提交 412f955f 编写于 作者: J johnc

7117303: VM uses non-monotonic time source and complains that it is non-monotonic

Summary: Replaces calls to os::javaTimeMillis(), which does not (and cannot) guarantee monotonicity, in GC code to an equivalent expression that uses os::javaTimeNanos(). os::javaTimeNanos is guaranteed monotonically non-decreasing if the underlying platform provides a monotonic time source. Changes in OS files are to make use of the newly defined constants in globalDefinitions.hpp.
Reviewed-by: dholmes, ysr
上级 c4973f85
...@@ -150,7 +150,6 @@ ...@@ -150,7 +150,6 @@
// for timer info max values which include all bits // for timer info max values which include all bits
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF) #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
#define SEC_IN_NANOSECS 1000000000LL
#define LARGEPAGES_BIT (1 << 6) #define LARGEPAGES_BIT (1 << 6)
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
...@@ -3445,8 +3444,6 @@ size_t os::read(int fd, void *buf, unsigned int nBytes) { ...@@ -3445,8 +3444,6 @@ size_t os::read(int fd, void *buf, unsigned int nBytes) {
// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
// SIGSEGV, see 4355769. // SIGSEGV, see 4355769.
const int NANOSECS_PER_MILLISECS = 1000000;
int os::sleep(Thread* thread, jlong millis, bool interruptible) { int os::sleep(Thread* thread, jlong millis, bool interruptible) {
assert(thread == Thread::current(), "thread consistency check"); assert(thread == Thread::current(), "thread consistency check");
...@@ -3469,7 +3466,7 @@ int os::sleep(Thread* thread, jlong millis, bool interruptible) { ...@@ -3469,7 +3466,7 @@ int os::sleep(Thread* thread, jlong millis, bool interruptible) {
// not a guarantee() because JVM should not abort on kernel/glibc bugs // not a guarantee() because JVM should not abort on kernel/glibc bugs
assert(!Bsd::supports_monotonic_clock(), "time moving backwards"); assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
} else { } else {
millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS; millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
} }
if(millis <= 0) { if(millis <= 0) {
...@@ -3508,7 +3505,7 @@ int os::sleep(Thread* thread, jlong millis, bool interruptible) { ...@@ -3508,7 +3505,7 @@ int os::sleep(Thread* thread, jlong millis, bool interruptible) {
// not a guarantee() because JVM should not abort on kernel/glibc bugs // not a guarantee() because JVM should not abort on kernel/glibc bugs
assert(!Bsd::supports_monotonic_clock(), "time moving backwards"); assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
} else { } else {
millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS; millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
} }
if(millis <= 0) break ; if(millis <= 0) break ;
...@@ -4197,7 +4194,7 @@ jlong os::Bsd::fast_thread_cpu_time(clockid_t clockid) { ...@@ -4197,7 +4194,7 @@ jlong os::Bsd::fast_thread_cpu_time(clockid_t clockid) {
int rc = os::Bsd::clock_gettime(clockid, &tp); int rc = os::Bsd::clock_gettime(clockid, &tp);
assert(rc == 0, "clock_gettime is expected to return 0 code"); assert(rc == 0, "clock_gettime is expected to return 0 code");
return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec; return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
} }
#endif #endif
...@@ -5522,9 +5519,6 @@ void os::PlatformEvent::unpark() { ...@@ -5522,9 +5519,6 @@ void os::PlatformEvent::unpark() {
* is no need to track notifications. * is no need to track notifications.
*/ */
#define NANOSECS_PER_SEC 1000000000
#define NANOSECS_PER_MILLISEC 1000000
#define MAX_SECS 100000000 #define MAX_SECS 100000000
/* /*
* This code is common to bsd and solaris and will be moved to a * This code is common to bsd and solaris and will be moved to a
......
...@@ -127,7 +127,6 @@ ...@@ -127,7 +127,6 @@
// for timer info max values which include all bits // for timer info max values which include all bits
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF) #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
#define SEC_IN_NANOSECS 1000000000LL
#define LARGEPAGES_BIT (1 << 6) #define LARGEPAGES_BIT (1 << 6)
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
...@@ -3259,8 +3258,6 @@ size_t os::read(int fd, void *buf, unsigned int nBytes) { ...@@ -3259,8 +3258,6 @@ size_t os::read(int fd, void *buf, unsigned int nBytes) {
// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
// SIGSEGV, see 4355769. // SIGSEGV, see 4355769.
const int NANOSECS_PER_MILLISECS = 1000000;
int os::sleep(Thread* thread, jlong millis, bool interruptible) { int os::sleep(Thread* thread, jlong millis, bool interruptible) {
assert(thread == Thread::current(), "thread consistency check"); assert(thread == Thread::current(), "thread consistency check");
...@@ -3283,7 +3280,7 @@ int os::sleep(Thread* thread, jlong millis, bool interruptible) { ...@@ -3283,7 +3280,7 @@ int os::sleep(Thread* thread, jlong millis, bool interruptible) {
// not a guarantee() because JVM should not abort on kernel/glibc bugs // not a guarantee() because JVM should not abort on kernel/glibc bugs
assert(!Linux::supports_monotonic_clock(), "time moving backwards"); assert(!Linux::supports_monotonic_clock(), "time moving backwards");
} else { } else {
millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS; millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
} }
if(millis <= 0) { if(millis <= 0) {
...@@ -3322,7 +3319,7 @@ int os::sleep(Thread* thread, jlong millis, bool interruptible) { ...@@ -3322,7 +3319,7 @@ int os::sleep(Thread* thread, jlong millis, bool interruptible) {
// not a guarantee() because JVM should not abort on kernel/glibc bugs // not a guarantee() because JVM should not abort on kernel/glibc bugs
assert(!Linux::supports_monotonic_clock(), "time moving backwards"); assert(!Linux::supports_monotonic_clock(), "time moving backwards");
} else { } else {
millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS; millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
} }
if(millis <= 0) break ; if(millis <= 0) break ;
...@@ -3924,7 +3921,7 @@ jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) { ...@@ -3924,7 +3921,7 @@ jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
int rc = os::Linux::clock_gettime(clockid, &tp); int rc = os::Linux::clock_gettime(clockid, &tp);
assert(rc == 0, "clock_gettime is expected to return 0 code"); assert(rc == 0, "clock_gettime is expected to return 0 code");
return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec; return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
} }
///// /////
...@@ -5165,9 +5162,6 @@ void os::PlatformEvent::unpark() { ...@@ -5165,9 +5162,6 @@ void os::PlatformEvent::unpark() {
* is no need to track notifications. * is no need to track notifications.
*/ */
#define NANOSECS_PER_SEC 1000000000
#define NANOSECS_PER_MILLISEC 1000000
#define MAX_SECS 100000000 #define MAX_SECS 100000000
/* /*
* This code is common to linux and solaris and will be moved to a * This code is common to linux and solaris and will be moved to a
......
...@@ -1674,7 +1674,6 @@ void* os::thread_local_storage_at(int index) { ...@@ -1674,7 +1674,6 @@ void* os::thread_local_storage_at(int index) {
} }
const int NANOSECS_PER_MILLISECS = 1000000;
// gethrtime can move backwards if read from one cpu and then a different cpu // gethrtime can move backwards if read from one cpu and then a different cpu
// getTimeNanos is guaranteed to not move backward on Solaris // getTimeNanos is guaranteed to not move backward on Solaris
// local spinloop created as faster for a CAS on an int than // local spinloop created as faster for a CAS on an int than
...@@ -1803,7 +1802,7 @@ double os::elapsedVTime() { ...@@ -1803,7 +1802,7 @@ double os::elapsedVTime() {
// getTimeMillis guaranteed to not move backwards on Solaris // getTimeMillis guaranteed to not move backwards on Solaris
jlong getTimeMillis() { jlong getTimeMillis() {
jlong nanotime = getTimeNanos(); jlong nanotime = getTimeNanos();
return (jlong)(nanotime / NANOSECS_PER_MILLISECS); return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
} }
// Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
...@@ -6064,10 +6063,7 @@ void os::PlatformEvent::unpark() { ...@@ -6064,10 +6063,7 @@ void os::PlatformEvent::unpark() {
* is no need to track notifications. * is no need to track notifications.
*/ */
#define NANOSECS_PER_SEC 1000000000
#define NANOSECS_PER_MILLISEC 1000000
#define MAX_SECS 100000000 #define MAX_SECS 100000000
/* /*
* This code is common to linux and solaris and will be moved to a * This code is common to linux and solaris and will be moved to a
* common place in dolphin. * common place in dolphin.
......
...@@ -821,17 +821,15 @@ jlong os::javaTimeMillis() { ...@@ -821,17 +821,15 @@ jlong os::javaTimeMillis() {
} }
} }
#define NANOS_PER_SEC CONST64(1000000000)
#define NANOS_PER_MILLISEC 1000000
jlong os::javaTimeNanos() { jlong os::javaTimeNanos() {
if (!has_performance_count) { if (!has_performance_count) {
return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do. return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
} else { } else {
LARGE_INTEGER current_count; LARGE_INTEGER current_count;
QueryPerformanceCounter(&current_count); QueryPerformanceCounter(&current_count);
double current = as_long(current_count); double current = as_long(current_count);
double freq = performance_frequency; double freq = performance_frequency;
jlong time = (jlong)((current/freq) * NANOS_PER_SEC); jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
return time; return time;
} }
} }
...@@ -847,15 +845,15 @@ void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) { ...@@ -847,15 +845,15 @@ void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
info_ptr->may_skip_forward = true; info_ptr->may_skip_forward = true;
} else { } else {
jlong freq = performance_frequency; jlong freq = performance_frequency;
if (freq < NANOS_PER_SEC) { if (freq < NANOSECS_PER_SEC) {
// the performance counter is 64 bits and we will // the performance counter is 64 bits and we will
// be multiplying it -- so no wrap in 64 bits // be multiplying it -- so no wrap in 64 bits
info_ptr->max_value = ALL_64_BITS; info_ptr->max_value = ALL_64_BITS;
} else if (freq > NANOS_PER_SEC) { } else if (freq > NANOSECS_PER_SEC) {
// use the max value the counter can reach to // use the max value the counter can reach to
// determine the max value which could be returned // determine the max value which could be returned
julong max_counter = (julong)ALL_64_BITS; julong max_counter = (julong)ALL_64_BITS;
info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC)); info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
} else { } else {
// the performance counter is 64 bits and we will // the performance counter is 64 bits and we will
// be using it directly -- so no wrap in 64 bits // be using it directly -- so no wrap in 64 bits
......
...@@ -672,15 +672,20 @@ void PSMarkSweep::mark_sweep_phase4() { ...@@ -672,15 +672,20 @@ void PSMarkSweep::mark_sweep_phase4() {
} }
jlong PSMarkSweep::millis_since_last_gc() { jlong PSMarkSweep::millis_since_last_gc() {
jlong ret_val = os::javaTimeMillis() - _time_of_last_gc; // We need a monotonically non-deccreasing time in ms but
// os::javaTimeMillis() does not guarantee monotonicity.
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
jlong ret_val = now - _time_of_last_gc;
// XXX See note in genCollectedHeap::millis_since_last_gc(). // XXX See note in genCollectedHeap::millis_since_last_gc().
if (ret_val < 0) { if (ret_val < 0) {
NOT_PRODUCT(warning("time warp: %d", ret_val);) NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
return 0; return 0;
} }
return ret_val; return ret_val;
} }
void PSMarkSweep::reset_millis_since_last_gc() { void PSMarkSweep::reset_millis_since_last_gc() {
_time_of_last_gc = os::javaTimeMillis(); // We need a monotonically non-deccreasing time in ms but
// os::javaTimeMillis() does not guarantee monotonicity.
_time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
} }
...@@ -3398,17 +3398,22 @@ PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) { ...@@ -3398,17 +3398,22 @@ PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
} }
jlong PSParallelCompact::millis_since_last_gc() { jlong PSParallelCompact::millis_since_last_gc() {
jlong ret_val = os::javaTimeMillis() - _time_of_last_gc; // We need a monotonically non-deccreasing time in ms but
// os::javaTimeMillis() does not guarantee monotonicity.
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
jlong ret_val = now - _time_of_last_gc;
// XXX See note in genCollectedHeap::millis_since_last_gc(). // XXX See note in genCollectedHeap::millis_since_last_gc().
if (ret_val < 0) { if (ret_val < 0) {
NOT_PRODUCT(warning("time warp: %d", ret_val);) NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
return 0; return 0;
} }
return ret_val; return ret_val;
} }
void PSParallelCompact::reset_millis_since_last_gc() { void PSParallelCompact::reset_millis_since_last_gc() {
_time_of_last_gc = os::javaTimeMillis(); // We need a monotonically non-deccreasing time in ms but
// os::javaTimeMillis() does not guarantee monotonicity.
_time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
} }
ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full() ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
......
...@@ -1460,26 +1460,22 @@ class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure { ...@@ -1460,26 +1460,22 @@ class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
}; };
jlong GenCollectedHeap::millis_since_last_gc() { jlong GenCollectedHeap::millis_since_last_gc() {
jlong now = os::javaTimeMillis(); // We need a monotonically non-deccreasing time in ms but
// os::javaTimeMillis() does not guarantee monotonicity.
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
GenTimeOfLastGCClosure tolgc_cl(now); GenTimeOfLastGCClosure tolgc_cl(now);
// iterate over generations getting the oldest // iterate over generations getting the oldest
// time that a generation was collected // time that a generation was collected
generation_iterate(&tolgc_cl, false); generation_iterate(&tolgc_cl, false);
tolgc_cl.do_generation(perm_gen()); tolgc_cl.do_generation(perm_gen());
// XXX Despite the assert above, since javaTimeMillis()
// doesnot guarantee monotonically increasing return // javaTimeNanos() is guaranteed to be monotonically non-decreasing
// values (note, i didn't say "strictly monotonic"), // provided the underlying platform provides such a time source
// we need to guard against getting back a time // (and it is bug free). So we still have to guard against getting
// later than now. This should be fixed by basing // back a time later than 'now'.
// on someting like gethrtime() which guarantees
// monotonicity. Note that cond_wait() is susceptible
// to a similar problem, because its interface is
// based on absolute time in the form of the
// system time's notion of UCT. See also 4506635
// for yet another problem of similar nature. XXX
jlong retVal = now - tolgc_cl.time(); jlong retVal = now - tolgc_cl.time();
if (retVal < 0) { if (retVal < 0) {
NOT_PRODUCT(warning("time warp: %d", retVal);) NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
return 0; return 0;
} }
return retVal; return retVal;
......
...@@ -413,10 +413,13 @@ class Generation: public CHeapObj { ...@@ -413,10 +413,13 @@ class Generation: public CHeapObj {
// Time (in ms) when we were last collected or now if a collection is // Time (in ms) when we were last collected or now if a collection is
// in progress. // in progress.
virtual jlong time_of_last_gc(jlong now) { virtual jlong time_of_last_gc(jlong now) {
// XXX See note in genCollectedHeap::millis_since_last_gc() // Both _time_of_last_gc and now are set using a time source
// that guarantees monotonically non-decreasing values provided
// the underlying platform provides such a source. So we still
// have to guard against non-monotonicity.
NOT_PRODUCT( NOT_PRODUCT(
if (now < _time_of_last_gc) { if (now < _time_of_last_gc) {
warning("time warp: %d to %d", _time_of_last_gc, now); warning("time warp: "INT64_FORMAT" to "INT64_FORMAT, _time_of_last_gc, now);
} }
) )
return _time_of_last_gc; return _time_of_last_gc;
......
...@@ -43,7 +43,9 @@ void referenceProcessor_init() { ...@@ -43,7 +43,9 @@ void referenceProcessor_init() {
} }
void ReferenceProcessor::init_statics() { void ReferenceProcessor::init_statics() {
jlong now = os::javaTimeMillis(); // We need a monotonically non-deccreasing time in ms but
// os::javaTimeMillis() does not guarantee monotonicity.
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
// Initialize the soft ref timestamp clock. // Initialize the soft ref timestamp clock.
_soft_ref_timestamp_clock = now; _soft_ref_timestamp_clock = now;
...@@ -151,7 +153,10 @@ void ReferenceProcessor::weak_oops_do(OopClosure* f) { ...@@ -151,7 +153,10 @@ void ReferenceProcessor::weak_oops_do(OopClosure* f) {
void ReferenceProcessor::update_soft_ref_master_clock() { void ReferenceProcessor::update_soft_ref_master_clock() {
// Update (advance) the soft ref master clock field. This must be done // Update (advance) the soft ref master clock field. This must be done
// after processing the soft ref list. // after processing the soft ref list.
jlong now = os::javaTimeMillis();
// We need a monotonically non-deccreasing time in ms but
// os::javaTimeMillis() does not guarantee monotonicity.
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
jlong soft_ref_clock = java_lang_ref_SoftReference::clock(); jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync"); assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
...@@ -161,10 +166,11 @@ void ReferenceProcessor::update_soft_ref_master_clock() { ...@@ -161,10 +166,11 @@ void ReferenceProcessor::update_soft_ref_master_clock() {
_soft_ref_timestamp_clock, now); _soft_ref_timestamp_clock, now);
} }
) )
// In product mode, protect ourselves from system time being adjusted // The values of now and _soft_ref_timestamp_clock are set using
// externally and going backward; see note in the implementation of // javaTimeNanos(), which is guaranteed to be monotonically
// GenCollectedHeap::time_since_last_gc() for the right way to fix // non-decreasing provided the underlying platform provides such
// this uniformly throughout the VM; see bug-id 4741166. XXX // a time source (and it is bug free).
// In product mode, however, protect ourselves from non-monotonicty.
if (now > _soft_ref_timestamp_clock) { if (now > _soft_ref_timestamp_clock) {
_soft_ref_timestamp_clock = now; _soft_ref_timestamp_clock = now;
java_lang_ref_SoftReference::set_clock(now); java_lang_ref_SoftReference::set_clock(now);
......
...@@ -175,6 +175,9 @@ const int MILLIUNITS = 1000; // milli units per base unit ...@@ -175,6 +175,9 @@ const int MILLIUNITS = 1000; // milli units per base unit
const int MICROUNITS = 1000000; // micro units per base unit const int MICROUNITS = 1000000; // micro units per base unit
const int NANOUNITS = 1000000000; // nano units per base unit const int NANOUNITS = 1000000000; // nano units per base unit
const jlong NANOSECS_PER_SEC = CONST64(1000000000);
const jint NANOSECS_PER_MILLISEC = 1000000;
inline const char* proper_unit_for_byte_size(size_t s) { inline const char* proper_unit_for_byte_size(size_t s) {
if (s >= 10*M) { if (s >= 10*M) {
return "M"; return "M";
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册