提交 077edc61 编写于 作者: N never

Merge

......@@ -156,7 +156,8 @@ Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if( add1_op == this_op && !con_right ) {
Node *a12 = add1->in(2);
const Type *t12 = phase->type( a12 );
if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
!(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
add2 = add1->clone();
add2->set_req(2, in(2));
......@@ -173,7 +174,8 @@ Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if( add2_op == this_op && !con_left ) {
Node *a22 = add2->in(2);
const Type *t22 = phase->type( a22 );
if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
!(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
Node *addx = add2->clone();
addx->set_req(1, in(1));
......@@ -225,34 +227,63 @@ const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
//=============================================================================
//------------------------------Idealize---------------------------------------
Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
int op1 = in(1)->Opcode();
int op2 = in(2)->Opcode();
Node* in1 = in(1);
Node* in2 = in(2);
int op1 = in1->Opcode();
int op2 = in2->Opcode();
// Fold (con1-x)+con2 into (con1+con2)-x
if ( op1 == Op_AddI && op2 == Op_SubI ) {
// Swap edges to try optimizations below
in1 = in2;
in2 = in(1);
op1 = op2;
op2 = in2->Opcode();
}
if( op1 == Op_SubI ) {
const Type *t_sub1 = phase->type( in(1)->in(1) );
const Type *t_2 = phase->type( in(2) );
const Type *t_sub1 = phase->type( in1->in(1) );
const Type *t_2 = phase->type( in2 );
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
in(1)->in(2) );
in1->in(2) );
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
if( op2 == Op_SubI ) {
// Check for dead cycle: d = (a-b)+(c-d)
assert( in(1)->in(2) != this && in(2)->in(2) != this,
assert( in1->in(2) != this && in2->in(2) != this,
"dead loop in AddINode::Ideal" );
Node *sub = new (phase->C, 3) SubINode(NULL, NULL);
sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in1->in(1), in2->in(1) ) ));
sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in1->in(2), in2->in(2) ) ));
return sub;
}
// Convert "(a-b)+(b+c)" into "(a+c)"
if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
return new (phase->C, 3) AddINode(in1->in(1), in2->in(2));
}
// Convert "(a-b)+(c+b)" into "(a+c)"
if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
return new (phase->C, 3) AddINode(in1->in(1), in2->in(1));
}
// Convert "(a-b)+(b-c)" into "(a-c)"
if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
return new (phase->C, 3) SubINode(in1->in(1), in2->in(2));
}
// Convert "(a-b)+(c-a)" into "(c-b)"
if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
return new (phase->C, 3) SubINode(in2->in(1), in1->in(2));
}
}
// Convert "x+(0-y)" into "(x-y)"
if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
return new (phase->C, 3) SubINode(in1, in2->in(2) );
// Convert "(0-y)+x" into "(x-y)"
if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
return new (phase->C, 3) SubINode( in2, in1->in(2) );
// Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
// Helps with array allocation math constant folding
......@@ -266,15 +297,15 @@ Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Have not observed cases where type information exists to support
// positive y and (x <= -(y << z))
if( op1 == Op_URShiftI && op2 == Op_ConI &&
in(1)->in(2)->Opcode() == Op_ConI ) {
jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
jint y = phase->type( in(2) )->is_int()->get_con();
in1->in(2)->Opcode() == Op_ConI ) {
jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
jint y = phase->type( in2 )->is_int()->get_con();
if( z < 5 && -5 < y && y < 0 ) {
const Type *t_in11 = phase->type(in(1)->in(1));
const Type *t_in11 = phase->type(in1->in(1));
if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
Node *a = phase->transform( new (phase->C, 3) AddINode( in1->in(1), phase->intcon(y<<z) ) );
return new (phase->C, 3) URShiftINode( a, in1->in(2) );
}
}
}
......@@ -328,39 +359,73 @@ const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
//=============================================================================
//------------------------------Idealize---------------------------------------
Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
int op1 = in(1)->Opcode();
int op2 = in(2)->Opcode();
Node* in1 = in(1);
Node* in2 = in(2);
int op1 = in1->Opcode();
int op2 = in2->Opcode();
// Fold (con1-x)+con2 into (con1+con2)-x
if ( op1 == Op_AddL && op2 == Op_SubL ) {
// Swap edges to try optimizations below
in1 = in2;
in2 = in(1);
op1 = op2;
op2 = in2->Opcode();
}
// Fold (con1-x)+con2 into (con1+con2)-x
if( op1 == Op_SubL ) {
const Type *t_sub1 = phase->type( in(1)->in(1) );
const Type *t_2 = phase->type( in(2) );
const Type *t_sub1 = phase->type( in1->in(1) );
const Type *t_2 = phase->type( in2 );
if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
in(1)->in(2) );
in1->in(2) );
// Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
if( op2 == Op_SubL ) {
// Check for dead cycle: d = (a-b)+(c-d)
assert( in(1)->in(2) != this && in(2)->in(2) != this,
assert( in1->in(2) != this && in2->in(2) != this,
"dead loop in AddLNode::Ideal" );
Node *sub = new (phase->C, 3) SubLNode(NULL, NULL);
sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in1->in(1), in2->in(1) ) ));
sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in1->in(2), in2->in(2) ) ));
return sub;
}
// Convert "(a-b)+(b+c)" into "(a+c)"
if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
return new (phase->C, 3) AddLNode(in1->in(1), in2->in(2));
}
// Convert "(a-b)+(c+b)" into "(a+c)"
if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
return new (phase->C, 3) AddLNode(in1->in(1), in2->in(1));
}
// Convert "(a-b)+(b-c)" into "(a-c)"
if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
return new (phase->C, 3) SubLNode(in1->in(1), in2->in(2));
}
// Convert "(a-b)+(c-a)" into "(c-b)"
if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
return new (phase->C, 3) SubLNode(in2->in(1), in1->in(2));
}
}
// Convert "x+(0-y)" into "(x-y)"
if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
return new (phase->C, 3) SubLNode( in1, in2->in(2) );
// Convert "(0-y)+x" into "(x-y)"
if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
return new (phase->C, 3) SubLNode( in2, in1->in(2) );
// Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
// into "(X<<1)+Y" and let shift-folding happen.
if( op2 == Op_AddL &&
in(2)->in(1) == in(1) &&
in2->in(1) == in1 &&
op1 != Op_ConL &&
0 ) {
Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in1,phase->intcon(1)));
return new (phase->C, 3) AddLNode(shift,in2->in(2));
}
return AddNode::Ideal(phase, can_reshape);
......
......@@ -1817,6 +1817,12 @@ Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
return progress; // Return any progress
}
//------------------------------is_tripcount-----------------------------------
bool PhiNode::is_tripcount() const {
return (in(0) != NULL && in(0)->is_CountedLoop() &&
in(0)->as_CountedLoop()->phi() == this);
}
//------------------------------out_RegMask------------------------------------
const RegMask &PhiNode::in_RegMask(uint i) const {
return i ? out_RegMask() : RegMask::Empty;
......@@ -1832,9 +1838,7 @@ const RegMask &PhiNode::out_RegMask() const {
#ifndef PRODUCT
void PhiNode::dump_spec(outputStream *st) const {
TypeNode::dump_spec(st);
if (in(0) != NULL &&
in(0)->is_CountedLoop() &&
in(0)->as_CountedLoop()->phi() == this) {
if (is_tripcount()) {
st->print(" #tripcount");
}
}
......
......@@ -162,6 +162,8 @@ public:
return NULL; // not a copy!
}
bool is_tripcount() const;
// Determine a unique non-trivial input, if any.
// Ignore casts if it helps. Return NULL on failure.
Node* unique_input(PhaseTransform *phase);
......
......@@ -110,10 +110,13 @@ static Node *transform_int_divide( PhaseGVN *phase, Node *dividend, jint divisor
} else if( dividend->Opcode() == Op_AndI ) {
// An AND mask of sufficient size clears the low bits and
// I can avoid rounding.
const TypeInt *andconi = phase->type( dividend->in(2) )->isa_int();
if( andconi && andconi->is_con(-d) ) {
dividend = dividend->in(1);
needs_rounding = false;
const TypeInt *andconi_t = phase->type( dividend->in(2) )->isa_int();
if( andconi_t && andconi_t->is_con() ) {
jint andconi = andconi_t->get_con();
if( andconi < 0 && is_power_of_2(-andconi) && (-andconi) >= d ) {
dividend = dividend->in(1);
needs_rounding = false;
}
}
}
......@@ -316,10 +319,13 @@ static Node *transform_long_divide( PhaseGVN *phase, Node *dividend, jlong divis
} else if( dividend->Opcode() == Op_AndL ) {
// An AND mask of sufficient size clears the low bits and
// I can avoid rounding.
const TypeLong *andconl = phase->type( dividend->in(2) )->isa_long();
if( andconl && andconl->is_con(-d)) {
dividend = dividend->in(1);
needs_rounding = false;
const TypeLong *andconl_t = phase->type( dividend->in(2) )->isa_long();
if( andconl_t && andconl_t->is_con() ) {
jlong andconl = andconl_t->get_con();
if( andconl < 0 && is_power_of_2_long(-andconl) && (-andconl) >= d ) {
dividend = dividend->in(1);
needs_rounding = false;
}
}
}
......
......@@ -679,6 +679,10 @@ void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_
CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
post_head->set_post_loop(main_head);
// Reduce the post-loop trip count.
CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
post_end->_prob = PROB_FAIR;
// Build the main-loop normal exit.
IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
_igvn.register_new_node_with_optimizer( new_main_exit );
......@@ -748,6 +752,9 @@ void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_
pre_head->set_pre_loop(main_head);
Node *pre_incr = old_new[incr->_idx];
// Reduce the pre-loop trip count.
pre_end->_prob = PROB_FAIR;
// Find the pre-loop normal exit.
Node* pre_exit = pre_end->proj_out(false);
assert( pre_exit->Opcode() == Op_IfFalse, "" );
......@@ -767,8 +774,8 @@ void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_
register_new_node( min_cmp , new_pre_exit );
register_new_node( min_bol , new_pre_exit );
// Build the IfNode
IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_FAIR, COUNT_UNKNOWN );
// Build the IfNode (assume the main-loop is executed always).
IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
_igvn.register_new_node_with_optimizer( min_iff );
set_idom(min_iff, new_pre_exit, dd_main_head);
set_loop(min_iff, loop->_parent);
......@@ -1583,10 +1590,10 @@ bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
//=============================================================================
//------------------------------iteration_split_impl---------------------------
void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
// Check and remove empty loops (spam micro-benchmarks)
if( policy_do_remove_empty_loop(phase) )
return; // Here we removed an empty loop
return true; // Here we removed an empty loop
bool should_peel = policy_peeling(phase); // Should we peel?
......@@ -1596,7 +1603,8 @@ void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
// This removes loop-invariant tests (usually null checks).
if( !_head->is_CountedLoop() ) { // Non-counted loop
if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
return;
// Partial peel succeeded so terminate this round of loop opts
return false;
}
if( should_peel ) { // Should we peel?
#ifndef PRODUCT
......@@ -1606,14 +1614,14 @@ void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
} else if( should_unswitch ) {
phase->do_unswitching(this, old_new);
}
return;
return true;
}
CountedLoopNode *cl = _head->as_CountedLoop();
if( !cl->loopexit() ) return; // Ignore various kinds of broken loops
if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
// Do nothing special to pre- and post- loops
if( cl->is_pre_loop() || cl->is_post_loop() ) return;
if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
// Compute loop trip count from profile data
compute_profile_trip_cnt(phase);
......@@ -1626,11 +1634,11 @@ void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
// Here we did some unrolling and peeling. Eventually we will
// completely unroll this loop and it will no longer be a loop.
phase->do_maximally_unroll(this,old_new);
return;
return true;
}
if (should_unswitch) {
phase->do_unswitching(this, old_new);
return;
return true;
}
}
......@@ -1691,14 +1699,16 @@ void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
if( should_peel ) // Might want to peel but do nothing else
phase->do_peeling(this,old_new);
}
return true;
}
//=============================================================================
//------------------------------iteration_split--------------------------------
void IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
// Recursively iteration split nested loops
if( _child ) _child->iteration_split( phase, old_new );
if( _child && !_child->iteration_split( phase, old_new ))
return false;
// Clean out prior deadwood
DCE_loop_body();
......@@ -1720,7 +1730,9 @@ void IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new )
_allow_optimizations &&
!tail()->is_top() ) { // Also ignore the occasional dead backedge
if (!_has_call) {
iteration_split_impl( phase, old_new );
if (!iteration_split_impl( phase, old_new )) {
return false;
}
} else if (policy_unswitching(phase)) {
phase->do_unswitching(this, old_new);
}
......@@ -1729,5 +1741,7 @@ void IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new )
// Minor offset re-organization to remove loop-fallout uses of
// trip counter.
if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
if( _next ) _next->iteration_split( phase, old_new );
if( _next && !_next->iteration_split( phase, old_new ))
return false;
return true;
}
......@@ -325,12 +325,14 @@ public:
// Returns TRUE if loop tree is structurally changed.
bool beautify_loops( PhaseIdealLoop *phase );
// Perform iteration-splitting on inner loops. Split iterations to avoid
// range checks or one-shot null checks.
void iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
// Driver for various flavors of iteration splitting
void iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
// Perform iteration-splitting on inner loops. Split iterations to
// avoid range checks or one-shot null checks. Returns false if the
// current round of loop opts should stop.
bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
// Driver for various flavors of iteration splitting. Returns false
// if the current round of loop opts should stop.
bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
// Given dominators, try to find loops with calls that must always be
// executed (call dominates loop tail). These loops do not need non-call
......
......@@ -1903,9 +1903,6 @@ void PhaseIdealLoop::clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, N
// Use in a phi is considered a use in the associated predecessor block
use_c = use->in(0)->in(j);
}
if (use_c->is_CountedLoop()) {
use_c = use_c->in(LoopNode::EntryControl);
}
set_ctrl(n_clone, use_c);
assert(!loop->is_member(get_loop(use_c)), "should be outside loop");
get_loop(use_c)->_body.push(n_clone);
......
......@@ -1320,7 +1320,8 @@ public:
Node *pop() {
if( _clock_index >= size() ) _clock_index = 0;
Node *b = at(_clock_index);
map( _clock_index++, Node_List::pop());
map( _clock_index, Node_List::pop());
if (size() != 0) _clock_index++; // Always start from 0
_in_worklist >>= b->_idx;
return b;
}
......
......@@ -34,7 +34,7 @@ static bool is_single_register(uint x) {
#endif
}
//------------------------------may_be_copy_of_callee-----------------------------
//---------------------------may_be_copy_of_callee-----------------------------
// Check to see if we can possibly be a copy of a callee-save value.
bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
// Short circuit if there are no callee save registers
......@@ -225,6 +225,20 @@ int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &v
// Scan all registers to see if this value is around already
for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
if (reg == (uint)nk_reg) {
// Found ourselves so check if there is only one user of this
// copy and keep on searching for a better copy if so.
bool ignore_self = true;
x = n->in(k);
DUIterator_Fast imax, i = x->fast_outs(imax);
Node* first = x->fast_out(i); i++;
while (i < imax && ignore_self) {
Node* use = x->fast_out(i); i++;
if (use != first) ignore_self = false;
}
if (ignore_self) continue;
}
Node *vv = value[reg];
if( !single ) { // Doubles check for aligned-adjacent pair
if( (reg&1)==0 ) continue; // Wrong half of a pair
......
......@@ -206,6 +206,14 @@ Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
// Convert "(A+X) - (X+B)" into "A - B"
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
return new (phase->C, 3) SubINode( in1->in(1), in2->in(2) );
// Convert "(X+A) - (B+X)" into "A - B"
if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
return new (phase->C, 3) SubINode( in1->in(2), in2->in(1) );
// Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
// nicer to optimize than subtract.
if( op2 == Op_SubI && in2->outcnt() == 1) {
......
......@@ -2546,7 +2546,7 @@ class CommandLineFlags {
develop(intx, MaxRecursiveInlineLevel, 1, \
"maximum number of nested recursive calls that are inlined") \
\
develop(intx, InlineSmallCode, 1000, \
product(intx, InlineSmallCode, 1000, \
"Only inline already compiled methods if their code size is " \
"less than this") \
\
......
......@@ -29,6 +29,8 @@
*/
public class Test6700047 {
static byte[] dummy = new byte[256];
public static void main(String[] args) {
for (int i = 0; i < 100000; i++) {
intToLeftPaddedAsciiBytes();
......@@ -53,6 +55,7 @@ public class Test6700047 {
if (offset > 0) {
for(int j = 0; j < offset; j++) {
result++;
dummy[i] = 0;
}
}
return result;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册