提交 1bda0c9e 编写于 作者: Y ysr

Merge

......@@ -8508,7 +8508,7 @@ bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
size_t i = num;
oop cur = _overflow_list;
const markOop proto = markOopDesc::prototype();
NOT_PRODUCT(size_t n = 0;)
NOT_PRODUCT(ssize_t n = 0;)
for (oop next; i > 0 && cur != NULL; cur = next, i--) {
next = oop(cur->mark());
cur->set_mark(proto); // until proven otherwise
......@@ -8525,45 +8525,131 @@ bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
return !stack->isEmpty();
}
// Multi-threaded; use CAS to break off a prefix
#define BUSY (oop(0x1aff1aff))
// (MT-safe) Get a prefix of at most "num" from the list.
// The overflow list is chained through the mark word of
// each object in the list. We fetch the entire list,
// break off a prefix of the right size and return the
// remainder. If other threads try to take objects from
// the overflow list at that time, they will wait for
// some time to see if data becomes available. If (and
// only if) another thread places one or more object(s)
// on the global list before we have returned the suffix
// to the global list, we will walk down our local list
// to find its end and append the global list to
// our suffix before returning it. This suffix walk can
// prove to be expensive (quadratic in the amount of traffic)
// when there are many objects in the overflow list and
// there is much producer-consumer contention on the list.
// *NOTE*: The overflow list manipulation code here and
// in ParNewGeneration:: are very similar in shape,
// except that in the ParNew case we use the old (from/eden)
// copy of the object to thread the list via its klass word.
// Because of the common code, if you make any changes in
// the code below, please check the ParNew version to see if
// similar changes might be needed.
// CR 6797058 has been filed to consolidate the common code.
bool CMSCollector::par_take_from_overflow_list(size_t num,
OopTaskQueue* work_q) {
assert(work_q->size() == 0, "That's the current policy");
assert(work_q->size() == 0, "First empty local work queue");
assert(num < work_q->max_elems(), "Can't bite more than we can chew");
if (_overflow_list == NULL) {
return false;
}
// Grab the entire list; we'll put back a suffix
oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
if (prefix == NULL) { // someone grabbed it before we did ...
// ... we could spin for a short while, but for now we don't
return false;
oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
Thread* tid = Thread::current();
size_t CMSOverflowSpinCount = (size_t)ParallelGCThreads;
size_t sleep_time_millis = MAX2((size_t)1, num/100);
// If the list is busy, we spin for a short while,
// sleeping between attempts to get the list.
for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
os::sleep(tid, sleep_time_millis, false);
if (_overflow_list == NULL) {
// Nothing left to take
return false;
} else if (_overflow_list != BUSY) {
// Try and grab the prefix
prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
}
}
// If the list was found to be empty, or we spun long
// enough, we give up and return empty-handed. If we leave
// the list in the BUSY state below, it must be the case that
// some other thread holds the overflow list and will set it
// to a non-BUSY state in the future.
if (prefix == NULL || prefix == BUSY) {
// Nothing to take or waited long enough
if (prefix == NULL) {
// Write back the NULL in case we overwrote it with BUSY above
// and it is still the same value.
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
}
return false;
}
assert(prefix != NULL && prefix != BUSY, "Error");
size_t i = num;
oop cur = prefix;
// Walk down the first "num" objects, unless we reach the end.
for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
if (cur->mark() != NULL) {
if (cur->mark() == NULL) {
// We have "num" or fewer elements in the list, so there
// is nothing to return to the global list.
// Write back the NULL in lieu of the BUSY we wrote
// above, if it is still the same value.
if (_overflow_list == BUSY) {
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
}
} else {
// Chop off the suffix and rerturn it to the global list.
assert(cur->mark() != BUSY, "Error");
oop suffix_head = cur->mark(); // suffix will be put back on global list
cur->set_mark(NULL); // break off suffix
// Find tail of suffix so we can prepend suffix to global list
for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
oop suffix_tail = cur;
assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
"Tautology");
// It's possible that the list is still in the empty(busy) state
// we left it in a short while ago; in that case we may be
// able to place back the suffix without incurring the cost
// of a walk down the list.
oop observed_overflow_list = _overflow_list;
do {
cur = observed_overflow_list;
suffix_tail->set_mark(markOop(cur));
oop cur_overflow_list = observed_overflow_list;
bool attached = false;
while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
observed_overflow_list =
(oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur);
} while (cur != observed_overflow_list);
(oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
if (cur_overflow_list == observed_overflow_list) {
attached = true;
break;
} else cur_overflow_list = observed_overflow_list;
}
if (!attached) {
// Too bad, someone else sneaked in (at least) an element; we'll need
// to do a splice. Find tail of suffix so we can prepend suffix to global
// list.
for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
oop suffix_tail = cur;
assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
"Tautology");
observed_overflow_list = _overflow_list;
do {
cur_overflow_list = observed_overflow_list;
if (cur_overflow_list != BUSY) {
// Do the splice ...
suffix_tail->set_mark(markOop(cur_overflow_list));
} else { // cur_overflow_list == BUSY
suffix_tail->set_mark(NULL);
}
// ... and try to place spliced list back on overflow_list ...
observed_overflow_list =
(oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
} while (cur_overflow_list != observed_overflow_list);
// ... until we have succeeded in doing so.
}
}
// Push the prefix elements on work_q
assert(prefix != NULL, "control point invariant");
const markOop proto = markOopDesc::prototype();
oop next;
NOT_PRODUCT(size_t n = 0;)
NOT_PRODUCT(ssize_t n = 0;)
for (cur = prefix; cur != NULL; cur = next) {
next = oop(cur->mark());
cur->set_mark(proto); // until proven otherwise
......@@ -8597,11 +8683,16 @@ void CMSCollector::par_push_on_overflow_list(oop p) {
oop cur_overflow_list;
do {
cur_overflow_list = observed_overflow_list;
p->set_mark(markOop(cur_overflow_list));
if (cur_overflow_list != BUSY) {
p->set_mark(markOop(cur_overflow_list));
} else {
p->set_mark(NULL);
}
observed_overflow_list =
(oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
} while (cur_overflow_list != observed_overflow_list);
}
#undef BUSY
// Single threaded
// General Note on GrowableArray: pushes may silently fail
......@@ -8610,7 +8701,7 @@ void CMSCollector::par_push_on_overflow_list(oop p) {
// a lot of code in the JVM. The prudent thing for GrowableArray
// to do (for now) is to exit with an error. However, that may
// be too draconian in some cases because the caller may be
// able to recover without much harm. For suych cases, we
// able to recover without much harm. For such cases, we
// should probably introduce a "soft_push" method which returns
// an indication of success or failure with the assumption that
// the caller may be able to recover from a failure; code in
......@@ -8618,8 +8709,6 @@ void CMSCollector::par_push_on_overflow_list(oop p) {
// failures where possible, thus, incrementally hardening the VM
// in such low resource situations.
void CMSCollector::preserve_mark_work(oop p, markOop m) {
int PreserveMarkStackSize = 128;
if (_preserved_oop_stack == NULL) {
assert(_preserved_mark_stack == NULL,
"bijection with preserved_oop_stack");
......
......@@ -595,7 +595,7 @@ class CMSCollector: public CHeapObj {
size_t _ser_kac_preclean_ovflw;
size_t _ser_kac_ovflw;
size_t _par_kac_ovflw;
NOT_PRODUCT(size_t _num_par_pushes;)
NOT_PRODUCT(ssize_t _num_par_pushes;)
// ("Weak") Reference processing support
ReferenceProcessor* _ref_processor;
......
......@@ -79,6 +79,7 @@ parNewGeneration.cpp resourceArea.hpp
parNewGeneration.cpp sharedHeap.hpp
parNewGeneration.cpp space.hpp
parNewGeneration.cpp spaceDecorator.hpp
parNewGeneration.cpp thread.hpp
parNewGeneration.cpp workgroup.hpp
parNewGeneration.hpp defNewGeneration.hpp
......
......@@ -404,6 +404,8 @@ void ParEvacuateFollowersClosure::do_void() {
if (terminator()->offer_termination()) break;
par_scan_state()->end_term_time();
}
assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
"Broken overflow list?");
// Finish the last termination pause.
par_scan_state()->end_term_time();
}
......@@ -456,6 +458,8 @@ ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
_is_alive_closure(this),
_plab_stats(YoungPLABSize, PLABWeight)
{
NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
NOT_PRODUCT(_num_par_pushes = 0;)
_task_queues = new ObjToScanQueueSet(ParallelGCThreads);
guarantee(_task_queues != NULL, "task_queues allocation failure.");
......@@ -993,12 +997,19 @@ oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
"push forwarded object");
}
// Push it on one of the queues of to-be-scanned objects.
if (!par_scan_state->work_queue()->push(obj_to_push)) {
bool simulate_overflow = false;
NOT_PRODUCT(
if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
// simulate a stack overflow
simulate_overflow = true;
}
)
if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
// Add stats for overflow pushes.
if (Verbose && PrintGCDetails) {
gclog_or_tty->print("queue overflow!\n");
}
push_on_overflow_list(old);
push_on_overflow_list(old, par_scan_state);
par_scan_state->note_overflow_push();
}
par_scan_state->note_push();
......@@ -1110,9 +1121,16 @@ oop ParNewGeneration::copy_to_survivor_space_with_undo(
"push forwarded object");
}
// Push it on one of the queues of to-be-scanned objects.
if (!par_scan_state->work_queue()->push(obj_to_push)) {
bool simulate_overflow = false;
NOT_PRODUCT(
if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
// simulate a stack overflow
simulate_overflow = true;
}
)
if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
// Add stats for overflow pushes.
push_on_overflow_list(old);
push_on_overflow_list(old, par_scan_state);
par_scan_state->note_overflow_push();
}
par_scan_state->note_push();
......@@ -1135,89 +1153,190 @@ oop ParNewGeneration::copy_to_survivor_space_with_undo(
return forward_ptr;
}
void ParNewGeneration::push_on_overflow_list(oop from_space_obj) {
oop cur_overflow_list = _overflow_list;
#ifndef PRODUCT
// It's OK to call this multi-threaded; the worst thing
// that can happen is that we'll get a bunch of closely
// spaced simulated oveflows, but that's OK, in fact
// probably good as it would exercise the overflow code
// under contention.
bool ParNewGeneration::should_simulate_overflow() {
if (_overflow_counter-- <= 0) { // just being defensive
_overflow_counter = ParGCWorkQueueOverflowInterval;
return true;
} else {
return false;
}
}
#endif
#define BUSY (oop(0x1aff1aff))
void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
// if the object has been forwarded to itself, then we cannot
// use the klass pointer for the linked list. Instead we have
// to allocate an oopDesc in the C-Heap and use that for the linked list.
// XXX This is horribly inefficient when a promotion failure occurs
// and should be fixed. XXX FIX ME !!!
#ifndef PRODUCT
Atomic::inc_ptr(&_num_par_pushes);
assert(_num_par_pushes > 0, "Tautology");
#endif
if (from_space_obj->forwardee() == from_space_obj) {
oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
listhead->forward_to(from_space_obj);
from_space_obj = listhead;
}
while (true) {
from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
oop observed_overflow_list =
(oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
if (observed_overflow_list == cur_overflow_list) break;
// Otherwise...
oop observed_overflow_list = _overflow_list;
oop cur_overflow_list;
do {
cur_overflow_list = observed_overflow_list;
}
if (cur_overflow_list != BUSY) {
from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
} else {
from_space_obj->set_klass_to_list_ptr(NULL);
}
observed_overflow_list =
(oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
} while (cur_overflow_list != observed_overflow_list);
}
// *NOTE*: The overflow list manipulation code here and
// in CMSCollector:: are very similar in shape,
// except that in the CMS case we thread the objects
// directly into the list via their mark word, and do
// not need to deal with special cases below related
// to chunking of object arrays and promotion failure
// handling.
// CR 6797058 has been filed to attempt consolidation of
// the common code.
// Because of the common code, if you make any changes in
// the code below, please check the CMS version to see if
// similar changes might be needed.
// See CMSCollector::par_take_from_overflow_list() for
// more extensive documentation comments.
bool
ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
ObjToScanQueue* work_q = par_scan_state->work_queue();
assert(work_q->size() == 0, "Should first empty local work queue");
// How many to take?
int objsFromOverflow = MIN2(work_q->max_elems()/4,
(juint)ParGCDesiredObjsFromOverflowList);
size_t objsFromOverflow = MIN2((size_t)work_q->max_elems()/4,
(size_t)ParGCDesiredObjsFromOverflowList);
if (_overflow_list == NULL) return false;
// Otherwise, there was something there; try claiming the list.
oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
if (prefix == NULL) {
return false;
}
oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
// Trim off a prefix of at most objsFromOverflow items
int i = 1;
Thread* tid = Thread::current();
size_t spin_count = (size_t)ParallelGCThreads;
size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
// someone grabbed it before we did ...
// ... we spin for a short while...
os::sleep(tid, sleep_time_millis, false);
if (_overflow_list == NULL) {
// nothing left to take
return false;
} else if (_overflow_list != BUSY) {
// try and grab the prefix
prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
}
}
if (prefix == NULL || prefix == BUSY) {
// Nothing to take or waited long enough
if (prefix == NULL) {
// Write back the NULL in case we overwrote it with BUSY above
// and it is still the same value.
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
}
return false;
}
assert(prefix != NULL && prefix != BUSY, "Error");
size_t i = 1;
oop cur = prefix;
while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
i++; cur = oop(cur->klass());
}
// Reattach remaining (suffix) to overflow list
if (cur->klass_or_null() != NULL) {
oop suffix = oop(cur->klass());
cur->set_klass_to_list_ptr(NULL);
// Find last item of suffix list
oop last = suffix;
while (last->klass_or_null() != NULL) {
last = oop(last->klass());
if (cur->klass_or_null() == NULL) {
// Write back the NULL in lieu of the BUSY we wrote
// above and it is still the same value.
if (_overflow_list == BUSY) {
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
}
// Atomically prepend suffix to current overflow list
oop cur_overflow_list = _overflow_list;
while (true) {
last->set_klass_to_list_ptr(cur_overflow_list);
oop observed_overflow_list =
(oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
if (observed_overflow_list == cur_overflow_list) break;
// Otherwise...
cur_overflow_list = observed_overflow_list;
} else {
assert(cur->klass_or_null() != BUSY, "Error");
oop suffix = oop(cur->klass()); // suffix will be put back on global list
cur->set_klass_to_list_ptr(NULL); // break off suffix
// It's possible that the list is still in the empty(busy) state
// we left it in a short while ago; in that case we may be
// able to place back the suffix.
oop observed_overflow_list = _overflow_list;
oop cur_overflow_list = observed_overflow_list;
bool attached = false;
while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
observed_overflow_list =
(oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
if (cur_overflow_list == observed_overflow_list) {
attached = true;
break;
} else cur_overflow_list = observed_overflow_list;
}
if (!attached) {
// Too bad, someone else got in in between; we'll need to do a splice.
// Find the last item of suffix list
oop last = suffix;
while (last->klass_or_null() != NULL) {
last = oop(last->klass());
}
// Atomically prepend suffix to current overflow list
observed_overflow_list = _overflow_list;
do {
cur_overflow_list = observed_overflow_list;
if (cur_overflow_list != BUSY) {
// Do the splice ...
last->set_klass_to_list_ptr(cur_overflow_list);
} else { // cur_overflow_list == BUSY
last->set_klass_to_list_ptr(NULL);
}
observed_overflow_list =
(oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
} while (cur_overflow_list != observed_overflow_list);
}
}
// Push objects on prefix list onto this thread's work queue
assert(cur != NULL, "program logic");
assert(prefix != NULL && prefix != BUSY, "program logic");
cur = prefix;
int n = 0;
ssize_t n = 0;
while (cur != NULL) {
oop obj_to_push = cur->forwardee();
oop next = oop(cur->klass_or_null());
cur->set_klass(obj_to_push->klass());
if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
obj_to_push = cur;
// This may be an array object that is self-forwarded. In that case, the list pointer
// space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
if (!is_in_reserved(cur)) {
// This can become a scaling bottleneck when there is work queue overflow coincident
// with promotion failure.
oopDesc* f = cur;
FREE_C_HEAP_ARRAY(oopDesc, f);
} else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
obj_to_push = cur;
}
work_q->push(obj_to_push);
bool ok = work_q->push(obj_to_push);
assert(ok, "Should have succeeded");
cur = next;
n++;
}
par_scan_state->note_overflow_refill(n);
#ifndef PRODUCT
assert(_num_par_pushes >= n, "Too many pops?");
Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
#endif
return true;
}
#undef BUSY
void ParNewGeneration::ref_processor_init()
{
......
......@@ -278,6 +278,7 @@ class ParNewGeneration: public DefNewGeneration {
friend class ParNewRefProcTask;
friend class ParNewRefProcTaskExecutor;
friend class ParScanThreadStateSet;
friend class ParEvacuateFollowersClosure;
private:
// XXX use a global constant instead of 64!
......@@ -296,6 +297,7 @@ class ParNewGeneration: public DefNewGeneration {
// klass-pointers (klass information already copied to the forwarded
// image.) Manipulated with CAS.
oop _overflow_list;
NOT_PRODUCT(ssize_t _num_par_pushes;)
// If true, older generation does not support promotion undo, so avoid.
static bool _avoid_promotion_undo;
......@@ -372,8 +374,12 @@ class ParNewGeneration: public DefNewGeneration {
oop copy_to_survivor_space_with_undo(ParScanThreadState* par_scan_state,
oop obj, size_t obj_sz, markOop m);
// in support of testing overflow code
NOT_PRODUCT(int _overflow_counter;)
NOT_PRODUCT(bool should_simulate_overflow();)
// Push the given (from-space) object on the global overflow list.
void push_on_overflow_list(oop from_space_obj);
void push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state);
// If the global overflow list is non-empty, move some tasks from it
// onto "work_q" (which must be empty). No more than 1/4 of the
......
......@@ -116,7 +116,7 @@ void PSOldGen::initialize_work(const char* perf_data_name, int level) {
// ObjectSpace stuff
//
_object_space = new MutableSpace();
_object_space = new MutableSpace(virtual_space()->alignment());
if (_object_space == NULL)
vm_exit_during_initialization("Could not allocate an old gen space");
......@@ -385,10 +385,10 @@ void PSOldGen::post_resize() {
start_array()->set_covered_region(new_memregion);
Universe::heap()->barrier_set()->resize_covered_region(new_memregion);
HeapWord* const virtual_space_high = (HeapWord*) virtual_space()->high();
// ALWAYS do this last!!
object_space()->set_end(virtual_space_high);
object_space()->initialize(new_memregion,
SpaceDecorator::DontClear,
SpaceDecorator::DontMangle);
assert(new_word_size == heap_word_size(object_space()->capacity_in_bytes()),
"Sanity");
......
......@@ -78,7 +78,7 @@ void PSVirtualSpace::release() {
_special = false;
}
bool PSVirtualSpace::expand_by(size_t bytes, bool pre_touch) {
bool PSVirtualSpace::expand_by(size_t bytes) {
assert(is_aligned(bytes), "arg not aligned");
DEBUG_ONLY(PSVirtualSpaceVerifier this_verifier(this));
......@@ -92,15 +92,6 @@ bool PSVirtualSpace::expand_by(size_t bytes, bool pre_touch) {
_committed_high_addr += bytes;
}
if (pre_touch || AlwaysPreTouch) {
for (char* curr = base_addr;
curr < _committed_high_addr;
curr += os::vm_page_size()) {
char tmp = *curr;
*curr = 0;
}
}
return result;
}
......@@ -255,7 +246,7 @@ PSVirtualSpaceHighToLow::PSVirtualSpaceHighToLow(ReservedSpace rs) {
DEBUG_ONLY(verify());
}
bool PSVirtualSpaceHighToLow::expand_by(size_t bytes, bool pre_touch) {
bool PSVirtualSpaceHighToLow::expand_by(size_t bytes) {
assert(is_aligned(bytes), "arg not aligned");
DEBUG_ONLY(PSVirtualSpaceVerifier this_verifier(this));
......@@ -269,15 +260,6 @@ bool PSVirtualSpaceHighToLow::expand_by(size_t bytes, bool pre_touch) {
_committed_low_addr -= bytes;
}
if (pre_touch || AlwaysPreTouch) {
for (char* curr = base_addr;
curr < _committed_high_addr;
curr += os::vm_page_size()) {
char tmp = *curr;
*curr = 0;
}
}
return result;
}
......
......@@ -80,7 +80,7 @@ class PSVirtualSpace : public CHeapObj {
inline void set_reserved(char* low_addr, char* high_addr, bool special);
inline void set_reserved(ReservedSpace rs);
inline void set_committed(char* low_addr, char* high_addr);
virtual bool expand_by(size_t bytes, bool pre_touch = false);
virtual bool expand_by(size_t bytes);
virtual bool shrink_by(size_t bytes);
virtual size_t expand_into(PSVirtualSpace* space, size_t bytes);
void release();
......@@ -127,7 +127,7 @@ class PSVirtualSpaceHighToLow : public PSVirtualSpace {
PSVirtualSpaceHighToLow(ReservedSpace rs, size_t alignment);
PSVirtualSpaceHighToLow(ReservedSpace rs);
virtual bool expand_by(size_t bytes, bool pre_touch = false);
virtual bool expand_by(size_t bytes);
virtual bool shrink_by(size_t bytes);
virtual size_t expand_into(PSVirtualSpace* space, size_t bytes);
......
......@@ -64,12 +64,12 @@ void PSYoungGen::initialize_work() {
}
if (UseNUMA) {
_eden_space = new MutableNUMASpace();
_eden_space = new MutableNUMASpace(virtual_space()->alignment());
} else {
_eden_space = new MutableSpace();
_eden_space = new MutableSpace(virtual_space()->alignment());
}
_from_space = new MutableSpace();
_to_space = new MutableSpace();
_from_space = new MutableSpace(virtual_space()->alignment());
_to_space = new MutableSpace(virtual_space()->alignment());
if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
vm_exit_during_initialization("Could not allocate a young gen space");
......
......@@ -27,7 +27,7 @@
# include "incls/_mutableNUMASpace.cpp.incl"
MutableNUMASpace::MutableNUMASpace() {
MutableNUMASpace::MutableNUMASpace(size_t alignment) : MutableSpace(alignment) {
_lgrp_spaces = new (ResourceObj::C_HEAP) GrowableArray<LGRPSpace*>(0, true);
_page_size = os::vm_page_size();
_adaptation_cycles = 0;
......@@ -221,7 +221,7 @@ bool MutableNUMASpace::update_layout(bool force) {
}
}
if (!found) {
lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i]));
lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i], alignment()));
}
}
......@@ -443,10 +443,10 @@ void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection
// Is there bottom?
if (new_region.start() < intersection.start()) { // Yes
// Try to coalesce small pages into a large one.
if (UseLargePages && page_size() >= os::large_page_size()) {
HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), os::large_page_size());
if (UseLargePages && page_size() >= alignment()) {
HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), alignment());
if (new_region.contains(p)
&& pointer_delta(p, new_region.start(), sizeof(char)) >= os::large_page_size()) {
&& pointer_delta(p, new_region.start(), sizeof(char)) >= alignment()) {
if (intersection.contains(p)) {
intersection = MemRegion(p, intersection.end());
} else {
......@@ -462,10 +462,10 @@ void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection
// Is there top?
if (intersection.end() < new_region.end()) { // Yes
// Try to coalesce small pages into a large one.
if (UseLargePages && page_size() >= os::large_page_size()) {
HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), os::large_page_size());
if (UseLargePages && page_size() >= alignment()) {
HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), alignment());
if (new_region.contains(p)
&& pointer_delta(new_region.end(), p, sizeof(char)) >= os::large_page_size()) {
&& pointer_delta(new_region.end(), p, sizeof(char)) >= alignment()) {
if (intersection.contains(p)) {
intersection = MemRegion(intersection.start(), p);
} else {
......@@ -504,12 +504,12 @@ void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersecti
// That's the only case we have to make an additional bias_region() call.
HeapWord* start = invalid_region->start();
HeapWord* end = invalid_region->end();
if (UseLargePages && page_size() >= os::large_page_size()) {
HeapWord *p = (HeapWord*)round_down((intptr_t) start, os::large_page_size());
if (UseLargePages && page_size() >= alignment()) {
HeapWord *p = (HeapWord*)round_down((intptr_t) start, alignment());
if (new_region.contains(p)) {
start = p;
}
p = (HeapWord*)round_to((intptr_t) end, os::large_page_size());
p = (HeapWord*)round_to((intptr_t) end, alignment());
if (new_region.contains(end)) {
end = p;
}
......@@ -526,7 +526,8 @@ void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersecti
void MutableNUMASpace::initialize(MemRegion mr,
bool clear_space,
bool mangle_space) {
bool mangle_space,
bool setup_pages) {
assert(clear_space, "Reallocation will destory data!");
assert(lgrp_spaces()->length() > 0, "There should be at least one space");
......@@ -538,7 +539,7 @@ void MutableNUMASpace::initialize(MemRegion mr,
// Compute chunk sizes
size_t prev_page_size = page_size();
set_page_size(UseLargePages ? os::large_page_size() : os::vm_page_size());
set_page_size(UseLargePages ? alignment() : os::vm_page_size());
HeapWord* rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
HeapWord* rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
......@@ -666,7 +667,7 @@ void MutableNUMASpace::initialize(MemRegion mr,
}
// Clear space (set top = bottom) but never mangle.
s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle);
s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle, MutableSpace::DontSetupPages);
set_adaptation_cycles(samples_count());
}
......
......@@ -82,8 +82,8 @@ class MutableNUMASpace : public MutableSpace {
char* last_page_scanned() { return _last_page_scanned; }
void set_last_page_scanned(char* p) { _last_page_scanned = p; }
public:
LGRPSpace(int l) : _lgrp_id(l), _last_page_scanned(NULL), _allocation_failed(false) {
_space = new MutableSpace();
LGRPSpace(int l, size_t alignment) : _lgrp_id(l), _last_page_scanned(NULL), _allocation_failed(false) {
_space = new MutableSpace(alignment);
_alloc_rate = new AdaptiveWeightedAverage(NUMAChunkResizeWeight);
}
~LGRPSpace() {
......@@ -183,10 +183,10 @@ class MutableNUMASpace : public MutableSpace {
public:
GrowableArray<LGRPSpace*>* lgrp_spaces() const { return _lgrp_spaces; }
MutableNUMASpace();
MutableNUMASpace(size_t alignment);
virtual ~MutableNUMASpace();
// Space initialization.
virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space, bool setup_pages = SetupPages);
// Update space layout if necessary. Do all adaptive resizing job.
virtual void update();
// Update allocation rate averages.
......
......@@ -25,7 +25,10 @@
# include "incls/_precompiled.incl"
# include "incls/_mutableSpace.cpp.incl"
MutableSpace::MutableSpace(): ImmutableSpace(), _top(NULL) {
MutableSpace::MutableSpace(size_t alignment): ImmutableSpace(), _top(NULL), _alignment(alignment) {
assert(MutableSpace::alignment() >= 0 &&
MutableSpace::alignment() % os::vm_page_size() == 0,
"Space should be aligned");
_mangler = new MutableSpaceMangler(this);
}
......@@ -33,16 +36,88 @@ MutableSpace::~MutableSpace() {
delete _mangler;
}
void MutableSpace::numa_setup_pages(MemRegion mr, bool clear_space) {
if (!mr.is_empty()) {
size_t page_size = UseLargePages ? alignment() : os::vm_page_size();
HeapWord *start = (HeapWord*)round_to((intptr_t) mr.start(), page_size);
HeapWord *end = (HeapWord*)round_down((intptr_t) mr.end(), page_size);
if (end > start) {
size_t size = pointer_delta(end, start, sizeof(char));
if (clear_space) {
// Prefer page reallocation to migration.
os::free_memory((char*)start, size);
}
os::numa_make_global((char*)start, size);
}
}
}
void MutableSpace::pretouch_pages(MemRegion mr) {
for (volatile char *p = (char*)mr.start(); p < (char*)mr.end(); p += os::vm_page_size()) {
char t = *p; *p = t;
}
}
void MutableSpace::initialize(MemRegion mr,
bool clear_space,
bool mangle_space) {
HeapWord* bottom = mr.start();
HeapWord* end = mr.end();
bool mangle_space,
bool setup_pages) {
assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
assert(Universe::on_page_boundary(mr.start()) && Universe::on_page_boundary(mr.end()),
"invalid space boundaries");
set_bottom(bottom);
set_end(end);
if (setup_pages && (UseNUMA || AlwaysPreTouch)) {
// The space may move left and right or expand/shrink.
// We'd like to enforce the desired page placement.
MemRegion head, tail;
if (last_setup_region().is_empty()) {
// If it's the first initialization don't limit the amount of work.
head = mr;
tail = MemRegion(mr.end(), mr.end());
} else {
// Is there an intersection with the address space?
MemRegion intersection = last_setup_region().intersection(mr);
if (intersection.is_empty()) {
intersection = MemRegion(mr.end(), mr.end());
}
// All the sizes below are in words.
size_t head_size = 0, tail_size = 0;
if (mr.start() <= intersection.start()) {
head_size = pointer_delta(intersection.start(), mr.start());
}
if(intersection.end() <= mr.end()) {
tail_size = pointer_delta(mr.end(), intersection.end());
}
// Limit the amount of page manipulation if necessary.
if (NUMASpaceResizeRate > 0 && !AlwaysPreTouch) {
const size_t change_size = head_size + tail_size;
const float setup_rate_words = NUMASpaceResizeRate >> LogBytesPerWord;
head_size = MIN2((size_t)(setup_rate_words * head_size / change_size),
head_size);
tail_size = MIN2((size_t)(setup_rate_words * tail_size / change_size),
tail_size);
}
head = MemRegion(intersection.start() - head_size, intersection.start());
tail = MemRegion(intersection.end(), intersection.end() + tail_size);
}
assert(mr.contains(head) && mr.contains(tail), "Sanity");
if (UseNUMA) {
numa_setup_pages(head, clear_space);
numa_setup_pages(tail, clear_space);
}
if (AlwaysPreTouch) {
pretouch_pages(head);
pretouch_pages(tail);
}
// Remember where we stopped so that we can continue later.
set_last_setup_region(MemRegion(head.start(), tail.end()));
}
set_bottom(mr.start());
set_end(mr.end());
if (clear_space) {
clear(mangle_space);
......
......@@ -25,7 +25,10 @@
// A MutableSpace is a subtype of ImmutableSpace that supports the
// concept of allocation. This includes the concepts that a space may
// be only partially full, and the querry methods that go with such
// an assumption.
// an assumption. MutableSpace is also responsible for minimizing the
// page allocation time by having the memory pretouched (with
// AlwaysPretouch) and for optimizing page placement on NUMA systems
// by make the underlying region interleaved (with UseNUMA).
//
// Invariant: (ImmutableSpace +) bottom() <= top() <= end()
// top() is inclusive and end() is exclusive.
......@@ -37,15 +40,23 @@ class MutableSpace: public ImmutableSpace {
// Helper for mangling unused space in debug builds
MutableSpaceMangler* _mangler;
// The last region which page had been setup to be interleaved.
MemRegion _last_setup_region;
size_t _alignment;
protected:
HeapWord* _top;
MutableSpaceMangler* mangler() { return _mangler; }
void numa_setup_pages(MemRegion mr, bool clear_space);
void pretouch_pages(MemRegion mr);
void set_last_setup_region(MemRegion mr) { _last_setup_region = mr; }
MemRegion last_setup_region() const { return _last_setup_region; }
public:
virtual ~MutableSpace();
MutableSpace();
MutableSpace(size_t page_size);
// Accessors
HeapWord* top() const { return _top; }
......@@ -57,13 +68,20 @@ class MutableSpace: public ImmutableSpace {
virtual void set_bottom(HeapWord* value) { _bottom = value; }
virtual void set_end(HeapWord* value) { _end = value; }
size_t alignment() { return _alignment; }
// Returns a subregion containing all objects in this space.
MemRegion used_region() { return MemRegion(bottom(), top()); }
static const bool SetupPages = true;
static const bool DontSetupPages = false;
// Initialization
virtual void initialize(MemRegion mr,
bool clear_space,
bool mangle_space);
bool mangle_space,
bool setup_pages = SetupPages);
virtual void clear(bool mangle_space);
// Does the usual initialization but optionally resets top to bottom.
#if 0 // MANGLE_SPACE
......
......@@ -721,12 +721,6 @@ ReferenceProcessor::process_phase3(DiscoveredList& refs_list,
iter.obj(), iter.obj()->blueprint()->internal_name());
}
assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
// If discovery is concurrent, we may have objects with null referents,
// being those that were concurrently cleared after they were discovered
// (and not subsequently precleaned).
assert( (discovery_is_atomic() && iter.referent()->is_oop())
|| (!discovery_is_atomic() && iter.referent()->is_oop_or_null(UseConcMarkSweepGC)),
"Adding a bad referent");
iter.next();
}
// Remember to keep sentinel pointer around
......
......@@ -1307,7 +1307,14 @@ class CommandLineFlags {
product(intx, ParGCArrayScanChunk, 50, \
"Scan a subset and push remainder, if array is bigger than this") \
\
product(intx, ParGCDesiredObjsFromOverflowList, 20, \
notproduct(bool, ParGCWorkQueueOverflowALot, false, \
"Whether we should simulate work queue overflow in ParNew") \
\
notproduct(uintx, ParGCWorkQueueOverflowInterval, 1000, \
"An `interval' counter that determines how frequently" \
" we simulate overflow; a smaller number increases frequency") \
\
product(uintx, ParGCDesiredObjsFromOverflowList, 20, \
"The desired number of objects to claim from the overflow list") \
\
product(uintx, CMSParPromoteBlocksToClaim, 50, \
......@@ -1429,8 +1436,8 @@ class CommandLineFlags {
"Whether we should simulate frequent marking stack / work queue" \
" overflow") \
\
notproduct(intx, CMSMarkStackOverflowInterval, 1000, \
"A per-thread `interval' counter that determines how frequently" \
notproduct(uintx, CMSMarkStackOverflowInterval, 1000, \
"An `interval' counter that determines how frequently" \
" we simulate overflow; a smaller number increases frequency") \
\
product(uintx, CMSMaxAbortablePrecleanLoops, 0, \
......@@ -1648,7 +1655,7 @@ class CommandLineFlags {
develop(uintx, WorkStealingYieldsBeforeSleep, 1000, \
"Number of yields before a sleep is done during workstealing") \
\
product(uintx, PreserveMarkStackSize, 40, \
product(uintx, PreserveMarkStackSize, 1024, \
"Size for stack used in promotion failure handling") \
\
product_pd(bool, UseTLAB, "Use thread-local object allocation") \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册