提交 58b99338 编写于 作者: Y ysr

Merge

......@@ -22,94 +22,90 @@
*
*/
#ifdef LP64
typedef juint TAG_TYPE;
// for a taskqueue size of 4M
#define LOG_TASKQ_SIZE 22
#else
typedef jushort TAG_TYPE;
// for a taskqueue size of 16K
#define LOG_TASKQ_SIZE 14
#endif
class TaskQueueSuper: public CHeapObj {
protected:
// The first free element after the last one pushed (mod _n).
// Internal type for indexing the queue; also used for the tag.
typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
// The first free element after the last one pushed (mod N).
volatile uint _bottom;
// log2 of the size of the queue.
enum SomeProtectedConstants {
Log_n = LOG_TASKQ_SIZE
enum {
N = 1 << NOT_LP64(14) LP64_ONLY(17), // Queue size: 16K or 128K
MOD_N_MASK = N - 1 // To compute x mod N efficiently.
};
#undef LOG_TASKQ_SIZE
// Size of the queue.
uint n() { return (1 << Log_n); }
// For computing "x mod n" efficiently.
uint n_mod_mask() { return n() - 1; }
class Age {
public:
Age(size_t data = 0) { _data = data; }
Age(const Age& age) { _data = age._data; }
Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; }
struct Age {
TAG_TYPE _top;
TAG_TYPE _tag;
Age get() const volatile { return _data; }
void set(Age age) volatile { _data = age._data; }
TAG_TYPE tag() const { return _tag; }
TAG_TYPE top() const { return _top; }
idx_t top() const volatile { return _fields._top; }
idx_t tag() const volatile { return _fields._tag; }
Age() { _tag = 0; _top = 0; }
// Increment top; if it wraps, increment tag also.
void increment() {
_fields._top = increment_index(_fields._top);
if (_fields._top == 0) ++_fields._tag;
}
friend bool operator ==(const Age& a1, const Age& a2) {
return a1.tag() == a2.tag() && a1.top() == a2.top();
Age cmpxchg(const Age new_age, const Age old_age) volatile {
return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
(volatile intptr_t *)&_data,
(intptr_t)old_age._data);
}
bool operator ==(const Age& other) const { return _data == other._data; }
private:
struct fields {
idx_t _top;
idx_t _tag;
};
union {
size_t _data;
fields _fields;
};
};
Age _age;
// These make sure we do single atomic reads and writes.
Age get_age() {
uint res = *(volatile uint*)(&_age);
return *(Age*)(&res);
}
void set_age(Age a) {
*(volatile uint*)(&_age) = *(uint*)(&a);
}
TAG_TYPE get_top() {
return get_age().top();
}
volatile Age _age;
// These both operate mod _n.
uint increment_index(uint ind) {
return (ind + 1) & n_mod_mask();
// These both operate mod N.
static uint increment_index(uint ind) {
return (ind + 1) & MOD_N_MASK;
}
uint decrement_index(uint ind) {
return (ind - 1) & n_mod_mask();
static uint decrement_index(uint ind) {
return (ind - 1) & MOD_N_MASK;
}
// Returns a number in the range [0.._n). If the result is "n-1", it
// should be interpreted as 0.
// Returns a number in the range [0..N). If the result is "N-1", it should be
// interpreted as 0.
uint dirty_size(uint bot, uint top) {
return ((int)bot - (int)top) & n_mod_mask();
return (bot - top) & MOD_N_MASK;
}
// Returns the size corresponding to the given "bot" and "top".
uint size(uint bot, uint top) {
uint sz = dirty_size(bot, top);
// Has the queue "wrapped", so that bottom is less than top?
// There's a complicated special case here. A pair of threads could
// perform pop_local and pop_global operations concurrently, starting
// from a state in which _bottom == _top+1. The pop_local could
// succeed in decrementing _bottom, and the pop_global in incrementing
// _top (in which case the pop_global will be awarded the contested
// queue element.) The resulting state must be interpreted as an empty
// queue. (We only need to worry about one such event: only the queue
// owner performs pop_local's, and several concurrent threads
// attempting to perform the pop_global will all perform the same CAS,
// and only one can succeed. Any stealing thread that reads after
// either the increment or decrement will see an empty queue, and will
// not join the competitors. The "sz == -1 || sz == _n-1" state will
// not be modified by concurrent queues, so the owner thread can reset
// the state to _bottom == top so subsequent pushes will be performed
// normally.
if (sz == (n()-1)) return 0;
else return sz;
// Has the queue "wrapped", so that bottom is less than top? There's a
// complicated special case here. A pair of threads could perform pop_local
// and pop_global operations concurrently, starting from a state in which
// _bottom == _top+1. The pop_local could succeed in decrementing _bottom,
// and the pop_global in incrementing _top (in which case the pop_global
// will be awarded the contested queue element.) The resulting state must
// be interpreted as an empty queue. (We only need to worry about one such
// event: only the queue owner performs pop_local's, and several concurrent
// threads attempting to perform the pop_global will all perform the same
// CAS, and only one can succeed.) Any stealing thread that reads after
// either the increment or decrement will see an empty queue, and will not
// join the competitors. The "sz == -1 || sz == N-1" state will not be
// modified by concurrent queues, so the owner thread can reset the state to
// _bottom == top so subsequent pushes will be performed normally.
return (sz == N - 1) ? 0 : sz;
}
public:
......@@ -122,22 +118,21 @@ public:
// The "careful" version admits the possibility of pop_local/pop_global
// races.
uint size() {
return size(_bottom, get_top());
return size(_bottom, _age.top());
}
uint dirty_size() {
return dirty_size(_bottom, get_top());
return dirty_size(_bottom, _age.top());
}
void set_empty() {
_bottom = 0;
_age = Age();
_age.set(0);
}
// Maximum number of elements allowed in the queue. This is two less
// than the actual queue size, for somewhat complicated reasons.
uint max_elems() { return n() - 2; }
uint max_elems() { return N - 2; }
};
template<class E> class GenericTaskQueue: public TaskQueueSuper {
......@@ -179,12 +174,12 @@ private:
template<class E>
GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
assert(sizeof(Age) == sizeof(int), "Depends on this.");
assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
}
template<class E>
void GenericTaskQueue<E>::initialize() {
_elems = NEW_C_HEAP_ARRAY(E, n());
_elems = NEW_C_HEAP_ARRAY(E, N);
guarantee(_elems != NULL, "Allocation failed.");
}
......@@ -208,14 +203,14 @@ void GenericTaskQueue<E>::oops_do(OopClosure* f) {
template<class E>
bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
if (dirty_n_elems == n() - 1) {
if (dirty_n_elems == N - 1) {
// Actually means 0, so do the push.
uint localBot = _bottom;
_elems[localBot] = t;
_bottom = increment_index(localBot);
return true;
} else
return false;
}
return false;
}
template<class E>
......@@ -230,53 +225,45 @@ pop_local_slow(uint localBot, Age oldAge) {
// then have the owner thread do a pop followed by another push. Without
// the incrementing of "tag", the pop_global's CAS could succeed,
// allowing it to believe it has claimed the stale element.)
Age newAge;
newAge._top = localBot;
newAge._tag = oldAge.tag() + 1;
Age newAge((idx_t)localBot, oldAge.tag() + 1);
// Perhaps a competing pop_global has already incremented "top", in which
// case it wins the element.
if (localBot == oldAge.top()) {
Age tempAge;
// No competing pop_global has yet incremented "top"; we'll try to
// install new_age, thus claiming the element.
assert(sizeof(Age) == sizeof(int), "Assumption about CAS unit.");
*(uint*)&tempAge = Atomic::cmpxchg(*(uint*)&newAge, (volatile uint*)&_age, *(uint*)&oldAge);
Age tempAge = _age.cmpxchg(newAge, oldAge);
if (tempAge == oldAge) {
// We win.
assert(dirty_size(localBot, get_top()) != n() - 1,
"Shouldn't be possible...");
assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
return true;
}
}
// We fail; a completing pop_global gets the element. But the queue is
// empty (and top is greater than bottom.) Fix this representation of
// the empty queue to become the canonical one.
set_age(newAge);
assert(dirty_size(localBot, get_top()) != n() - 1,
"Shouldn't be possible...");
// We lose; a completing pop_global gets the element. But the queue is empty
// and top is greater than bottom. Fix this representation of the empty queue
// to become the canonical one.
_age.set(newAge);
assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
return false;
}
template<class E>
bool GenericTaskQueue<E>::pop_global(E& t) {
Age newAge;
Age oldAge = get_age();
Age oldAge = _age.get();
uint localBot = _bottom;
uint n_elems = size(localBot, oldAge.top());
if (n_elems == 0) {
return false;
}
t = _elems[oldAge.top()];
newAge = oldAge;
newAge._top = increment_index(newAge.top());
if ( newAge._top == 0 ) newAge._tag++;
Age resAge;
*(uint*)&resAge = Atomic::cmpxchg(*(uint*)&newAge, (volatile uint*)&_age, *(uint*)&oldAge);
Age newAge(oldAge);
newAge.increment();
Age resAge = _age.cmpxchg(newAge, oldAge);
// Note that using "_bottom" here might fail, since a pop_local might
// have decremented it.
assert(dirty_size(localBot, newAge._top) != n() - 1,
"Shouldn't be possible...");
return (resAge == oldAge);
assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
return resAge == oldAge;
}
template<class E>
......@@ -459,7 +446,7 @@ public:
return offer_termination(NULL);
}
// As above, but it also terminates of the should_exit_termination()
// As above, but it also terminates if the should_exit_termination()
// method of the terminator parameter returns true. If terminator is
// NULL, then it is ignored.
bool offer_termination(TerminatorTerminator* terminator);
......@@ -492,11 +479,10 @@ template<class E> inline bool GenericTaskQueue<E>::push(E t) {
}
#else
uint localBot = _bottom;
assert((localBot >= 0) && (localBot < n()), "_bottom out of range.");
TAG_TYPE top = get_top();
assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
idx_t top = _age.top();
uint dirty_n_elems = dirty_size(localBot, top);
assert((dirty_n_elems >= 0) && (dirty_n_elems < n()),
"n_elems out of range.");
assert((dirty_n_elems >= 0) && (dirty_n_elems < N), "n_elems out of range.");
if (dirty_n_elems < max_elems()) {
_elems[localBot] = t;
_bottom = increment_index(localBot);
......@@ -517,12 +503,12 @@ template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
return true;
#else
uint localBot = _bottom;
// This value cannot be n-1. That can only occur as a result of
// This value cannot be N-1. That can only occur as a result of
// the assignment to bottom in this method. If it does, this method
// resets the size( to 0 before the next call (which is sequential,
// since this is pop_local.)
uint dirty_n_elems = dirty_size(localBot, get_top());
assert(dirty_n_elems != n() - 1, "Shouldn't be possible...");
uint dirty_n_elems = dirty_size(localBot, _age.top());
assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
if (dirty_n_elems == 0) return false;
localBot = decrement_index(localBot);
_bottom = localBot;
......@@ -534,15 +520,14 @@ template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
// If there's still at least one element in the queue, based on the
// "_bottom" and "age" we've read, then there can be no interference with
// a "pop_global" operation, and we're done.
TAG_TYPE tp = get_top(); // XXX
idx_t tp = _age.top(); // XXX
if (size(localBot, tp) > 0) {
assert(dirty_size(localBot, tp) != n() - 1,
"Shouldn't be possible...");
assert(dirty_size(localBot, tp) != N - 1, "sanity");
return true;
} else {
// Otherwise, the queue contained exactly one element; we take the slow
// path.
return pop_local_slow(localBot, get_age());
return pop_local_slow(localBot, _age.get());
}
#endif
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册