOUNG_LENGTH
// we'll do the pause as soon as possible by choosing the minimum
_young_list_target_length =
MAX2(_young_list_min_length, (size_t) 1);
_young_list_target_length = _young_list_min_length;
}
_rs_lengths_prediction = rs_lengths;
......@@ -801,7 +803,7 @@ void G1CollectorPolicy::record_full_collection_end() {
_survivor_surv_rate_group->reset();
calculate_young_list_min_length();
calculate_young_list_target_length();
}
}
void G1CollectorPolicy::record_before_bytes(size_t bytes) {
_bytes_in_to_space_before_gc += bytes;
......@@ -824,9 +826,9 @@ void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
}
assert(_g1->used_regions() == _g1->recalculate_used_regions(),
"sanity");
assert(_g1->used() == _g1->recalculate_used(), "sanity");
assert(_g1->used() == _g1->recalculate_used(),
err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
_g1->used(), _g1->recalculate_used()));
double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
_all_stop_world_times_ms->add(s_w_t_ms);
......@@ -2266,24 +2268,13 @@ void G1CollectorPolicy::print_yg_surv_rate_info() const {
#endif // PRODUCT
}
bool
G1CollectorPolicy::should_add_next_region_to_young_list() {
assert(in_young_gc_mode(), "should be in young GC mode");
bool ret;
size_t young_list_length = _g1->young_list()->length();
size_t young_list_max_length = _young_list_target_length;
if (G1FixedEdenSize) {
young_list_max_length -= _max_survivor_regions;
}
if (young_list_length < young_list_max_length) {
ret = true;
void
G1CollectorPolicy::update_region_num(bool young) {
if (young) {
++_region_num_young;
} else {
ret = false;
++_region_num_tenured;
}
return ret;
}
#ifndef PRODUCT
......@@ -2327,32 +2318,6 @@ void G1CollectorPolicy::calculate_survivors_policy()
}
}
bool
G1CollectorPolicy_BestRegionsFirst::should_do_collection_pause(size_t
word_size) {
assert(_g1->regions_accounted_for(), "Region leakage!");
double max_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
size_t young_list_length = _g1->young_list()->length();
size_t young_list_max_length = _young_list_target_length;
if (G1FixedEdenSize) {
young_list_max_length -= _max_survivor_regions;
}
bool reached_target_length = young_list_length >= young_list_max_length;
if (in_young_gc_mode()) {
if (reached_target_length) {
assert( young_list_length > 0 && _g1->young_list()->length() > 0,
"invariant" );
return true;
}
} else {
guarantee( false, "should not reach here" );
}
return false;
}
#ifndef PRODUCT
class HRSortIndexIsOKClosure: public HeapRegionClosure {
CollectionSetChooser* _chooser;
......
......@@ -993,11 +993,6 @@ public:
void record_before_bytes(size_t bytes);
void record_after_bytes(size_t bytes);
// Returns "true" if this is a good time to do a collection pause.
// The "word_size" argument, if non-zero, indicates the size of an
// allocation request that is prompting this query.
virtual bool should_do_collection_pause(size_t word_size) = 0;
// Choose a new collection set. Marks the chosen regions as being
// "in_collection_set", and links them together. The head and number of
// the collection set are available via access methods.
......@@ -1116,7 +1111,16 @@ public:
// do that for any other surv rate groups
}
bool should_add_next_region_to_young_list();
bool is_young_list_full() {
size_t young_list_length = _g1->young_list()->length();
size_t young_list_max_length = _young_list_target_length;
if (G1FixedEdenSize) {
young_list_max_length -= _max_survivor_regions;
}
return young_list_length >= young_list_max_length;
}
void update_region_num(bool young);
bool in_young_gc_mode() {
return _in_young_gc_mode;
......@@ -1270,7 +1274,6 @@ public:
_collectionSetChooser = new CollectionSetChooser();
}
void record_collection_pause_end();
bool should_do_collection_pause(size_t word_size);
// This is not needed any more, after the CSet choosing code was
// changed to use the pause prediction work. But let's leave the
// hook in just in case.
......
......@@ -27,13 +27,22 @@
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "runtime/interfaceSupport.hpp"
VM_G1CollectForAllocation::VM_G1CollectForAllocation(
unsigned int gc_count_before,
size_t word_size)
: VM_G1OperationWithAllocRequest(gc_count_before, word_size) {
guarantee(word_size > 0, "an allocation should always be requested");
}
void VM_G1CollectForAllocation::doit() {
JvmtiGCForAllocationMarker jgcm;
G1CollectedHeap* g1h = G1CollectedHeap::heap();
_res = g1h->satisfy_failed_allocation(_size);
assert(g1h->is_in_or_null(_res), "result not in heap");
_result = g1h->satisfy_failed_allocation(_word_size, &_pause_succeeded);
assert(_result == NULL || _pause_succeeded,
"if we get back a result, the pause should have succeeded");
}
void VM_G1CollectFull::doit() {
......@@ -43,6 +52,25 @@ void VM_G1CollectFull::doit() {
g1h->do_full_collection(false /* clear_all_soft_refs */);
}
VM_G1IncCollectionPause::VM_G1IncCollectionPause(
unsigned int gc_count_before,
size_t word_size,
bool should_initiate_conc_mark,
double target_pause_time_ms,
GCCause::Cause gc_cause)
: VM_G1OperationWithAllocRequest(gc_count_before, word_size),
_should_initiate_conc_mark(should_initiate_conc_mark),
_target_pause_time_ms(target_pause_time_ms),
_full_collections_completed_before(0) {
guarantee(target_pause_time_ms > 0.0,
err_msg("target_pause_time_ms = %1.6lf should be positive",
target_pause_time_ms));
guarantee(word_size == 0 || gc_cause == GCCause::_g1_inc_collection_pause,
"we can only request an allocation if the GC cause is for "
"an incremental GC pause");
_gc_cause = gc_cause;
}
void VM_G1IncCollectionPause::doit() {
JvmtiGCForAllocationMarker jgcm;
G1CollectedHeap* g1h = G1CollectedHeap::heap();
......@@ -51,6 +79,18 @@ void VM_G1IncCollectionPause::doit() {
(_gc_cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent)),
"only a GC locker or a System.gc() induced GC should start a cycle");
if (_word_size > 0) {
// An allocation has been requested. So, try to do that first.
_result = g1h->attempt_allocation_at_safepoint(_word_size,
false /* expect_null_cur_alloc_region */);
if (_result != NULL) {
// If we can successfully allocate before we actually do the
// pause then we will consider this pause successful.
_pause_succeeded = true;
return;
}
}
GCCauseSetter x(g1h, _gc_cause);
if (_should_initiate_conc_mark) {
// It's safer to read full_collections_completed() here, given
......@@ -63,7 +103,16 @@ void VM_G1IncCollectionPause::doit() {
// will do so if one is not already in progress.
bool res = g1h->g1_policy()->force_initial_mark_if_outside_cycle();
}
g1h->do_collection_pause_at_safepoint(_target_pause_time_ms);
_pause_succeeded =
g1h->do_collection_pause_at_safepoint(_target_pause_time_ms);
if (_pause_succeeded && _word_size > 0) {
// An allocation had been requested.
_result = g1h->attempt_allocation_at_safepoint(_word_size,
true /* expect_null_cur_alloc_region */);
} else {
assert(_result == NULL, "invariant");
}
}
void VM_G1IncCollectionPause::doit_epilogue() {
......
......@@ -31,19 +31,33 @@
// VM_GC_Operation:
// - VM_CGC_Operation
// - VM_G1CollectFull
// - VM_G1CollectForAllocation
// - VM_G1IncCollectionPause
// - VM_G1PopRegionCollectionPause
// - VM_G1OperationWithAllocRequest
// - VM_G1CollectForAllocation
// - VM_G1IncCollectionPause
class VM_G1OperationWithAllocRequest: public VM_GC_Operation {
protected:
size_t _word_size;
HeapWord* _result;
bool _pause_succeeded;
public:
VM_G1OperationWithAllocRequest(unsigned int gc_count_before,
size_t word_size)
: VM_GC_Operation(gc_count_before),
_word_size(word_size), _result(NULL), _pause_succeeded(false) { }
HeapWord* result() { return _result; }
bool pause_succeeded() { return _pause_succeeded; }
};
class VM_G1CollectFull: public VM_GC_Operation {
public:
public:
VM_G1CollectFull(unsigned int gc_count_before,
unsigned int full_gc_count_before,
GCCause::Cause cause)
: VM_GC_Operation(gc_count_before, full_gc_count_before) {
_gc_cause = cause;
}
~VM_G1CollectFull() {}
virtual VMOp_Type type() const { return VMOp_G1CollectFull; }
virtual void doit();
virtual const char* name() const {
......@@ -51,45 +65,28 @@ class VM_G1CollectFull: public VM_GC_Operation {
}
};
class VM_G1CollectForAllocation: public VM_GC_Operation {
private:
HeapWord* _res;
size_t _size; // size of object to be allocated
public:
VM_G1CollectForAllocation(size_t size, int gc_count_before)
: VM_GC_Operation(gc_count_before) {
_size = size;
_res = NULL;
}
~VM_G1CollectForAllocation() {}
class VM_G1CollectForAllocation: public VM_G1OperationWithAllocRequest {
public:
VM_G1CollectForAllocation(unsigned int gc_count_before,
size_t word_size);
virtual VMOp_Type type() const { return VMOp_G1CollectForAllocation; }
virtual void doit();
virtual const char* name() const {
return "garbage-first collection to satisfy allocation";
}
HeapWord* result() { return _res; }
};
class VM_G1IncCollectionPause: public VM_GC_Operation {
class VM_G1IncCollectionPause: public VM_G1OperationWithAllocRequest {
private:
bool _should_initiate_conc_mark;
double _target_pause_time_ms;
bool _should_initiate_conc_mark;
double _target_pause_time_ms;
unsigned int _full_collections_completed_before;
public:
VM_G1IncCollectionPause(unsigned int gc_count_before,
size_t word_size,
bool should_initiate_conc_mark,
double target_pause_time_ms,
GCCause::Cause cause)
: VM_GC_Operation(gc_count_before),
_full_collections_completed_before(0),
_should_initiate_conc_mark(should_initiate_conc_mark),
_target_pause_time_ms(target_pause_time_ms) {
guarantee(target_pause_time_ms > 0.0,
err_msg("target_pause_time_ms = %1.6lf should be positive",
target_pause_time_ms));
_gc_cause = cause;
}
GCCause::Cause gc_cause);
virtual VMOp_Type type() const { return VMOp_G1IncCollectionPause; }
virtual void doit();
virtual void doit_epilogue();
......@@ -103,14 +100,9 @@ public:
class VM_CGC_Operation: public VM_Operation {
VoidClosure* _cl;
const char* _printGCMessage;
public:
VM_CGC_Operation(VoidClosure* cl, const char *printGCMsg) :
_cl(cl),
_printGCMessage(printGCMsg)
{}
~VM_CGC_Operation() {}
public:
VM_CGC_Operation(VoidClosure* cl, const char *printGCMsg)
: _cl(cl), _printGCMessage(printGCMsg) { }
virtual VMOp_Type type() const { return VMOp_CGC_Operation; }
virtual void doit();
virtual bool doit_prologue();
......
......@@ -770,9 +770,8 @@ void ReferenceProcessor::abandon_partial_discovery() {
// loop over the lists
for (int i = 0; i < _max_num_q * subclasses_of_ref; i++) {
if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
gclog_or_tty->print_cr(
"\nAbandoning %s discovered list",
list_name(i));
gclog_or_tty->print_cr("\nAbandoning %s discovered list",
list_name(i));
}
abandon_partial_discovered_list(_discoveredSoftRefs[i]);
}
......@@ -1059,9 +1058,7 @@ inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt)
// During a multi-threaded discovery phase,
// each thread saves to its "own" list.
Thread* thr = Thread::current();
assert(thr->is_GC_task_thread(),
"Dubious cast from Thread* to WorkerThread*?");
id = ((WorkerThread*)thr)->id();
id = thr->as_Worker_thread()->id();
} else {
// single-threaded discovery, we save in round-robin
// fashion to each of the lists.
......@@ -1095,8 +1092,7 @@ inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt)
ShouldNotReachHere();
}
if (TraceReferenceGC && PrintGCDetails) {
gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT,
id, list);
gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
}
return list;
}
......@@ -1135,6 +1131,11 @@ ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
if (_discovered_list_needs_barrier) {
_bs->write_ref_field((void*)discovered_addr, current_head);
}
if (TraceReferenceGC) {
gclog_or_tty->print_cr("Enqueued reference (mt) (" INTPTR_FORMAT ": %s)",
obj, obj->blueprint()->internal_name());
}
} else {
// If retest was non NULL, another thread beat us to it:
// The reference has already been discovered...
......@@ -1239,8 +1240,8 @@ bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
// Check assumption that an object is not potentially
// discovered twice except by concurrent collectors that potentially
// trace the same Reference object twice.
assert(UseConcMarkSweepGC,
"Only possible with an incremental-update concurrent collector");
assert(UseConcMarkSweepGC || UseG1GC,
"Only possible with a concurrent marking collector");
return true;
}
}
......@@ -1293,26 +1294,14 @@ bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
}
list->set_head(obj);
list->inc_length(1);
}
// In the MT discovery case, it is currently possible to see
// the following message multiple times if several threads
// discover a reference about the same time. Only one will
// however have actually added it to the disocvered queue.
// One could let add_to_discovered_list_mt() return an
// indication for success in queueing (by 1 thread) or
// failure (by all other threads), but I decided the extra
// code was not worth the effort for something that is
// only used for debugging support.
if (TraceReferenceGC) {
oop referent = java_lang_ref_Reference::referent(obj);
if (PrintGCDetails) {
if (TraceReferenceGC) {
gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
obj, obj->blueprint()->internal_name());
obj, obj->blueprint()->internal_name());
}
assert(referent->is_oop(), "Enqueued a bad referent");
}
assert(obj->is_oop(), "Enqueued a bad reference");
assert(java_lang_ref_Reference::referent(obj)->is_oop(), "Enqueued a bad referent");
return true;
}
......
......@@ -78,6 +78,8 @@ class GCTaskQueue;
class ThreadClosure;
class IdealGraphPrinter;
class WorkerThread;
// Class hierarchy
// - Thread
// - NamedThread
......@@ -289,6 +291,10 @@ class Thread: public ThreadShadow {
virtual bool is_Watcher_thread() const { return false; }
virtual bool is_ConcurrentGC_thread() const { return false; }
virtual bool is_Named_thread() const { return false; }
virtual bool is_Worker_thread() const { return false; }
// Casts
virtual WorkerThread* as_Worker_thread() const { return NULL; }
virtual char* name() const { return (char*)"Unknown thread"; }
......@@ -628,9 +634,16 @@ class WorkerThread: public NamedThread {
private:
uint _id;
public:
WorkerThread() : _id(0) { }
void set_id(uint work_id) { _id = work_id; }
uint id() const { return _id; }
WorkerThread() : _id(0) { }
virtual bool is_Worker_thread() const { return true; }
virtual WorkerThread* as_Worker_thread() const {
assert(is_Worker_thread(), "Dubious cast to WorkerThread*?");
return (WorkerThread*) this;
}
void set_id(uint work_id) { _id = work_id; }
uint id() const { return _id; }
};
// A single WatcherThread is used for simulating timer interrupts.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册