提交 3686ad20 编写于 作者: R rbackman

Merge

......@@ -44,7 +44,7 @@ public class PhaseCFG extends Phase {
Type type = db.lookupType("PhaseCFG");
numBlocksField = new CIntField(type.getCIntegerField("_num_blocks"), 0);
blocksField = type.getAddressField("_blocks");
bbsField = type.getAddressField("_bbs");
bbsField = type.getAddressField("_node_to_block_mapping");
brootField = type.getAddressField("_broot");
}
......
......@@ -41,13 +41,11 @@ SOURCE.AD = $(OUTDIR)/$(OS)_$(Platform_arch_model).ad
ifeq ("${Platform_arch_model}", "${Platform_arch}")
SOURCES.AD = \
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch_model).ad) \
$(call altsrc-replace,$(HS_COMMON_SRC)/os_cpu/$(OS)_$(ARCH)/vm/$(OS)_$(Platform_arch_model).ad)
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch_model).ad)
else
SOURCES.AD = \
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch_model).ad) \
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch).ad) \
$(call altsrc-replace,$(HS_COMMON_SRC)/os_cpu/$(OS)_$(ARCH)/vm/$(OS)_$(Platform_arch_model).ad)
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch).ad)
endif
EXEC = $(OUTDIR)/adlc
......
......@@ -41,13 +41,11 @@ SOURCE.AD = $(OUTDIR)/$(OS)_$(Platform_arch_model).ad
ifeq ("${Platform_arch_model}", "${Platform_arch}")
SOURCES.AD = \
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch_model).ad) \
$(call altsrc-replace,$(HS_COMMON_SRC)/os_cpu/$(OS)_$(ARCH)/vm/$(OS)_$(Platform_arch_model).ad)
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch_model).ad)
else
SOURCES.AD = \
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch_model).ad) \
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch).ad) \
$(call altsrc-replace,$(HS_COMMON_SRC)/os_cpu/$(OS)_$(ARCH)/vm/$(OS)_$(Platform_arch_model).ad)
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch).ad)
endif
EXEC = $(OUTDIR)/adlc
......
......@@ -42,13 +42,11 @@ SOURCE.AD = $(OUTDIR)/$(OS)_$(Platform_arch_model).ad
ifeq ("${Platform_arch_model}", "${Platform_arch}")
SOURCES.AD = \
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch_model).ad) \
$(call altsrc-replace,$(HS_COMMON_SRC)/os_cpu/$(OS)_$(ARCH)/vm/$(OS)_$(Platform_arch_model).ad)
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch_model).ad)
else
SOURCES.AD = \
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch_model).ad) \
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch).ad) \
$(call altsrc-replace,$(HS_COMMON_SRC)/os_cpu/$(OS)_$(ARCH)/vm/$(OS)_$(Platform_arch_model).ad)
$(call altsrc-replace,$(HS_COMMON_SRC)/cpu/$(ARCH)/vm/$(Platform_arch).ad)
endif
EXEC = $(OUTDIR)/adlc
......
......@@ -55,13 +55,11 @@ CXX_INCLUDE_DIRS=\
!if "$(Platform_arch_model)" == "$(Platform_arch)"
SOURCES_AD=\
$(WorkSpace)/src/cpu/$(Platform_arch)/vm/$(Platform_arch_model).ad \
$(WorkSpace)/src/os_cpu/windows_$(Platform_arch)/vm/windows_$(Platform_arch_model).ad
$(WorkSpace)/src/cpu/$(Platform_arch)/vm/$(Platform_arch_model).ad
!else
SOURCES_AD=\
$(WorkSpace)/src/cpu/$(Platform_arch)/vm/$(Platform_arch_model).ad \
$(WorkSpace)/src/cpu/$(Platform_arch)/vm/$(Platform_arch).ad \
$(WorkSpace)/src/os_cpu/windows_$(Platform_arch)/vm/windows_$(Platform_arch_model).ad
$(WorkSpace)/src/cpu/$(Platform_arch)/vm/$(Platform_arch).ad
!endif
# NOTE! If you add any files here, you must also update GENERATED_NAMES_IN_DIR
......
//
// Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// X86 Bsd Architecture Description File
//
// Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// AMD64 Bsd Architecture Description File
//----------OS-DEPENDENT ENCODING BLOCK----------------------------------------
// This block specifies the encoding classes used by the compiler to
// output byte streams. Encoding classes generate functions which are
// called by Machine Instruction Nodes in order to generate the bit
// encoding of the instruction. Operands specify their base encoding
// interface with the interface keyword. There are currently
// supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
// COND_INTER. REG_INTER causes an operand to generate a function
// which returns its register number when queried. CONST_INTER causes
// an operand to generate a function which returns the value of the
// constant when queried. MEMORY_INTER causes an operand to generate
// four functions which return the Base Register, the Index Register,
// the Scale Value, and the Offset Value of the operand when queried.
// COND_INTER causes an operand to generate six functions which return
// the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional
// instruction. Instructions specify two basic values for encoding.
// They use the ins_encode keyword to specify their encoding class
// (which must be one of the class names specified in the encoding
// block), and they use the opcode keyword to specify, in order, their
// primary, secondary, and tertiary opcode. Only the opcode sections
// which a particular instruction needs for encoding need to be
// specified.
encode %{
// Build emit functions for each basic byte or larger field in the intel
// encoding scheme (opcode, rm, sib, immediate), and call them from C++
// code in the enc_class source block. Emit functions will live in the
// main source block for now. In future, we can generalize this by
// adding a syntax that specifies the sizes of fields in an order,
// so that the adlc can build the emit functions automagically
%}
// Platform dependent source
source %{
%}
//
// Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// X86 Linux Architecture Description File
//
// Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// AMD64 Linux Architecture Description File
//----------OS-DEPENDENT ENCODING BLOCK----------------------------------------
// This block specifies the encoding classes used by the compiler to
// output byte streams. Encoding classes generate functions which are
// called by Machine Instruction Nodes in order to generate the bit
// encoding of the instruction. Operands specify their base encoding
// interface with the interface keyword. There are currently
// supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
// COND_INTER. REG_INTER causes an operand to generate a function
// which returns its register number when queried. CONST_INTER causes
// an operand to generate a function which returns the value of the
// constant when queried. MEMORY_INTER causes an operand to generate
// four functions which return the Base Register, the Index Register,
// the Scale Value, and the Offset Value of the operand when queried.
// COND_INTER causes an operand to generate six functions which return
// the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional
// instruction. Instructions specify two basic values for encoding.
// They use the ins_encode keyword to specify their encoding class
// (which must be one of the class names specified in the encoding
// block), and they use the opcode keyword to specify, in order, their
// primary, secondary, and tertiary opcode. Only the opcode sections
// which a particular instruction needs for encoding need to be
// specified.
encode %{
// Build emit functions for each basic byte or larger field in the intel
// encoding scheme (opcode, rm, sib, immediate), and call them from C++
// code in the enc_class source block. Emit functions will live in the
// main source block for now. In future, we can generalize this by
// adding a syntax that specifies the sizes of fields in an order,
// so that the adlc can build the emit functions automagically
%}
// Platform dependent source
source %{
%}
//
// Copyright (c) 1999, 2007, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
//
// SPARC Solaris Architecture Description File
//
// Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// X86 Solaris Architecture Description File
//
// Copyright (c) 2004, 2012, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// AMD64 Solaris Architecture Description File
//----------OS-DEPENDENT ENCODING BLOCK----------------------------------------
// This block specifies the encoding classes used by the compiler to
// output byte streams. Encoding classes generate functions which are
// called by Machine Instruction Nodes in order to generate the bit
// encoding of the instruction. Operands specify their base encoding
// interface with the interface keyword. There are currently
// supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
// COND_INTER. REG_INTER causes an operand to generate a function
// which returns its register number when queried. CONST_INTER causes
// an operand to generate a function which returns the value of the
// constant when queried. MEMORY_INTER causes an operand to generate
// four functions which return the Base Register, the Index Register,
// the Scale Value, and the Offset Value of the operand when queried.
// COND_INTER causes an operand to generate six functions which return
// the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional
// instruction. Instructions specify two basic values for encoding.
// They use the ins_encode keyword to specify their encoding class
// (which must be one of the class names specified in the encoding
// block), and they use the opcode keyword to specify, in order, their
// primary, secondary, and tertiary opcode. Only the opcode sections
// which a particular instruction needs for encoding need to be
// specified.
encode %{
// Build emit functions for each basic byte or larger field in the intel
// encoding scheme (opcode, rm, sib, immediate), and call them from C++
// code in the enc_class source block. Emit functions will live in the
// main source block for now. In future, we can generalize this by
// adding a syntax that specifies the sizes of fields in an order,
// so that the adlc can build the emit functions automagically
%}
// Platform dependent source
source %{
%}
//
// Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// X86 Win32 Architecture Description File
//
// Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// AMD64 Win32 Architecture Description File
//----------OS-DEPENDENT ENCODING BLOCK-----------------------------------------------------
// This block specifies the encoding classes used by the compiler to output
// byte streams. Encoding classes generate functions which are called by
// Machine Instruction Nodes in order to generate the bit encoding of the
// instruction. Operands specify their base encoding interface with the
// interface keyword. There are currently supported four interfaces,
// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
// operand to generate a function which returns its register number when
// queried. CONST_INTER causes an operand to generate a function which
// returns the value of the constant when queried. MEMORY_INTER causes an
// operand to generate four functions which return the Base Register, the
// Index Register, the Scale Value, and the Offset Value of the operand when
// queried. COND_INTER causes an operand to generate six functions which
// return the encoding code (ie - encoding bits for the instruction)
// associated with each basic boolean condition for a conditional instruction.
// Instructions specify two basic values for encoding. They use the
// ins_encode keyword to specify their encoding class (which must be one of
// the class names specified in the encoding block), and they use the
// opcode keyword to specify, in order, their primary, secondary, and
// tertiary opcode. Only the opcode sections which a particular instruction
// needs for encoding need to be specified.
encode %{
// Build emit functions for each basic byte or larger field in the intel
// encoding scheme (opcode, rm, sib, immediate), and call them from C++
// code in the enc_class source block. Emit functions will live in the
// main source block for now. In future, we can generalize this by
// adding a syntax that specifies the sizes of fields in an order,
// so that the adlc can build the emit functions automagically
%}
// Platform dependent source
source %{
%}
......@@ -221,7 +221,7 @@ bool Block::has_uncommon_code() const {
//------------------------------is_uncommon------------------------------------
// True if block is low enough frequency or guarded by a test which
// mostly does not go here.
bool Block::is_uncommon( Block_Array &bbs ) const {
bool Block::is_uncommon(PhaseCFG* cfg) const {
// Initial blocks must never be moved, so are never uncommon.
if (head()->is_Root() || head()->is_Start()) return false;
......@@ -238,7 +238,7 @@ bool Block::is_uncommon( Block_Array &bbs ) const {
uint uncommon_for_freq_preds = 0;
for( uint i=1; i<num_preds(); i++ ) {
Block* guard = bbs[pred(i)->_idx];
Block* guard = cfg->get_block_for_node(pred(i));
// Check to see if this block follows its guard 1 time out of 10000
// or less.
//
......@@ -285,11 +285,11 @@ void Block::dump_bidx(const Block* orig, outputStream* st) const {
}
}
void Block::dump_pred(const Block_Array *bbs, Block* orig, outputStream* st) const {
void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
if (is_connector()) {
for (uint i=1; i<num_preds(); i++) {
Block *p = ((*bbs)[pred(i)->_idx]);
p->dump_pred(bbs, orig, st);
Block *p = cfg->get_block_for_node(pred(i));
p->dump_pred(cfg, orig, st);
}
} else {
dump_bidx(orig, st);
......@@ -297,7 +297,7 @@ void Block::dump_pred(const Block_Array *bbs, Block* orig, outputStream* st) con
}
}
void Block::dump_head( const Block_Array *bbs, outputStream* st ) const {
void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
// Print the basic block
dump_bidx(this, st);
st->print(": #\t");
......@@ -311,26 +311,28 @@ void Block::dump_head( const Block_Array *bbs, outputStream* st ) const {
if( head()->is_block_start() ) {
for (uint i=1; i<num_preds(); i++) {
Node *s = pred(i);
if (bbs) {
Block *p = (*bbs)[s->_idx];
p->dump_pred(bbs, p, st);
if (cfg != NULL) {
Block *p = cfg->get_block_for_node(s);
p->dump_pred(cfg, p, st);
} else {
while (!s->is_block_start())
s = s->in(0);
st->print("N%d ", s->_idx );
}
}
} else
} else {
st->print("BLOCK HEAD IS JUNK ");
}
// Print loop, if any
const Block *bhead = this; // Head of self-loop
Node *bh = bhead->head();
if( bbs && bh->is_Loop() && !head()->is_Root() ) {
if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
LoopNode *loop = bh->as_Loop();
const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
while (bx->is_connector()) {
bx = (*bbs)[bx->pred(1)->_idx];
bx = cfg->get_block_for_node(bx->pred(1));
}
st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
// Dump any loop-specific bits, especially for CountedLoops.
......@@ -349,29 +351,32 @@ void Block::dump_head( const Block_Array *bbs, outputStream* st ) const {
st->print_cr("");
}
void Block::dump() const { dump(NULL); }
void Block::dump() const {
dump(NULL);
}
void Block::dump( const Block_Array *bbs ) const {
dump_head(bbs);
uint cnt = _nodes.size();
for( uint i=0; i<cnt; i++ )
void Block::dump(const PhaseCFG* cfg) const {
dump_head(cfg);
for (uint i=0; i< _nodes.size(); i++) {
_nodes[i]->dump();
}
tty->print("\n");
}
#endif
//=============================================================================
//------------------------------PhaseCFG---------------------------------------
PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
Phase(CFG),
_bbs(a),
_root(r),
_node_latency(NULL)
PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
: Phase(CFG)
, _block_arena(arena)
, _node_to_block_mapping(arena)
, _root(root)
, _node_latency(NULL)
#ifndef PRODUCT
, _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
, _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
#endif
#ifdef ASSERT
, _raw_oops(a)
, _raw_oops(arena)
#endif
{
ResourceMark rm;
......@@ -380,13 +385,13 @@ PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
// Node on demand.
Node *x = new (C) GotoNode(NULL);
x->init_req(0, x);
_goto = m.match_tree(x);
_goto = matcher.match_tree(x);
assert(_goto != NULL, "");
_goto->set_req(0,_goto);
// Build the CFG in Reverse Post Order
_num_blocks = build_cfg();
_broot = _bbs[_root->_idx];
_broot = get_block_for_node(_root);
}
//------------------------------build_cfg--------------------------------------
......@@ -440,9 +445,9 @@ uint PhaseCFG::build_cfg() {
// 'p' now points to the start of this basic block
// Put self in array of basic blocks
Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
_bbs.map(p->_idx,bb);
_bbs.map(x->_idx,bb);
Block *bb = new (_block_arena) Block(_block_arena, p);
map_node_to_block(p, bb);
map_node_to_block(x, bb);
if( x != p ) { // Only for root is x == p
bb->_nodes.push((Node*)x);
}
......@@ -473,16 +478,16 @@ uint PhaseCFG::build_cfg() {
// Check if it the fist node pushed on stack at the beginning.
if (idx == 0) break; // end of the build
// Find predecessor basic block
Block *pb = _bbs[x->_idx];
Block *pb = get_block_for_node(x);
// Insert into nodes array, if not already there
if( !_bbs.lookup(proj->_idx) ) {
if (!has_block(proj)) {
assert( x != proj, "" );
// Map basic block of projection
_bbs.map(proj->_idx,pb);
map_node_to_block(proj, pb);
pb->_nodes.push(proj);
}
// Insert self as a child of my predecessor block
pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
"too many control users, not a CFG?" );
}
......@@ -511,15 +516,15 @@ void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
RegionNode* region = new (C) RegionNode(2);
region->init_req(1, proj);
// setup corresponding basic block
Block* block = new (_bbs._arena) Block(_bbs._arena, region);
_bbs.map(region->_idx, block);
Block* block = new (_block_arena) Block(_block_arena, region);
map_node_to_block(region, block);
C->regalloc()->set_bad(region->_idx);
// add a goto node
Node* gto = _goto->clone(); // get a new goto node
gto->set_req(0, region);
// add it to the basic block
block->_nodes.push(gto);
_bbs.map(gto->_idx, block);
map_node_to_block(gto, block);
C->regalloc()->set_bad(gto->_idx);
// hook up successor block
block->_succs.map(block->_num_succs++, out);
......@@ -570,7 +575,7 @@ void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
gto->set_req(0, b->head());
Node *bp = b->_nodes[end_idx];
b->_nodes.map(end_idx,gto); // Slam over NeverBranch
_bbs.map(gto->_idx, b);
map_node_to_block(gto, b);
C->regalloc()->set_bad(gto->_idx);
b->_nodes.pop(); // Yank projections
b->_nodes.pop(); // Yank projections
......@@ -613,7 +618,7 @@ bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
// If the previous block conditionally falls into bx, return false,
// because moving bx will create an extra jump.
for(uint k = 1; k < bx->num_preds(); k++ ) {
Block* pred = _bbs[bx->pred(k)->_idx];
Block* pred = get_block_for_node(bx->pred(k));
if (pred == _blocks[bx_index-1]) {
if (pred->_num_succs != 1) {
return false;
......@@ -682,7 +687,7 @@ void PhaseCFG::remove_empty() {
// Look for uncommon blocks and move to end.
if (!C->do_freq_based_layout()) {
if( b->is_uncommon(_bbs) ) {
if (b->is_uncommon(this)) {
move_to_end(b, i);
last--; // No longer check for being uncommon!
if( no_flip_branch(b) ) { // Fall-thru case must follow?
......@@ -870,28 +875,31 @@ void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
} while( !p->is_block_start() );
// Recursively visit
for( uint i=1; i<p->req(); i++ )
_dump_cfg(p->in(i),visited);
for (uint i = 1; i < p->req(); i++) {
_dump_cfg(p->in(i), visited);
}
// Dump the block
_bbs[p->_idx]->dump(&_bbs);
get_block_for_node(p)->dump(this);
}
void PhaseCFG::dump( ) const {
tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
if( _blocks.size() ) { // Did we do basic-block layout?
for( uint i=0; i<_num_blocks; i++ )
_blocks[i]->dump(&_bbs);
if (_blocks.size()) { // Did we do basic-block layout?
for (uint i = 0; i < _num_blocks; i++) {
_blocks[i]->dump(this);
}
} else { // Else do it with a DFS
VectorSet visited(_bbs._arena);
VectorSet visited(_block_arena);
_dump_cfg(_root,visited);
}
}
void PhaseCFG::dump_headers() {
for( uint i = 0; i < _num_blocks; i++ ) {
if( _blocks[i] == NULL ) continue;
_blocks[i]->dump_head(&_bbs);
if (_blocks[i]) {
_blocks[i]->dump_head(this);
}
}
}
......@@ -904,7 +912,7 @@ void PhaseCFG::verify( ) const {
uint j;
for (j = 0; j < cnt; j++) {
Node *n = b->_nodes[j];
assert( _bbs[n->_idx] == b, "" );
assert(get_block_for_node(n) == b, "");
if (j >= 1 && n->is_Mach() &&
n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
assert(j == 1 || b->_nodes[j-1]->is_Phi(),
......@@ -913,13 +921,12 @@ void PhaseCFG::verify( ) const {
for (uint k = 0; k < n->req(); k++) {
Node *def = n->in(k);
if (def && def != n) {
assert(_bbs[def->_idx] || def->is_Con(),
"must have block; constants for debug info ok");
assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
// Verify that instructions in the block is in correct order.
// Uses must follow their definition if they are at the same block.
// Mostly done to check that MachSpillCopy nodes are placed correctly
// when CreateEx node is moved in build_ifg_physical().
if (_bbs[def->_idx] == b &&
if (get_block_for_node(def) == b &&
!(b->head()->is_Loop() && n->is_Phi()) &&
// See (+++) comment in reg_split.cpp
!(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
......
......@@ -48,13 +48,12 @@ class Block_Array : public ResourceObj {
friend class VMStructs;
uint _size; // allocated size, as opposed to formal limit
debug_only(uint _limit;) // limit to formal domain
Arena *_arena; // Arena to allocate in
protected:
Block **_blocks;
void grow( uint i ); // Grow array node to fit
public:
Arena *_arena; // Arena to allocate in
Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
debug_only(_limit=0);
_blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
......@@ -77,7 +76,7 @@ class Block_List : public Block_Array {
public:
uint _cnt;
Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
void push( Block *b ) { map(_cnt++,b); }
void push( Block *b ) { map(_cnt++,b); }
Block *pop() { return _blocks[--_cnt]; }
Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
void remove( uint i );
......@@ -284,15 +283,15 @@ class Block : public CFGElement {
// helper function that adds caller save registers to MachProjNode
void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe);
// Schedule a call next in the block
uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call);
uint sched_call(Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call);
// Perform basic-block local scheduling
Node *select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot);
void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
void set_next_call( Node *n, VectorSet &next_call, PhaseCFG* cfg);
void needed_for_next_call(Node *this_call, VectorSet &next_call, PhaseCFG* cfg);
bool schedule_local(PhaseCFG *cfg, Matcher &m, GrowableArray<int> &ready_cnt, VectorSet &next_call);
// Cleanup if any code lands between a Call and his Catch
void call_catch_cleanup(Block_Array &bbs, Compile *C);
void call_catch_cleanup(PhaseCFG* cfg, Compile *C);
// Detect implicit-null-check opportunities. Basically, find NULL checks
// with suitable memory ops nearby. Use the memory op to do the NULL check.
// I can generate a memory op if there is not one nearby.
......@@ -331,15 +330,15 @@ class Block : public CFGElement {
// Use frequency calculations and code shape to predict if the block
// is uncommon.
bool is_uncommon( Block_Array &bbs ) const;
bool is_uncommon(PhaseCFG* cfg) const;
#ifndef PRODUCT
// Debugging print of basic block
void dump_bidx(const Block* orig, outputStream* st = tty) const;
void dump_pred(const Block_Array *bbs, Block* orig, outputStream* st = tty) const;
void dump_head( const Block_Array *bbs, outputStream* st = tty ) const;
void dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st = tty) const;
void dump_head(const PhaseCFG* cfg, outputStream* st = tty) const;
void dump() const;
void dump( const Block_Array *bbs ) const;
void dump(const PhaseCFG* cfg) const;
#endif
};
......@@ -349,6 +348,12 @@ class Block : public CFGElement {
class PhaseCFG : public Phase {
friend class VMStructs;
private:
// Arena for the blocks to be stored in
Arena* _block_arena;
// Map nodes to owning basic block
Block_Array _node_to_block_mapping;
// Build a proper looking cfg. Return count of basic blocks
uint build_cfg();
......@@ -371,22 +376,42 @@ class PhaseCFG : public Phase {
Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
void verify_anti_dependences(Block* LCA, Node* load) {
assert(LCA == _bbs[load->_idx], "should already be scheduled");
assert(LCA == get_block_for_node(load), "should already be scheduled");
insert_anti_dependences(LCA, load, true);
}
public:
PhaseCFG( Arena *a, RootNode *r, Matcher &m );
PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
uint _num_blocks; // Count of basic blocks
Block_List _blocks; // List of basic blocks
RootNode *_root; // Root of whole program
Block_Array _bbs; // Map Nodes to owning Basic Block
Block *_broot; // Basic block of root
uint _rpo_ctr;
CFGLoop* _root_loop;
float _outer_loop_freq; // Outmost loop frequency
// set which block this node should reside in
void map_node_to_block(const Node* node, Block* block) {
_node_to_block_mapping.map(node->_idx, block);
}
// removes the mapping from a node to a block
void unmap_node_from_block(const Node* node) {
_node_to_block_mapping.map(node->_idx, NULL);
}
// get the block in which this node resides
Block* get_block_for_node(const Node* node) const {
return _node_to_block_mapping[node->_idx];
}
// does this node reside in a block; return true
bool has_block(const Node* node) const {
return (_node_to_block_mapping.lookup(node->_idx) != NULL);
}
// Per node latency estimation, valid only during GCM
GrowableArray<uint> *_node_latency;
......@@ -405,7 +430,7 @@ class PhaseCFG : public Phase {
void Estimate_Block_Frequency();
// Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
// basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
// basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
// Compute the (backwards) latency of a node from the uses
......@@ -454,7 +479,7 @@ class PhaseCFG : public Phase {
// Insert a node into a block, and update the _bbs
void insert( Block *b, uint idx, Node *n ) {
b->_nodes.insert( idx, n );
_bbs.map( n->_idx, b );
map_node_to_block(n, b);
}
#ifndef PRODUCT
......@@ -543,7 +568,7 @@ class CFGLoop : public CFGElement {
_child(NULL),
_exit_prob(1.0f) {}
CFGLoop* parent() { return _parent; }
void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
void push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg);
void add_member(CFGElement *s) { _members.push(s); }
void add_nested_loop(CFGLoop* cl);
Block* head() {
......
......@@ -426,14 +426,16 @@ static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *wor
}
memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
// Push preds onto worklist
for( uint i=1; i<root->req(); i++ )
worklist->push(cfg->_bbs[root->in(i)->_idx]);
for (uint i = 1; i < root->req(); i++) {
Block* block = cfg->get_block_for_node(root->in(i));
worklist->push(block);
}
// ZKM.jar includes tiny infinite loops which are unreached from below.
// If we missed any blocks, we'll retry here after pushing all missed
// blocks on the worklist. Normally this outer loop never trips more
// than once.
while( 1 ) {
while (1) {
while( worklist->size() ) { // Standard worklist algorithm
Block *b = worklist->rpop();
......@@ -537,8 +539,10 @@ static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *wor
for( l=0; l<max_reg_ints; l++ )
old_live[l] = tmp_live[l];
// Push preds onto worklist
for( l=1; l<(int)b->num_preds(); l++ )
worklist->push(cfg->_bbs[b->pred(l)->_idx]);
for (l = 1; l < (int)b->num_preds(); l++) {
Block* block = cfg->get_block_for_node(b->pred(l));
worklist->push(block);
}
}
}
......@@ -629,10 +633,9 @@ void Compile::BuildOopMaps() {
// pred to this block. Otherwise we have to grab a new OopFlow.
OopFlow *flow = NULL; // Flag for finding optimized flow
Block *pred = (Block*)0xdeadbeef;
uint j;
// Scan this block's preds to find a done predecessor
for( j=1; j<b->num_preds(); j++ ) {
Block *p = _cfg->_bbs[b->pred(j)->_idx];
for (uint j = 1; j < b->num_preds(); j++) {
Block* p = _cfg->get_block_for_node(b->pred(j));
OopFlow *p_flow = flows[p->_pre_order];
if( p_flow ) { // Predecessor is done
assert( p_flow->_b == p, "cross check" );
......
......@@ -179,6 +179,9 @@
product_pd(intx, LoopUnrollLimit, \
"Unroll loop bodies with node count less than this") \
\
product(intx, LoopMaxUnroll, 16, \
"Maximum number of unrolls for main loop") \
\
product(intx, LoopUnrollMin, 4, \
"Minimum number of unroll loop bodies before checking progress" \
"of rounds of unroll,optimize,..") \
......
......@@ -295,7 +295,7 @@ void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
bool PhaseChaitin::clone_projs_shared(Block *b, uint idx, Node *con, Node *copy, uint max_lrg_id) {
Block *bcon = _cfg._bbs[con->_idx];
Block* bcon = _cfg.get_block_for_node(con);
uint cindex = bcon->find_node(con);
Node *con_next = bcon->_nodes[cindex+1];
if (con_next->in(0) != con || !con_next->is_MachProj()) {
......@@ -306,7 +306,7 @@ bool PhaseChaitin::clone_projs_shared(Block *b, uint idx, Node *con, Node *copy,
Node *kills = con_next->clone();
kills->set_req(0, copy);
b->_nodes.insert(idx, kills);
_cfg._bbs.map(kills->_idx, b);
_cfg.map_node_to_block(kills, b);
new_lrg(kills, max_lrg_id);
return true;
}
......@@ -962,8 +962,7 @@ void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
// AggressiveCoalesce. This effectively pre-virtual-splits
// around uncommon uses of common defs.
const RegMask &rm = n->in_RegMask(k);
if( !after_aggressive &&
_cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * b->_freq) {
// Since we are BEFORE aggressive coalesce, leave the register
// mask untrimmed by the call. This encourages more coalescing.
// Later, AFTER aggressive, this live range will have to spill
......@@ -1709,16 +1708,15 @@ Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derive
// set control to _root and place it into Start block
// (where top() node is placed).
base->init_req(0, _cfg._root);
Block *startb = _cfg._bbs[C->top()->_idx];
Block *startb = _cfg.get_block_for_node(C->top());
startb->_nodes.insert(startb->find_node(C->top()), base );
_cfg._bbs.map( base->_idx, startb );
_cfg.map_node_to_block(base, startb);
assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
}
if (_lrg_map.live_range_id(base) == 0) {
new_lrg(base, maxlrg++);
}
assert(base->in(0) == _cfg._root &&
_cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
assert(base->in(0) == _cfg._root && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
derived_base_map[derived->_idx] = base;
return base;
}
......@@ -1754,12 +1752,12 @@ Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derive
base->as_Phi()->set_type(t);
// Search the current block for an existing base-Phi
Block *b = _cfg._bbs[derived->_idx];
Block *b = _cfg.get_block_for_node(derived);
for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
Node *phi = b->_nodes[i];
if( !phi->is_Phi() ) { // Found end of Phis with no match?
b->_nodes.insert( i, base ); // Must insert created Phi here as base
_cfg._bbs.map( base->_idx, b );
_cfg.map_node_to_block(base, b);
new_lrg(base,maxlrg++);
break;
}
......@@ -1815,8 +1813,8 @@ bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
Node *phi = n->in(1);
if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
Block *phi_block = _cfg._bbs[phi->_idx];
if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
Block *phi_block = _cfg.get_block_for_node(phi);
if (_cfg.get_block_for_node(phi_block->pred(2)) == b) {
const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
insert_proj( phi_block, 1, spill, maxlrg++ );
......@@ -1870,7 +1868,7 @@ bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
!liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
(_lrg_map.live_range_id(base) > 0) && // not a constant
_cfg._bbs[base->_idx] != b) { // base not def'd in blk)
_cfg.get_block_for_node(base) != b) { // base not def'd in blk)
// Base pointer is not currently live. Since I stretched
// the base pointer to here and it crosses basic-block
// boundaries, the global live info is now incorrect.
......@@ -1993,8 +1991,8 @@ void PhaseChaitin::dump(const Node *n) const {
tty->print("\n");
}
void PhaseChaitin::dump( const Block * b ) const {
b->dump_head( &_cfg._bbs );
void PhaseChaitin::dump(const Block *b) const {
b->dump_head(&_cfg);
// For all instructions
for( uint j = 0; j < b->_nodes.size(); j++ )
......@@ -2299,7 +2297,7 @@ void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
if (_lrg_map.find_const(n) == lidx) {
if (!dump_once++) {
tty->cr();
b->dump_head( &_cfg._bbs );
b->dump_head(&_cfg);
}
dump(n);
continue;
......@@ -2314,7 +2312,7 @@ void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
if (_lrg_map.find_const(m) == lidx) {
if (!dump_once++) {
tty->cr();
b->dump_head(&_cfg._bbs);
b->dump_head(&_cfg);
}
dump(n);
}
......
......@@ -52,7 +52,7 @@ void PhaseCoalesce::dump() const {
// Print a nice block header
tty->print("B%d: ",b->_pre_order);
for( j=1; j<b->num_preds(); j++ )
tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order);
tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order);
tty->print("-> ");
for( j=0; j<b->_num_succs; j++ )
tty->print("B%d ",b->_succs[j]->_pre_order);
......@@ -208,7 +208,7 @@ void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, ui
copy->set_req(idx,tmp);
// Save source in temp early, before source is killed
b->_nodes.insert(kill_src_idx,tmp);
_phc._cfg._bbs.map( tmp->_idx, b );
_phc._cfg.map_node_to_block(tmp, b);
last_use_idx++;
}
......@@ -286,7 +286,7 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
Node *m = n->in(j);
uint src_name = _phc._lrg_map.find(m);
if (src_name != phi_name) {
Block *pred = _phc._cfg._bbs[b->pred(j)->_idx];
Block *pred = _phc._cfg.get_block_for_node(b->pred(j));
Node *copy;
assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
// Rematerialize constants instead of copying them
......@@ -305,7 +305,7 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
}
// Insert the copy in the use-def chain
n->set_req(j, copy);
_phc._cfg._bbs.map( copy->_idx, pred );
_phc._cfg.map_node_to_block(copy, pred);
// Extend ("register allocate") the names array for the copy.
_phc._lrg_map.extend(copy->_idx, phi_name);
} // End of if Phi names do not match
......@@ -343,13 +343,13 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
n->set_req(idx, copy);
// Extend ("register allocate") the names array for the copy.
_phc._lrg_map.extend(copy->_idx, name);
_phc._cfg._bbs.map( copy->_idx, b );
_phc._cfg.map_node_to_block(copy, b);
}
} // End of is two-adr
// Insert a copy at a debug use for a lrg which has high frequency
if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(_phc._cfg._bbs)) {
if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(&_phc._cfg)) {
// Walk the debug inputs to the node and check for lrg freq
JVMState* jvms = n->jvms();
uint debug_start = jvms ? jvms->debug_start() : 999999;
......@@ -391,7 +391,7 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
uint max_lrg_id = _phc._lrg_map.max_lrg_id();
_phc.new_lrg(copy, max_lrg_id);
_phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
_phc._cfg._bbs.map(copy->_idx, b);
_phc._cfg.map_node_to_block(copy, b);
//tty->print_cr("Split a debug use in Aggressive Coalesce");
} // End of if high frequency use/def
} // End of for all debug inputs
......@@ -437,7 +437,10 @@ void PhaseAggressiveCoalesce::coalesce( Block *b ) {
Block *bs = b->_succs[i];
// Find index of 'b' in 'bs' predecessors
uint j=1;
while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++;
while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) {
j++;
}
// Visit all the Phis in successor block
for( uint k = 1; k<bs->_nodes.size(); k++ ) {
Node *n = bs->_nodes[k];
......@@ -510,9 +513,9 @@ void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, ui
if( bindex < b->_fhrp_index ) b->_fhrp_index--;
// Stretched lr1; add it to liveness of intermediate blocks
Block *b2 = _phc._cfg._bbs[src_copy->_idx];
Block *b2 = _phc._cfg.get_block_for_node(src_copy);
while( b != b2 ) {
b = _phc._cfg._bbs[b->pred(1)->_idx];
b = _phc._cfg.get_block_for_node(b->pred(1));
_phc._live->live(b)->insert(lr1);
}
}
......@@ -532,7 +535,7 @@ uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy,
bindex2--; // Chain backwards 1 instruction
while( bindex2 == 0 ) { // At block start, find prior block
assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
b2 = _phc._cfg.get_block_for_node(b2->pred(1));
bindex2 = b2->end_idx()-1;
}
// Get prior instruction
......@@ -676,8 +679,8 @@ bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block
if (UseFPUForSpilling && rm.is_AllStack() ) {
// Don't coalesce when frequency difference is large
Block *dst_b = _phc._cfg._bbs[dst_copy->_idx];
Block *src_def_b = _phc._cfg._bbs[src_def->_idx];
Block *dst_b = _phc._cfg.get_block_for_node(dst_copy);
Block *src_def_b = _phc._cfg.get_block_for_node(src_def);
if (src_def_b->_freq > 10*dst_b->_freq )
return false;
}
......@@ -690,7 +693,7 @@ bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block
// Another early bail-out test is when we are double-coalescing and the
// 2 copies are separated by some control flow.
if( dst_copy != src_copy ) {
Block *src_b = _phc._cfg._bbs[src_copy->_idx];
Block *src_b = _phc._cfg.get_block_for_node(src_copy);
Block *b2 = b;
while( b2 != src_b ) {
if( b2->num_preds() > 2 ){// Found merge-point
......@@ -701,7 +704,7 @@ bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block
//record_bias( _phc._lrgs, lr1, lr2 );
return false; // To hard to find all interferences
}
b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
b2 = _phc._cfg.get_block_for_node(b2->pred(1));
}
}
......@@ -786,8 +789,9 @@ bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block
// Conservative (but pessimistic) copy coalescing of a single block
void PhaseConservativeCoalesce::coalesce( Block *b ) {
// Bail out on infrequent blocks
if( b->is_uncommon(_phc._cfg._bbs) )
if (b->is_uncommon(&_phc._cfg)) {
return;
}
// Check this block for copies.
for( uint i = 1; i<b->end_idx(); i++ ) {
// Check for actual copies on inputs. Coalesce a copy into its
......
......@@ -2262,7 +2262,7 @@ void Compile::dump_asm(int *pcs, uint pc_limit) {
tty->print("%3.3x ", pcs[n->_idx]);
else
tty->print(" ");
b->dump_head( &_cfg->_bbs );
b->dump_head(_cfg);
if (b->is_connector()) {
tty->print_cr(" # Empty connector block");
} else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
......@@ -3525,7 +3525,7 @@ void Compile::ConstantTable::add(Constant& con) {
}
Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
Block* b = Compile::current()->cfg()->_bbs[n->_idx];
Block* b = Compile::current()->cfg()->get_block_for_node(n);
Constant con(type, value, b->_freq);
add(con);
return con;
......
......@@ -105,8 +105,8 @@ void PhaseCFG::Dominators( ) {
// Step 2:
Node *whead = w->_block->head();
for( uint j=1; j < whead->req(); j++ ) {
Block *b = _bbs[whead->in(j)->_idx];
for (uint j = 1; j < whead->req(); j++) {
Block* b = get_block_for_node(whead->in(j));
Tarjan *vx = &tarjan[b->_pre_order];
Tarjan *u = vx->EVAL();
if( u->_semi < w->_semi )
......
此差异已折叠。
......@@ -413,9 +413,9 @@ void IdealGraphPrinter::visit_node(Node *n, bool edges, VectorSet* temp_set) {
print_prop("debug_idx", node->_debug_idx);
#endif
if(C->cfg() != NULL) {
Block *block = C->cfg()->_bbs[node->_idx];
if(block == NULL) {
if (C->cfg() != NULL) {
Block* block = C->cfg()->get_block_for_node(node);
if (block == NULL) {
print_prop("block", C->cfg()->_blocks[0]->_pre_order);
} else {
print_prop("block", block->_pre_order);
......
......@@ -565,7 +565,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
lrgs(r)._def = 0;
}
n->disconnect_inputs(NULL, C);
_cfg._bbs.map(n->_idx,NULL);
_cfg.unmap_node_from_block(n);
n->replace_by(C->top());
// Since yanking a Node from block, high pressure moves up one
hrp_index[0]--;
......@@ -607,7 +607,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if( n->is_SpillCopy()
&& lrgs(r).is_singledef() // MultiDef live range can still split
&& n->outcnt() == 1 // and use must be in this block
&& _cfg._bbs[n->unique_out()->_idx] == b ) {
&& _cfg.get_block_for_node(n->unique_out()) == b ) {
// All single-use MachSpillCopy(s) that immediately precede their
// use must color early. If a longer live range steals their
// color, the spill copy will split and may push another spill copy
......
......@@ -237,7 +237,7 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
}
// Check ctrl input to see if the null-check dominates the memory op
Block *cb = cfg->_bbs[mach->_idx];
Block *cb = cfg->get_block_for_node(mach);
cb = cb->_idom; // Always hoist at least 1 block
if( !was_store ) { // Stores can be hoisted only one block
while( cb->_dom_depth > (_dom_depth + 1))
......@@ -262,7 +262,7 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
if( is_decoden ) continue;
}
// Block of memory-op input
Block *inb = cfg->_bbs[mach->in(j)->_idx];
Block *inb = cfg->get_block_for_node(mach->in(j));
Block *b = this; // Start from nul check
while( b != inb && b->_dom_depth > inb->_dom_depth )
b = b->_idom; // search upwards for input
......@@ -272,7 +272,7 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
}
if( j > 0 )
continue;
Block *mb = cfg->_bbs[mach->_idx];
Block *mb = cfg->get_block_for_node(mach);
// Hoisting stores requires more checks for the anti-dependence case.
// Give up hoisting if we have to move the store past any load.
if( was_store ) {
......@@ -291,7 +291,7 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
break; // Found anti-dependent load
// Make sure control does not do a merge (would have to check allpaths)
if( b->num_preds() != 2 ) break;
b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
b = cfg->get_block_for_node(b->pred(1)); // Move up to predecessor block
}
if( b != this ) continue;
}
......@@ -303,15 +303,15 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
// Found a candidate! Pick one with least dom depth - the highest
// in the dom tree should be closest to the null check.
if( !best ||
cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
if (best == NULL || cfg->get_block_for_node(mach)->_dom_depth < cfg->get_block_for_node(best)->_dom_depth) {
best = mach;
bidx = vidx;
}
}
// No candidate!
if( !best ) return;
if (best == NULL) {
return;
}
// ---- Found an implicit null check
extern int implicit_null_checks;
......@@ -319,29 +319,29 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
if( is_decoden ) {
// Check if we need to hoist decodeHeapOop_not_null first.
Block *valb = cfg->_bbs[val->_idx];
Block *valb = cfg->get_block_for_node(val);
if( this != valb && this->_dom_depth < valb->_dom_depth ) {
// Hoist it up to the end of the test block.
valb->find_remove(val);
this->add_inst(val);
cfg->_bbs.map(val->_idx,this);
cfg->map_node_to_block(val, this);
// DecodeN on x86 may kill flags. Check for flag-killing projections
// that also need to be hoisted.
for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
Node* n = val->fast_out(j);
if( n->is_MachProj() ) {
cfg->_bbs[n->_idx]->find_remove(n);
cfg->get_block_for_node(n)->find_remove(n);
this->add_inst(n);
cfg->_bbs.map(n->_idx,this);
cfg->map_node_to_block(n, this);
}
}
}
}
// Hoist the memory candidate up to the end of the test block.
Block *old_block = cfg->_bbs[best->_idx];
Block *old_block = cfg->get_block_for_node(best);
old_block->find_remove(best);
add_inst(best);
cfg->_bbs.map(best->_idx,this);
cfg->map_node_to_block(best, this);
// Move the control dependence
if (best->in(0) && best->in(0) == old_block->_nodes[0])
......@@ -352,9 +352,9 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
Node* n = best->fast_out(j);
if( n->is_MachProj() ) {
cfg->_bbs[n->_idx]->find_remove(n);
cfg->get_block_for_node(n)->find_remove(n);
add_inst(n);
cfg->_bbs.map(n->_idx,this);
cfg->map_node_to_block(n, this);
}
}
......@@ -385,7 +385,7 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
Node *old_tst = proj->in(0);
MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
_nodes.map(end_idx(),nul_chk);
cfg->_bbs.map(nul_chk->_idx,this);
cfg->map_node_to_block(nul_chk, this);
// Redirect users of old_test to nul_chk
for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
old_tst->last_out(i2)->set_req(0, nul_chk);
......@@ -468,7 +468,7 @@ Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &read
Node* use = n->fast_out(j);
// The use is a conditional branch, make them adjacent
if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
if (use->is_MachIf() && cfg->get_block_for_node(use) == this) {
found_machif = true;
break;
}
......@@ -529,13 +529,14 @@ Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &read
//------------------------------set_next_call----------------------------------
void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
void Block::set_next_call( Node *n, VectorSet &next_call, PhaseCFG* cfg) {
if( next_call.test_set(n->_idx) ) return;
for( uint i=0; i<n->len(); i++ ) {
Node *m = n->in(i);
if( !m ) continue; // must see all nodes in block that precede call
if( bbs[m->_idx] == this )
set_next_call( m, next_call, bbs );
if (cfg->get_block_for_node(m) == this) {
set_next_call(m, next_call, cfg);
}
}
}
......@@ -545,12 +546,12 @@ void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
// next subroutine call get priority - basically it moves things NOT needed
// for the next call till after the call. This prevents me from trying to
// carry lots of stuff live across a call.
void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, PhaseCFG* cfg) {
// Find the next control-defining Node in this block
Node* call = NULL;
for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
Node* m = this_call->fast_out(i);
if( bbs[m->_idx] == this && // Local-block user
if(cfg->get_block_for_node(m) == this && // Local-block user
m != this_call && // Not self-start node
m->is_MachCall() )
call = m;
......@@ -558,7 +559,7 @@ void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Ar
}
if (call == NULL) return; // No next call (e.g., block end is near)
// Set next-call for all inputs to this call
set_next_call(call, next_call, bbs);
set_next_call(call, next_call, cfg);
}
//------------------------------add_call_kills-------------------------------------
......@@ -578,7 +579,7 @@ void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_p
//------------------------------sched_call-------------------------------------
uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
uint Block::sched_call( Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
RegMask regs;
// Schedule all the users of the call right now. All the users are
......@@ -597,12 +598,14 @@ uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_
// Check for scheduling the next control-definer
if( n->bottom_type() == Type::CONTROL )
// Warm up next pile of heuristic bits
needed_for_next_call(n, next_call, bbs);
needed_for_next_call(n, next_call, cfg);
// Children of projections are now all ready
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
Node* m = n->fast_out(j); // Get user
if( bbs[m->_idx] != this ) continue;
if(cfg->get_block_for_node(m) != this) {
continue;
}
if( m->is_Phi() ) continue;
int m_cnt = ready_cnt.at(m->_idx)-1;
ready_cnt.at_put(m->_idx, m_cnt);
......@@ -620,7 +623,7 @@ uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_
uint r_cnt = mcall->tf()->range()->cnt();
int op = mcall->ideal_Opcode();
MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
bbs.map(proj->_idx,this);
cfg->map_node_to_block(proj, this);
_nodes.insert(node_cnt++, proj);
// Select the right register save policy.
......@@ -708,7 +711,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
uint local = 0;
for( uint j=0; j<cnt; j++ ) {
Node *m = n->in(j);
if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
if( m && cfg->get_block_for_node(m) == this && !m->is_top() )
local++; // One more block-local input
}
ready_cnt.at_put(n->_idx, local); // Count em up
......@@ -720,7 +723,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
for (uint prec = n->req(); prec < n->len(); prec++) {
Node* oop_store = n->in(prec);
if (oop_store != NULL) {
assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
assert(cfg->get_block_for_node(oop_store)->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
}
}
}
......@@ -753,7 +756,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
Node *n = _nodes[i3]; // Get pre-scheduled
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
Node* m = n->fast_out(j);
if( cfg->_bbs[m->_idx] ==this ) { // Local-block user
if (cfg->get_block_for_node(m) == this) { // Local-block user
int m_cnt = ready_cnt.at(m->_idx)-1;
ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count
}
......@@ -786,7 +789,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
}
// Warm up the 'next_call' heuristic bits
needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
needed_for_next_call(_nodes[0], next_call, cfg);
#ifndef PRODUCT
if (cfg->trace_opto_pipelining()) {
......@@ -837,7 +840,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
#endif
if( n->is_MachCall() ) {
MachCallNode *mcall = n->as_MachCall();
phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
phi_cnt = sched_call(matcher, cfg, phi_cnt, worklist, ready_cnt, mcall, next_call);
continue;
}
......@@ -847,7 +850,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
regs.OR(n->out_RegMask());
MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
cfg->_bbs.map(proj->_idx,this);
cfg->map_node_to_block(proj, this);
_nodes.insert(phi_cnt++, proj);
add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
......@@ -856,7 +859,9 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
// Children are now all ready
for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
Node* m = n->fast_out(i5); // Get user
if( cfg->_bbs[m->_idx] != this ) continue;
if (cfg->get_block_for_node(m) != this) {
continue;
}
if( m->is_Phi() ) continue;
if (m->_idx >= max_idx) { // new node, skip it
assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
......@@ -914,7 +919,7 @@ static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def
}
//------------------------------catch_cleanup_find_cloned_def------------------
static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, PhaseCFG* cfg, int n_clone_idx) {
assert( use_blk != def_blk, "Inter-block cleanup only");
// The use is some block below the Catch. Find and return the clone of the def
......@@ -940,7 +945,8 @@ static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def
// PhiNode, the PhiNode uses from the def and IT's uses need fixup.
Node_Array inputs = new Node_List(Thread::current()->resource_area());
for(uint k = 1; k < use_blk->num_preds(); k++) {
inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
Block* block = cfg->get_block_for_node(use_blk->pred(k));
inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, cfg, n_clone_idx));
}
// Check to see if the use_blk already has an identical phi inserted.
......@@ -962,7 +968,7 @@ static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def
if (fixup == NULL) {
Node *new_phi = PhiNode::make(use_blk->head(), def);
use_blk->_nodes.insert(1, new_phi);
bbs.map(new_phi->_idx, use_blk);
cfg->map_node_to_block(new_phi, use_blk);
for (uint k = 1; k < use_blk->num_preds(); k++) {
new_phi->set_req(k, inputs[k]);
}
......@@ -1002,17 +1008,17 @@ static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg,
//------------------------------catch_cleanup_inter_block---------------------
// Fix all input edges in use that reference "def". The use is in a different
// block than the def.
static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, PhaseCFG* cfg, int n_clone_idx) {
if( !use_blk ) return; // Can happen if the use is a precedence edge
Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, cfg, n_clone_idx);
catch_cleanup_fix_all_inputs(use, def, new_def);
}
//------------------------------call_catch_cleanup-----------------------------
// If we inserted any instructions between a Call and his CatchNode,
// clone the instructions on all paths below the Catch.
void Block::call_catch_cleanup(Block_Array &bbs, Compile* C) {
void Block::call_catch_cleanup(PhaseCFG* cfg, Compile* C) {
// End of region to clone
uint end = end_idx();
......@@ -1037,7 +1043,7 @@ void Block::call_catch_cleanup(Block_Array &bbs, Compile* C) {
// since clones dominate on each path.
Node *clone = _nodes[j-1]->clone();
sb->_nodes.insert( 1, clone );
bbs.map(clone->_idx,sb);
cfg->map_node_to_block(clone, sb);
}
}
......@@ -1054,18 +1060,19 @@ void Block::call_catch_cleanup(Block_Array &bbs, Compile* C) {
uint max = out->size();
for (uint j = 0; j < max; j++) {// For all users
Node *use = out->pop();
Block *buse = bbs[use->_idx];
Block *buse = cfg->get_block_for_node(use);
if( use->is_Phi() ) {
for( uint k = 1; k < use->req(); k++ )
if( use->in(k) == n ) {
Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
Block* block = cfg->get_block_for_node(buse->pred(k));
Node *fixup = catch_cleanup_find_cloned_def(block, n, this, cfg, n_clone_idx);
use->set_req(k, fixup);
}
} else {
if (this == buse) {
catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
} else {
catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
catch_cleanup_inter_block(use, buse, n, this, cfg, n_clone_idx);
}
}
} // End for all users
......
......@@ -101,7 +101,7 @@ void PhaseLive::compute(uint maxlrg) {
for( uint k=1; k<cnt; k++ ) {
Node *nk = n->in(k);
uint nkidx = nk->_idx;
if( _cfg._bbs[nkidx] != b ) {
if (_cfg.get_block_for_node(nk) != b) {
uint u = _names[nkidx];
use->insert( u );
DEBUG_ONLY(def_outside->insert( u );)
......@@ -121,7 +121,7 @@ void PhaseLive::compute(uint maxlrg) {
// Push these live-in things to predecessors
for( uint l=1; l<b->num_preds(); l++ ) {
Block *p = _cfg._bbs[b->pred(l)->_idx];
Block *p = _cfg.get_block_for_node(b->pred(l));
add_liveout( p, use, first_pass );
// PhiNode uses go in the live-out set of prior blocks.
......@@ -142,8 +142,10 @@ void PhaseLive::compute(uint maxlrg) {
assert( delta->count(), "missing delta set" );
// Add new-live-in to predecessors live-out sets
for( uint l=1; l<b->num_preds(); l++ )
add_liveout( _cfg._bbs[b->pred(l)->_idx], delta, first_pass );
for (uint l = 1; l < b->num_preds(); l++) {
Block* block = _cfg.get_block_for_node(b->pred(l));
add_liveout(block, delta, first_pass);
}
freeset(b);
} // End of while-worklist-not-empty
......
......@@ -624,8 +624,6 @@ bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
}
#define MAX_UNROLL 16 // maximum number of unrolls for main loop
//------------------------------policy_unroll----------------------------------
// Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
// the loop is a CountedLoop and the body is small enough.
......@@ -642,7 +640,7 @@ bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
int future_unroll_ct = cl->unrolled_count() * 2;
if (future_unroll_ct > MAX_UNROLL) return false;
if (future_unroll_ct > LoopMaxUnroll) return false;
// Check for initial stride being a small enough constant
if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
......
......@@ -42,7 +42,6 @@ class AliasInfo;
class AllocateArrayNode;
class AllocateNode;
class Block;
class Block_Array;
class BoolNode;
class BoxLockNode;
class CMoveNode;
......
......@@ -68,7 +68,6 @@ void Compile::Output() {
return;
}
// Make sure I can find the Start Node
Block_Array& bbs = _cfg->_bbs;
Block *entry = _cfg->_blocks[1];
Block *broot = _cfg->_broot;
......@@ -77,8 +76,8 @@ void Compile::Output() {
// Replace StartNode with prolog
MachPrologNode *prolog = new (this) MachPrologNode();
entry->_nodes.map( 0, prolog );
bbs.map( prolog->_idx, entry );
bbs.map( start->_idx, NULL ); // start is no longer in any block
_cfg->map_node_to_block(prolog, entry);
_cfg->unmap_node_from_block(start); // start is no longer in any block
// Virtual methods need an unverified entry point
......@@ -117,8 +116,7 @@ void Compile::Output() {
if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
b->add_inst( epilog );
bbs.map(epilog->_idx, b);
//_regalloc->set_bad(epilog->_idx); // Already initialized this way.
_cfg->map_node_to_block(epilog, b);
}
}
}
......@@ -252,7 +250,7 @@ void Compile::Insert_zap_nodes() {
if (insert) {
Node *zap = call_zap_node(n->as_MachSafePoint(), i);
b->_nodes.insert( j, zap );
_cfg->_bbs.map( zap->_idx, b );
_cfg->map_node_to_block(zap, b);
++j;
}
}
......@@ -1234,7 +1232,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
#ifdef ASSERT
if (!b->is_connector()) {
stringStream st;
b->dump_head(&_cfg->_bbs, &st);
b->dump_head(_cfg, &st);
MacroAssembler(cb).block_comment(st.as_string());
}
jmp_target[i] = 0;
......@@ -1310,7 +1308,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
MachNode *nop = new (this) MachNopNode(nops_cnt);
b->_nodes.insert(j++, nop);
last_inst++;
_cfg->_bbs.map( nop->_idx, b );
_cfg->map_node_to_block(nop, b);
nop->emit(*cb, _regalloc);
cb->flush_bundle(true);
current_offset = cb->insts_size();
......@@ -1395,7 +1393,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
if (needs_padding && replacement->avoid_back_to_back()) {
MachNode *nop = new (this) MachNopNode();
b->_nodes.insert(j++, nop);
_cfg->_bbs.map(nop->_idx, b);
_cfg->map_node_to_block(nop, b);
last_inst++;
nop->emit(*cb, _regalloc);
cb->flush_bundle(true);
......@@ -1549,7 +1547,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
if( padding > 0 ) {
MachNode *nop = new (this) MachNopNode(padding / nop_size);
b->_nodes.insert( b->_nodes.size(), nop );
_cfg->_bbs.map( nop->_idx, b );
_cfg->map_node_to_block(nop, b);
nop->emit(*cb, _regalloc);
current_offset = cb->insts_size();
}
......@@ -1737,7 +1735,6 @@ uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+
Scheduling::Scheduling(Arena *arena, Compile &compile)
: _arena(arena),
_cfg(compile.cfg()),
_bbs(compile.cfg()->_bbs),
_regalloc(compile.regalloc()),
_reg_node(arena),
_bundle_instr_count(0),
......@@ -2085,8 +2082,9 @@ void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
if( def->is_Proj() ) // If this is a machine projection, then
def = def->in(0); // propagate usage thru to the base instruction
if( _bbs[def->_idx] != bb ) // Ignore if not block-local
if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
continue;
}
// Compute the latency
uint l = _bundle_cycle_number + n->latency(i);
......@@ -2358,9 +2356,10 @@ void Scheduling::ComputeUseCount(const Block *bb) {
Node *inp = n->in(k);
if (!inp) continue;
assert(inp != n, "no cycles allowed" );
if( _bbs[inp->_idx] == bb ) { // Block-local use?
if( inp->is_Proj() ) // Skip through Proj's
if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
if (inp->is_Proj()) { // Skip through Proj's
inp = inp->in(0);
}
++_uses[inp->_idx]; // Count 1 block-local use
}
}
......@@ -2643,7 +2642,7 @@ void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is
return;
Node *pinch = _reg_node[def_reg]; // Get pinch point
if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
is_def ) { // Check for a true def (not a kill)
_reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
return;
......@@ -2669,7 +2668,7 @@ void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is
_cfg->C->record_method_not_compilable("too many D-U pinch points");
return;
}
_bbs.map(pinch->_idx,b); // Pretend it's valid in this block (lazy init)
_cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init)
_reg_node.map(def_reg,pinch); // Record pinch-point
//_regalloc->set_bad(pinch->_idx); // Already initialized this way.
if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
......@@ -2713,9 +2712,9 @@ void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
return;
Node *pinch = _reg_node[use_reg]; // Get pinch point
// Check for no later def_reg/kill in block
if( pinch && _bbs[pinch->_idx] == b &&
if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
// Use has to be block-local as well
_bbs[use->_idx] == b ) {
_cfg->get_block_for_node(use) == b) {
if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
pinch->req() == 1 ) { // pinch not yet in block?
pinch->del_req(0); // yank pointer to later-def, also set flag
......@@ -2895,7 +2894,7 @@ void Scheduling::garbage_collect_pinch_nodes() {
int trace_cnt = 0;
for (uint k = 0; k < _reg_node.Size(); k++) {
Node* pinch = _reg_node[k];
if (pinch != NULL && pinch->Opcode() == Op_Node &&
if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
// no predecence input edges
(pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
cleanup_pinch(pinch);
......
......@@ -96,9 +96,6 @@ private:
// List of nodes currently available for choosing for scheduling
Node_List _available;
// Mapping from node (index) to basic block
Block_Array& _bbs;
// For each instruction beginning a bundle, the number of following
// nodes to be bundled with it.
Bundle *_node_bundling_base;
......
......@@ -78,11 +78,13 @@ bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
// Helper function for yank_if_dead
int PhaseChaitin::yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
int blk_adjust=0;
Block *oldb = _cfg._bbs[old->_idx];
Block *oldb = _cfg.get_block_for_node(old);
oldb->find_remove(old);
// Count 1 if deleting an instruction from the current block
if( oldb == current_block ) blk_adjust++;
_cfg._bbs.map(old->_idx,NULL);
if (oldb == current_block) {
blk_adjust++;
}
_cfg.unmap_node_from_block(old);
OptoReg::Name old_reg = lrgs(_lrg_map.live_range_id(old)).reg();
if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
value->map(old_reg,NULL); // Yank from value/regnd maps
......@@ -433,7 +435,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
bool missing_some_inputs = false;
Block *freed = NULL;
for( j = 1; j < b->num_preds(); j++ ) {
Block *pb = _cfg._bbs[b->pred(j)->_idx];
Block *pb = _cfg.get_block_for_node(b->pred(j));
// Remove copies along phi edges
for( uint k=1; k<phi_dex; k++ )
elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
......@@ -478,7 +480,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
} else {
if( !freed ) { // Didn't get a freebie prior block
// Must clone some data
freed = _cfg._bbs[b->pred(1)->_idx];
freed = _cfg.get_block_for_node(b->pred(1));
Node_List &f_value = *blk2value[freed->_pre_order];
Node_List &f_regnd = *blk2regnd[freed->_pre_order];
for( uint k = 0; k < (uint)_max_reg; k++ ) {
......@@ -488,7 +490,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
}
// Merge all inputs together, setting to NULL any conflicts.
for( j = 1; j < b->num_preds(); j++ ) {
Block *pb = _cfg._bbs[b->pred(j)->_idx];
Block *pb = _cfg.get_block_for_node(b->pred(j));
if( pb == freed ) continue; // Did self already via freelist
Node_List &p_regnd = *blk2regnd[pb->_pre_order];
for( uint k = 0; k < (uint)_max_reg; k++ ) {
......@@ -515,8 +517,9 @@ void PhaseChaitin::post_allocate_copy_removal() {
u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
}
if( u != NodeSentinel ) { // Junk Phi. Remove
b->_nodes.remove(j--); phi_dex--;
_cfg._bbs.map(phi->_idx,NULL);
b->_nodes.remove(j--);
phi_dex--;
_cfg.unmap_node_from_block(phi);
phi->replace_by(u);
phi->disconnect_inputs(NULL, C);
continue;
......
......@@ -132,7 +132,7 @@ void PhaseChaitin::insert_proj( Block *b, uint i, Node *spill, uint maxlrg ) {
}
b->_nodes.insert(i,spill); // Insert node in block
_cfg._bbs.map(spill->_idx,b); // Update node->block mapping to reflect
_cfg.map_node_to_block(spill, b); // Update node->block mapping to reflect
// Adjust the point where we go hi-pressure
if( i <= b->_ihrp_index ) b->_ihrp_index++;
if( i <= b->_fhrp_index ) b->_fhrp_index++;
......@@ -219,7 +219,7 @@ uint PhaseChaitin::split_USE( Node *def, Block *b, Node *use, uint useidx, uint
use->set_req(useidx, def);
} else {
// Block and index where the use occurs.
Block *b = _cfg._bbs[use->_idx];
Block *b = _cfg.get_block_for_node(use);
// Put the clone just prior to use
int bindex = b->find_node(use);
// DEF is UP, so must copy it DOWN and hook in USE
......@@ -270,7 +270,7 @@ uint PhaseChaitin::split_USE( Node *def, Block *b, Node *use, uint useidx, uint
int bindex;
// Phi input spill-copys belong at the end of the prior block
if( use->is_Phi() ) {
b = _cfg._bbs[b->pred(useidx)->_idx];
b = _cfg.get_block_for_node(b->pred(useidx));
bindex = b->end_idx();
} else {
// Put the clone just prior to use
......@@ -335,7 +335,7 @@ Node *PhaseChaitin::split_Rematerialize( Node *def, Block *b, uint insidx, uint
continue;
}
Block *b_def = _cfg._bbs[def->_idx];
Block *b_def = _cfg.get_block_for_node(def);
int idx_def = b_def->find_node(def);
Node *in_spill = get_spillcopy_wide( in, def, i );
if( !in_spill ) return 0; // Bailed out
......@@ -589,7 +589,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
UPblock[slidx] = true;
// Record following instruction in case 'n' rematerializes and
// kills flags
Block *pred1 = _cfg._bbs[b->pred(1)->_idx];
Block *pred1 = _cfg.get_block_for_node(b->pred(1));
continue;
}
......@@ -601,7 +601,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// Grab predecessor block header
n1 = b->pred(1);
// Grab the appropriate reaching def info for inpidx
pred = _cfg._bbs[n1->_idx];
pred = _cfg.get_block_for_node(n1);
pidx = pred->_pre_order;
Node **Ltmp = Reaches[pidx];
bool *Utmp = UP[pidx];
......@@ -616,7 +616,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// Grab predecessor block headers
n2 = b->pred(inpidx);
// Grab the appropriate reaching def info for inpidx
pred = _cfg._bbs[n2->_idx];
pred = _cfg.get_block_for_node(n2);
pidx = pred->_pre_order;
Ltmp = Reaches[pidx];
Utmp = UP[pidx];
......@@ -701,7 +701,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// Grab predecessor block header
n1 = b->pred(1);
// Grab the appropriate reaching def info for k
pred = _cfg._bbs[n1->_idx];
pred = _cfg.get_block_for_node(n1);
pidx = pred->_pre_order;
Node **Ltmp = Reaches[pidx];
bool *Utmp = UP[pidx];
......@@ -919,7 +919,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
return 0;
}
_lrg_map.extend(def->_idx, 0);
_cfg._bbs.map(def->_idx,b);
_cfg.map_node_to_block(def, b);
n->set_req(inpidx, def);
continue;
}
......@@ -1291,7 +1291,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
for( insidx = 0; insidx < phis->size(); insidx++ ) {
Node *phi = phis->at(insidx);
assert(phi->is_Phi(),"This list must only contain Phi Nodes");
Block *b = _cfg._bbs[phi->_idx];
Block *b = _cfg.get_block_for_node(phi);
// Grab the live range number
uint lidx = _lrg_map.find_id(phi);
uint slidx = lrg2reach[lidx];
......@@ -1315,7 +1315,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// DEF has the wrong UP/DOWN value.
for( uint i = 1; i < b->num_preds(); i++ ) {
// Get predecessor block pre-order number
Block *pred = _cfg._bbs[b->pred(i)->_idx];
Block *pred = _cfg.get_block_for_node(b->pred(i));
pidx = pred->_pre_order;
// Grab reaching def
Node *def = Reaches[pidx][slidx];
......
......@@ -1098,7 +1098,7 @@ typedef BinaryTreeDictionary<Metablock, FreeList> MetablockTreeDictionary;
\
c2_nonstatic_field(PhaseCFG, _num_blocks, uint) \
c2_nonstatic_field(PhaseCFG, _blocks, Block_List) \
c2_nonstatic_field(PhaseCFG, _bbs, Block_Array) \
c2_nonstatic_field(PhaseCFG, _node_to_block_mapping, Block_Array) \
c2_nonstatic_field(PhaseCFG, _broot, Block*) \
\
c2_nonstatic_field(PhaseRegAlloc, _node_regs, OptoRegPair*) \
......
......@@ -26,7 +26,7 @@
* @library /testlibrary /testlibrary/whitebox
* @build ClearMethodStateTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -Xmixed -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI ClearMethodStateTest
* @run main/othervm -Xbootclasspath/a:. -Xmixed -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* ClearMethodStateTest
* @summary testing of WB::clearMethodState()
* @author igor.ignatyev@oracle.com
*/
......
......@@ -61,6 +61,9 @@ public abstract class CompilerWhiteBoxTest {
/** Value of {@code -XX:TieredStopAtLevel} */
protected static final int TIERED_STOP_AT_LEVEL
= Integer.parseInt(getVMOption("TieredStopAtLevel", "0"));
/** Flag for verbose output, true if {@code -Dverbose} specified */
protected static final boolean IS_VERBOSE
= System.getProperty("verbose") != null;
/**
* Returns value of VM option.
......@@ -268,7 +271,9 @@ public abstract class CompilerWhiteBoxTest {
}
result += tmp == null ? 0 : tmp;
}
System.out.println("method was invoked " + count + " times");
if (IS_VERBOSE) {
System.out.println("method was invoked " + count + " times");
}
return result;
}
}
......
......@@ -26,7 +26,7 @@
* @library /testlibrary /testlibrary/whitebox
* @build DeoptimizeAllTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI DeoptimizeAllTest
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* DeoptimizeAllTest
* @summary testing of WB::deoptimizeAll()
* @author igor.ignatyev@oracle.com
*/
......
......@@ -26,7 +26,7 @@
* @library /testlibrary /testlibrary/whitebox
* @build DeoptimizeMethodTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI DeoptimizeMethodTest
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* DeoptimizeMethodTest
* @summary testing of WB::deoptimizeMethod()
* @author igor.ignatyev@oracle.com
*/
......
......@@ -26,7 +26,7 @@
* @library /testlibrary /testlibrary/whitebox
* @build EnqueueMethodForCompilationTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -Xmixed -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI EnqueueMethodForCompilationTest
* @run main/othervm -Xbootclasspath/a:. -Xmixed -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* EnqueueMethodForCompilationTest
* @summary testing of WB::enqueueMethodForCompilation()
* @author igor.ignatyev@oracle.com
*/
......
......@@ -27,7 +27,7 @@
* @library /testlibrary /testlibrary/whitebox
* @build IsMethodCompilableTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm/timeout=600 -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI IsMethodCompilableTest
* @run main/othervm/timeout=600 -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* IsMethodCompilableTest
* @summary testing of WB::isMethodCompilable()
* @author igor.ignatyev@oracle.com
*/
......
......@@ -27,7 +27,7 @@
* @library /testlibrary /testlibrary/whitebox
* @build MakeMethodNotCompilableTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI MakeMethodNotCompilableTest
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* MakeMethodNotCompilableTest
* @summary testing of WB::makeMethodNotCompilable()
* @author igor.ignatyev@oracle.com
*/
......
......@@ -26,7 +26,7 @@
* @library /testlibrary /testlibrary/whitebox
* @build SetDontInlineMethodTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI SetDontInlineMethodTest
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* SetDontInlineMethodTest
* @summary testing of WB::testSetDontInlineMethod()
* @author igor.ignatyev@oracle.com
*/
......
......@@ -26,7 +26,7 @@
* @library /testlibrary /testlibrary/whitebox
* @build SetForceInlineMethodTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI SetForceInlineMethodTest
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* SetForceInlineMethodTest
* @summary testing of WB::testSetForceInlineMethod()
* @author igor.ignatyev@oracle.com
*/
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册