parse2.cpp 71.6 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_parse2.cpp.incl"

extern int explicit_null_checks_inserted,
           explicit_null_checks_elided;

//---------------------------------array_load----------------------------------
void Parse::array_load(BasicType elem_type) {
  const Type* elem = Type::TOP;
  Node* adr = array_addressing(elem_type, 0, &elem);
T
twisti 已提交
35
  if (stopped())  return;     // guaranteed null or range check
D
duke 已提交
36 37 38 39 40 41 42 43 44 45
  _sp -= 2;                   // Pop array and index
  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
  push(ld);
}


//--------------------------------array_store----------------------------------
void Parse::array_store(BasicType elem_type) {
  Node* adr = array_addressing(elem_type, 1);
T
twisti 已提交
46
  if (stopped())  return;     // guaranteed null or range check
D
duke 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  Node* val = pop();
  _sp -= 2;                   // Pop array and index
  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  store_to_memory(control(), adr, val, elem_type, adr_type);
}


//------------------------------array_addressing-------------------------------
// Pull array and index from the stack.  Compute pointer-to-element.
Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
  Node *idx   = peek(0+vals);   // Get from stack without popping
  Node *ary   = peek(1+vals);   // in case of exception

  // Null check the array base, with correct stack contents
  ary = do_null_check(ary, T_ARRAY);
  // Compile-time detect of null-exception?
  if (stopped())  return top();

  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
  const TypeInt*    sizetype = arytype->size();
  const Type*       elemtype = arytype->elem();

  if (UseUniqueSubclasses && result2 != NULL) {
70 71 72
    const Type* el = elemtype->make_ptr();
    if (el && el->isa_instptr()) {
      const TypeInstPtr* toop = el->is_instptr();
D
duke 已提交
73 74 75
      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
        const Type* subklass = Type::get_const_type(toop->klass());
76
        elemtype = subklass->join(el);
D
duke 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
      }
    }
  }

  // Check for big class initializers with all constant offsets
  // feeding into a known-size array.
  const TypeInt* idxtype = _gvn.type(idx)->is_int();
  // See if the highest idx value is less than the lowest array bound,
  // and if the idx value cannot be negative:
  bool need_range_check = true;
  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
    need_range_check = false;
    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
  }

  if (!arytype->klass()->is_loaded()) {
    // Only fails for some -Xcomp runs
    // The class is unloaded.  We have to run this bytecode in the interpreter.
    uncommon_trap(Deoptimization::Reason_unloaded,
                  Deoptimization::Action_reinterpret,
                  arytype->klass(), "!loaded array");
    return top();
  }

  // Do the range check
  if (GenerateRangeChecks && need_range_check) {
103 104
    Node* tst;
    if (sizetype->_hi <= 0) {
105
      // The greatest array bound is negative, so we can conclude that we're
106 107 108 109 110
      // compiling unreachable code, but the unsigned compare trick used below
      // only works with non-negative lengths.  Instead, hack "tst" to be zero so
      // the uncommon_trap path will always be taken.
      tst = _gvn.intcon(0);
    } else {
111 112 113
      // Range is constant in array-oop, so we can use the original state of mem
      Node* len = load_array_length(ary);

114 115 116 117 118
      // Test length vs index (standard trick using unsigned compare)
      Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
      BoolTest::mask btest = BoolTest::lt;
      tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
    }
D
duke 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    // Branch to failure if out of bounds
    { BuildCutout unless(this, tst, PROB_MAX);
      if (C->allow_range_check_smearing()) {
        // Do not use builtin_throw, since range checks are sometimes
        // made more stringent by an optimistic transformation.
        // This creates "tentative" range checks at this point,
        // which are not guaranteed to throw exceptions.
        // See IfNode::Ideal, is_range_check, adjust_check.
        uncommon_trap(Deoptimization::Reason_range_check,
                      Deoptimization::Action_make_not_entrant,
                      NULL, "range_check");
      } else {
        // If we have already recompiled with the range-check-widening
        // heroic optimization turned off, then we must really be throwing
        // range check exceptions.
        builtin_throw(Deoptimization::Reason_range_check, idx);
      }
    }
  }
  // Check for always knowing you are throwing a range-check exception
  if (stopped())  return top();

141
  Node* ptr = array_element_address(ary, idx, type, sizetype);
D
duke 已提交
142 143

  if (result2 != NULL)  *result2 = elemtype;
144 145 146

  assert(ptr != top(), "top should go hand-in-hand with stopped");

D
duke 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
  return ptr;
}


// returns IfNode
IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
  Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
  Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
  return iff;
}

// return Region node
Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
  Node *region  = new (C, 3) RegionNode(3); // 2 results
  record_for_igvn(region);
  region->init_req(1, iffalse);
  region->init_req(2, iftrue );
  _gvn.set_type(region, Type::CONTROL);
  region = _gvn.transform(region);
  set_control (region);
  return region;
}


//------------------------------helper for tableswitch-------------------------
void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
  // True branch, use existing map info
  { PreserveJVMState pjvms(this);
    Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
    set_control( iftrue );
    profile_switch_case(prof_table_index);
    merge_new_path(dest_bci_if_true);
  }

  // False branch
  Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
  set_control( iffalse );
}

void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
  // True branch, use existing map info
  { PreserveJVMState pjvms(this);
    Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
    set_control( iffalse );
    profile_switch_case(prof_table_index);
    merge_new_path(dest_bci_if_true);
  }

  // False branch
  Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
  set_control( iftrue );
}

void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
  // False branch, use existing map and control()
  profile_switch_case(prof_table_index);
  merge_new_path(dest_bci);
}


extern "C" {
  static int jint_cmp(const void *i, const void *j) {
    int a = *(jint *)i;
    int b = *(jint *)j;
    return a > b ? 1 : a < b ? -1 : 0;
  }
}


// Default value for methodData switch indexing. Must be a negative value to avoid
// conflict with any legal switch index.
#define NullTableIndex -1

class SwitchRange : public StackObj {
  // a range of integers coupled with a bci destination
  jint _lo;                     // inclusive lower limit
  jint _hi;                     // inclusive upper limit
  int _dest;
  int _table_index;             // index into method data table

public:
  jint lo() const              { return _lo;   }
  jint hi() const              { return _hi;   }
  int  dest() const            { return _dest; }
  int  table_index() const     { return _table_index; }
  bool is_singleton() const    { return _lo == _hi; }

  void setRange(jint lo, jint hi, int dest, int table_index) {
    assert(lo <= hi, "must be a non-empty range");
    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
  }
  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
    assert(lo <= hi, "must be a non-empty range");
    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
      _hi = hi;
      return true;
    }
    return false;
  }

  void set (jint value, int dest, int table_index) {
    setRange(value, value, dest, table_index);
  }
  bool adjoin(jint value, int dest, int table_index) {
    return adjoinRange(value, value, dest, table_index);
  }

  void print(ciEnv* env) {
    if (is_singleton())
      tty->print(" {%d}=>%d", lo(), dest());
    else if (lo() == min_jint)
      tty->print(" {..%d}=>%d", hi(), dest());
    else if (hi() == max_jint)
      tty->print(" {%d..}=>%d", lo(), dest());
    else
      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
  }
};


//-------------------------------do_tableswitch--------------------------------
void Parse::do_tableswitch() {
  Node* lookup = pop();

  // Get information about tableswitch
  int default_dest = iter().get_dest_table(0);
  int lo_index     = iter().get_int_table(1);
  int hi_index     = iter().get_int_table(2);
  int len          = hi_index - lo_index + 1;

  if (len < 1) {
    // If this is a backward branch, add safepoint
    maybe_add_safepoint(default_dest);
    merge(default_dest);
    return;
  }

  // generate decision tree, using trichotomy when possible
  int rnum = len+2;
  bool makes_backward_branch = false;
  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
  int rp = -1;
  if (lo_index != min_jint) {
    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
  }
  for (int j = 0; j < len; j++) {
    jint match_int = lo_index+j;
    int  dest      = iter().get_dest_table(j+3);
    makes_backward_branch |= (dest <= bci());
    int  table_index = method_data_update() ? j : NullTableIndex;
    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
      ranges[++rp].set(match_int, dest, table_index);
    }
  }
  jint highest = lo_index+(len-1);
  assert(ranges[rp].hi() == highest, "");
  if (highest != max_jint
      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
  }
  assert(rp < len+2, "not too many ranges");

  // Safepoint in case if backward branch observed
  if( makes_backward_branch && UseLoopSafepoints )
    add_safepoint();

  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
}


//------------------------------do_lookupswitch--------------------------------
void Parse::do_lookupswitch() {
  Node *lookup = pop();         // lookup value
  // Get information about lookupswitch
  int default_dest = iter().get_dest_table(0);
  int len          = iter().get_int_table(1);

  if (len < 1) {    // If this is a backward branch, add safepoint
    maybe_add_safepoint(default_dest);
    merge(default_dest);
    return;
  }

  // generate decision tree, using trichotomy when possible
  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
  {
    for( int j = 0; j < len; j++ ) {
      table[j+j+0] = iter().get_int_table(2+j+j);
      table[j+j+1] = iter().get_dest_table(2+j+j+1);
    }
    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
  }

  int rnum = len*2+1;
  bool makes_backward_branch = false;
  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
  int rp = -1;
  for( int j = 0; j < len; j++ ) {
    jint match_int   = table[j+j+0];
    int  dest        = table[j+j+1];
    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
    int  table_index = method_data_update() ? j : NullTableIndex;
    makes_backward_branch |= (dest <= bci());
    if( match_int != next_lo ) {
      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
    }
    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
      ranges[++rp].set(match_int, dest, table_index);
    }
  }
  jint highest = table[2*(len-1)];
  assert(ranges[rp].hi() == highest, "");
  if( highest != max_jint
      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
  }
  assert(rp < rnum, "not too many ranges");

  // Safepoint in case backward branch observed
  if( makes_backward_branch && UseLoopSafepoints )
    add_safepoint();

  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
}

//----------------------------create_jump_tables-------------------------------
bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
  // Are jumptables enabled
  if (!UseJumpTables)  return false;

  // Are jumptables supported
  if (!Matcher::has_match_rule(Op_Jump))  return false;

  // Don't make jump table if profiling
  if (method_data_update())  return false;

  // Decide if a guard is needed to lop off big ranges at either (or
  // both) end(s) of the input set. We'll call this the default target
  // even though we can't be sure that it is the true "default".

  bool needs_guard = false;
  int default_dest;
  int64 total_outlier_size = 0;
  int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
  int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;

  if (lo->dest() == hi->dest()) {
    total_outlier_size = hi_size + lo_size;
    default_dest = lo->dest();
  } else if (lo_size > hi_size) {
    total_outlier_size = lo_size;
    default_dest = lo->dest();
  } else {
    total_outlier_size = hi_size;
    default_dest = hi->dest();
  }

  // If a guard test will eliminate very sparse end ranges, then
  // it is worth the cost of an extra jump.
  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
    needs_guard = true;
    if (default_dest == lo->dest()) lo++;
    if (default_dest == hi->dest()) hi--;
  }

  // Find the total number of cases and ranges
  int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
  int num_range = hi - lo + 1;

  // Don't create table if: too large, too small, or too sparse.
  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
    return false;
  if (num_cases > (MaxJumpTableSparseness * num_range))
    return false;

  // Normalize table lookups to zero
  int lowval = lo->lo();
  key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );

  // Generate a guard to protect against input keyvals that aren't
  // in the switch domain.
  if (needs_guard) {
    Node*   size = _gvn.intcon(num_cases);
    Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
    Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
    jump_if_true_fork(iff, default_dest, NullTableIndex);
  }

  // Create an ideal node JumpTable that has projections
  // of all possible ranges for a switch statement
  // The key_val input must be converted to a pointer offset and scaled.
  // Compare Parse::array_addressing above.
#ifdef _LP64
  // Clean the 32-bit int into a real 64-bit offset.
  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
  const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
  key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
#endif
  // Shift the value by wordsize so we have an index into the table, rather
  // than a switch value
  Node *shiftWord = _gvn.MakeConX(wordSize);
  key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));

  // Create the JumpNode
  Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );

  // These are the switch destinations hanging off the jumpnode
  int i = 0;
  for (SwitchRange* r = lo; r <= hi; r++) {
    for (int j = r->lo(); j <= r->hi(); j++, i++) {
      Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
      {
        PreserveJVMState pjvms(this);
        set_control(input);
        jump_if_always_fork(r->dest(), r->table_index());
      }
    }
  }
  assert(i == num_cases, "miscount of cases");
  stop_and_kill_map();  // no more uses for this JVMS
  return true;
}

//----------------------------jump_switch_ranges-------------------------------
void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
  Block* switch_block = block();

  if (switch_depth == 0) {
    // Do special processing for the top-level call.
    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");

    // Decrement pred-numbers for the unique set of nodes.
#ifdef ASSERT
    // Ensure that the block's successors are a (duplicate-free) set.
    int successors_counted = 0;  // block occurrences in [hi..lo]
    int unique_successors = switch_block->num_successors();
    for (int i = 0; i < unique_successors; i++) {
      Block* target = switch_block->successor_at(i);

      // Check that the set of successors is the same in both places.
      int successors_found = 0;
      for (SwitchRange* p = lo; p <= hi; p++) {
        if (p->dest() == target->start())  successors_found++;
      }
      assert(successors_found > 0, "successor must be known");
      successors_counted += successors_found;
    }
    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
#endif

    // Maybe prune the inputs, based on the type of key_val.
    jint min_val = min_jint;
    jint max_val = max_jint;
    const TypeInt* ti = key_val->bottom_type()->isa_int();
    if (ti != NULL) {
      min_val = ti->_lo;
      max_val = ti->_hi;
      assert(min_val <= max_val, "invalid int type");
    }
    while (lo->hi() < min_val)  lo++;
    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
    while (hi->lo() > max_val)  hi--;
    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
  }

#ifndef PRODUCT
  if (switch_depth == 0) {
    _max_switch_depth = 0;
    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
  }
#endif

  assert(lo <= hi, "must be a non-empty set of ranges");
  if (lo == hi) {
    jump_if_always_fork(lo->dest(), lo->table_index());
  } else {
    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");

    if (create_jump_tables(key_val, lo, hi)) return;

    int nr = hi - lo + 1;

    SwitchRange* mid = lo + nr/2;
    // if there is an easy choice, pivot at a singleton:
    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;

    assert(lo < mid && mid <= hi, "good pivot choice");
    assert(nr != 2 || mid == hi,   "should pick higher of 2");
    assert(nr != 3 || mid == hi-1, "should pick middle of 3");

    Node *test_val = _gvn.intcon(mid->lo());

    if (mid->is_singleton()) {
      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());

      // Special Case:  If there are exactly three ranges, and the high
      // and low range each go to the same place, omit the "gt" test,
      // since it will not discriminate anything.
      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
      if (eq_test_only) {
        assert(mid == hi-1, "");
      }

      // if there is a higher range, test for it and process it:
      if (mid < hi && !eq_test_only) {
        // two comparisons of same values--should enable 1 test for 2 branches
        // Use BoolTest::le instead of BoolTest::gt
        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
        Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
        Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
        { PreserveJVMState pjvms(this);
          set_control(iffalse);
          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
        }
        set_control(iftrue);
      }

    } else {
      // mid is a range, not a singleton, so treat mid..hi as a unit
      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);

      // if there is a higher range, test for it and process it:
      if (mid == hi) {
        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
      } else {
        Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
        Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
        { PreserveJVMState pjvms(this);
          set_control(iftrue);
          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
        }
        set_control(iffalse);
      }
    }

    // in any case, process the lower range
    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
  }

  // Decrease pred_count for each successor after all is done.
  if (switch_depth == 0) {
    int unique_successors = switch_block->num_successors();
    for (int i = 0; i < unique_successors; i++) {
      Block* target = switch_block->successor_at(i);
      // Throw away the pre-allocated path for each unique successor.
      target->next_path_num();
    }
  }

#ifndef PRODUCT
  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
    SwitchRange* r;
    int nsing = 0;
    for( r = lo; r <= hi; r++ ) {
      if( r->is_singleton() )  nsing++;
    }
    tty->print(">>> ");
    _method->print_short_name();
    tty->print_cr(" switch decision tree");
    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
                  hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
    if (_max_switch_depth > _est_switch_depth) {
      tty->print_cr("******** BAD SWITCH DEPTH ********");
    }
    tty->print("   ");
    for( r = lo; r <= hi; r++ ) {
      r->print(env());
    }
    tty->print_cr("");
  }
#endif
}

void Parse::modf() {
  Node *f2 = pop();
  Node *f1 = pop();
  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
                              "frem", NULL, //no memory effects
                              f1, f2);
  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));

  push(res);
}

void Parse::modd() {
  Node *d2 = pop_pair();
  Node *d1 = pop_pair();
  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
                              "drem", NULL, //no memory effects
                              d1, top(), d2, top());
  Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));

#ifdef ASSERT
  Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
  assert(res_top == top(), "second value must be top");
#endif

  push_pair(res_d);
}

void Parse::l2f() {
  Node* f2 = pop();
  Node* f1 = pop();
  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
                              "l2f", NULL, //no memory effects
                              f1, f2);
  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));

  push(res);
}

void Parse::do_irem() {
  // Must keep both values on the expression-stack during null-check
  do_null_check(peek(), T_INT);
  // Compile-time detect of null-exception?
  if (stopped())  return;

  Node* b = pop();
  Node* a = pop();

  const Type *t = _gvn.type(b);
  if (t != Type::TOP) {
    const TypeInt *ti = t->is_int();
    if (ti->is_con()) {
      int divisor = ti->get_con();
      // check for positive power of 2
      if (divisor > 0 &&
          (divisor & ~(divisor-1)) == divisor) {
        // yes !
        Node *mask = _gvn.intcon((divisor - 1));
        // Sigh, must handle negative dividends
        Node *zero = _gvn.intcon(0);
        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
        Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
        Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
        Node *reg = jump_if_join(ift, iff);
        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
        // Negative path; negate/and/negate
        Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
        Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
        Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
        phi->init_req(1, negn);
        // Fast positive case
        Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
        phi->init_req(2, andx);
        // Push the merge
        push( _gvn.transform(phi) );
        return;
      }
    }
  }
  // Default case
  push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
}

// Handle jsr and jsr_w bytecode
void Parse::do_jsr() {
  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");

  // Store information about current state, tagged with new _jsr_bci
  int return_bci = iter().next_bci();
  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();

  // Update method data
  profile_taken_branch(jsr_bci);

  // The way we do things now, there is only one successor block
  // for the jsr, because the target code is cloned by ciTypeFlow.
  Block* target = successor_for_bci(jsr_bci);

  // What got pushed?
  const Type* ret_addr = target->peek();
  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");

  // Effect on jsr on stack
  push(_gvn.makecon(ret_addr));

  // Flow to the jsr.
  merge(jsr_bci);
}

// Handle ret bytecode
void Parse::do_ret() {
  // Find to whom we return.
#if 0 // %%%% MAKE THIS WORK
  Node* con = local();
  const TypePtr* tp = con->bottom_type()->isa_ptr();
  assert(tp && tp->singleton(), "");
  int return_bci = (int) tp->get_con();
  merge(return_bci);
#else
  assert(block()->num_successors() == 1, "a ret can only go one place now");
  Block* target = block()->successor_at(0);
  assert(!target->is_ready(), "our arrival must be expected");
  profile_ret(target->flow()->start());
  int pnum = target->next_path_num();
  merge_common(target, pnum);
#endif
}

//--------------------------dynamic_branch_prediction--------------------------
// Try to gather dynamic branch prediction behavior.  Return a probability
// of the branch being taken and set the "cnt" field.  Returns a -1.0
// if we need to use static prediction for some reason.
float Parse::dynamic_branch_prediction(float &cnt) {
  ResourceMark rm;

  cnt  = COUNT_UNKNOWN;

  // Use MethodData information if it is available
  // FIXME: free the ProfileData structure
  ciMethodData* methodData = method()->method_data();
  if (!methodData->is_mature())  return PROB_UNKNOWN;
  ciProfileData* data = methodData->bci_to_data(bci());
  if (!data->is_JumpData())  return PROB_UNKNOWN;

  // get taken and not taken values
  int     taken = data->as_JumpData()->taken();
  int not_taken = 0;
  if (data->is_BranchData()) {
    not_taken = data->as_BranchData()->not_taken();
  }

  // scale the counts to be commensurate with invocation counts:
  taken = method()->scale_count(taken);
  not_taken = method()->scale_count(not_taken);

  // Give up if too few counts to be meaningful
  if (taken + not_taken < 40) {
    if (C->log() != NULL) {
      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
    }
    return PROB_UNKNOWN;
  }

  // Compute frequency that we arrive here
  int sum = taken + not_taken;
  // Adjust, if this block is a cloned private block but the
  // Jump counts are shared.  Taken the private counts for
  // just this path instead of the shared counts.
  if( block()->count() > 0 )
    sum = block()->count();
  cnt = (float)sum / (float)FreqCountInvocations;

  // Pin probability to sane limits
  float prob;
  if( !taken )
    prob = (0+PROB_MIN) / 2;
  else if( !not_taken )
    prob = (1+PROB_MAX) / 2;
  else {                         // Compute probability of true path
    prob = (float)taken / (float)(taken + not_taken);
    if (prob > PROB_MAX)  prob = PROB_MAX;
    if (prob < PROB_MIN)   prob = PROB_MIN;
  }

  assert((cnt > 0.0f) && (prob > 0.0f),
         "Bad frequency assignment in if");

  if (C->log() != NULL) {
    const char* prob_str = NULL;
    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
    char prob_str_buf[30];
    if (prob_str == NULL) {
      sprintf(prob_str_buf, "%g", prob);
      prob_str = prob_str_buf;
    }
    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
                   iter().get_dest(), taken, not_taken, cnt, prob_str);
  }
  return prob;
}

//-----------------------------branch_prediction-------------------------------
float Parse::branch_prediction(float& cnt,
                               BoolTest::mask btest,
                               int target_bci) {
  float prob = dynamic_branch_prediction(cnt);
  // If prob is unknown, switch to static prediction
  if (prob != PROB_UNKNOWN)  return prob;

  prob = PROB_FAIR;                   // Set default value
  if (btest == BoolTest::eq)          // Exactly equal test?
    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
  else if (btest == BoolTest::ne)
    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent

  // If this is a conditional test guarding a backwards branch,
  // assume its a loop-back edge.  Make it a likely taken branch.
  if (target_bci < bci()) {
    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
      // Since it's an OSR, we probably have profile data, but since
      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
      // Let's make a special check here for completely zero counts.
      ciMethodData* methodData = method()->method_data();
      if (!methodData->is_empty()) {
        ciProfileData* data = methodData->bci_to_data(bci());
        // Only stop for truly zero counts, which mean an unknown part
        // of the OSR-ed method, and we want to deopt to gather more stats.
        // If you have ANY counts, then this loop is simply 'cold' relative
        // to the OSR loop.
        if (data->as_BranchData()->taken() +
            data->as_BranchData()->not_taken() == 0 ) {
          // This is the only way to return PROB_UNKNOWN:
          return PROB_UNKNOWN;
        }
      }
    }
    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
  }

  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
  return prob;
}

// The magic constants are chosen so as to match the output of
// branch_prediction() when the profile reports a zero taken count.
// It is important to distinguish zero counts unambiguously, because
// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
// very small but nonzero probabilities, which if confused with zero
// counts would keep the program recompiling indefinitely.
bool Parse::seems_never_taken(float prob) {
  return prob < PROB_MIN;
}

882 883
//-------------------------------repush_if_args--------------------------------
// Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
D
duke 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
inline void Parse::repush_if_args() {
#ifndef PRODUCT
  if (PrintOpto && WizardMode) {
    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
    method()->print_name(); tty->cr();
  }
#endif
  int bc_depth = - Bytecodes::depth(iter().cur_bc());
  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
  assert(argument(0) != NULL, "must exist");
  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
  _sp += bc_depth;
}

//----------------------------------do_ifnull----------------------------------
901
void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
D
duke 已提交
902 903
  int target_bci = iter().get_dest();

904 905 906
  Block* branch_block = successor_for_bci(target_bci);
  Block* next_block   = successor_for_bci(iter().next_bci());

D
duke 已提交
907 908 909 910 911 912
  float cnt;
  float prob = branch_prediction(cnt, btest, target_bci);
  if (prob == PROB_UNKNOWN) {
    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
#ifndef PRODUCT
    if (PrintOpto && Verbose)
913
      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
D
duke 已提交
914
#endif
915
    repush_if_args(); // to gather stats on loop
D
duke 已提交
916 917 918 919 920 921 922 923
    // We need to mark this branch as taken so that if we recompile we will
    // see that it is possible. In the tiered system the interpreter doesn't
    // do profiling and by the time we get to the lower tier from the interpreter
    // the path may be cold again. Make sure it doesn't look untaken
    profile_taken_branch(target_bci, !ProfileInterpreter);
    uncommon_trap(Deoptimization::Reason_unreached,
                  Deoptimization::Action_reinterpret,
                  NULL, "cold");
924 925 926 927 928
    if (EliminateAutoBox) {
      // Mark the successor blocks as parsed
      branch_block->next_path_num();
      next_block->next_path_num();
    }
D
duke 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    return;
  }

  explicit_null_checks_inserted++;

  // Generate real control flow
  Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );

  // Sanity check the probability value
  assert(prob > 0.0f,"Bad probability in Parser");
 // Need xform to put node in hash table
  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  // True branch
  { PreserveJVMState pjvms(this);
    Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
    set_control(iftrue);

    if (stopped()) {            // Path is dead?
      explicit_null_checks_elided++;
949 950 951 952
      if (EliminateAutoBox) {
        // Mark the successor block as parsed
        branch_block->next_path_num();
      }
D
duke 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
    } else {                    // Path is live.
      // Update method data
      profile_taken_branch(target_bci);
      adjust_map_after_if(btest, c, prob, branch_block, next_block);
      if (!stopped())
        merge(target_bci);
    }
  }

  // False branch
  Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
  set_control(iffalse);

  if (stopped()) {              // Path is dead?
    explicit_null_checks_elided++;
968 969 970 971
    if (EliminateAutoBox) {
      // Mark the successor block as parsed
      next_block->next_path_num();
    }
D
duke 已提交
972 973 974 975 976 977 978 979 980 981 982 983
  } else  {                     // Path is live.
    // Update method data
    profile_not_taken_branch();
    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
                        next_block, branch_block);
  }
}

//------------------------------------do_if------------------------------------
void Parse::do_if(BoolTest::mask btest, Node* c) {
  int target_bci = iter().get_dest();

984 985 986
  Block* branch_block = successor_for_bci(target_bci);
  Block* next_block   = successor_for_bci(iter().next_bci());

D
duke 已提交
987 988 989 990 991 992 993
  float cnt;
  float prob = branch_prediction(cnt, btest, target_bci);
  float untaken_prob = 1.0 - prob;

  if (prob == PROB_UNKNOWN) {
#ifndef PRODUCT
    if (PrintOpto && Verbose)
994
      tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
D
duke 已提交
995 996 997 998 999 1000 1001 1002 1003 1004
#endif
    repush_if_args(); // to gather stats on loop
    // We need to mark this branch as taken so that if we recompile we will
    // see that it is possible. In the tiered system the interpreter doesn't
    // do profiling and by the time we get to the lower tier from the interpreter
    // the path may be cold again. Make sure it doesn't look untaken
    profile_taken_branch(target_bci, !ProfileInterpreter);
    uncommon_trap(Deoptimization::Reason_unreached,
                  Deoptimization::Action_reinterpret,
                  NULL, "cold");
1005 1006 1007 1008 1009
    if (EliminateAutoBox) {
      // Mark the successor blocks as parsed
      branch_block->next_path_num();
      next_block->next_path_num();
    }
D
duke 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    return;
  }

  // Sanity check the probability value
  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");

  bool taken_if_true = true;
  // Convert BoolTest to canonical form:
  if (!BoolTest(btest).is_canonical()) {
    btest         = BoolTest(btest).negate();
    taken_if_true = false;
    // prob is NOT updated here; it remains the probability of the taken
    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
  }
  assert(btest != BoolTest::eq, "!= is the only canonical exact test");

  Node* tst0 = new (C, 2) BoolNode(c, btest);
  Node* tst = _gvn.transform(tst0);
  BoolTest::mask taken_btest   = BoolTest::illegal;
  BoolTest::mask untaken_btest = BoolTest::illegal;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

  if (tst->is_Bool()) {
    // Refresh c from the transformed bool node, since it may be
    // simpler than the original c.  Also re-canonicalize btest.
    // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
    // That can arise from statements like: if (x instanceof C) ...
    if (tst != tst0) {
      // Canonicalize one more time since transform can change it.
      btest = tst->as_Bool()->_test._test;
      if (!BoolTest(btest).is_canonical()) {
        // Reverse edges one more time...
        tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
        btest = tst->as_Bool()->_test._test;
        assert(BoolTest(btest).is_canonical(), "sanity");
        taken_if_true = !taken_if_true;
      }
      c = tst->in(1);
    }
    BoolTest::mask neg_btest = BoolTest(btest).negate();
    taken_btest   = taken_if_true ?     btest : neg_btest;
    untaken_btest = taken_if_true ? neg_btest :     btest;
D
duke 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
  }

  // Generate real control flow
  float true_prob = (taken_if_true ? prob : untaken_prob);
  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  Node* taken_branch   = new (C, 1) IfTrueNode(iff);
  Node* untaken_branch = new (C, 1) IfFalseNode(iff);
  if (!taken_if_true) {  // Finish conversion to canonical form
    Node* tmp      = taken_branch;
    taken_branch   = untaken_branch;
    untaken_branch = tmp;
  }

  // Branch is taken:
  { PreserveJVMState pjvms(this);
    taken_branch = _gvn.transform(taken_branch);
    set_control(taken_branch);

1070 1071 1072 1073 1074 1075
    if (stopped()) {
      if (EliminateAutoBox) {
        // Mark the successor block as parsed
        branch_block->next_path_num();
      }
    } else {
D
duke 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
      // Update method data
      profile_taken_branch(target_bci);
      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
      if (!stopped())
        merge(target_bci);
    }
  }

  untaken_branch = _gvn.transform(untaken_branch);
  set_control(untaken_branch);

  // Branch not taken.
1088 1089 1090 1091 1092 1093
  if (stopped()) {
    if (EliminateAutoBox) {
      // Mark the successor block as parsed
      next_block->next_path_num();
    }
  } else {
D
duke 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    // Update method data
    profile_not_taken_branch();
    adjust_map_after_if(untaken_btest, c, untaken_prob,
                        next_block, branch_block);
  }
}

//----------------------------adjust_map_after_if------------------------------
// Adjust the JVM state to reflect the result of taking this path.
// Basically, it means inspecting the CmpNode controlling this
// branch, seeing how it constrains a tested value, and then
// deciding if it's worth our while to encode this constraint
// as graph nodes in the current abstract interpretation map.
void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
                                Block* path, Block* other_path) {
  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
    return;                             // nothing to do

  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));

  int cop = c->Opcode();
  if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
    // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
    //
    // If this might possibly turn into an implicit null check,
    // and the null has never yet been seen, we need to generate
    // an uncommon trap, so as to recompile instead of suffering
    // with very slow branches.  (We'll get the slow branches if
    // the program ever changes phase and starts seeing nulls here.)
    //
    // The tests we worry about are of the form (p == null).
    // We do not simply inspect for a null constant, since a node may
    // optimize to 'null' later on.
    repush_if_args();
    // We need to mark this branch as taken so that if we recompile we will
    // see that it is possible. In the tiered system the interpreter doesn't
    // do profiling and by the time we get to the lower tier from the interpreter
    // the path may be cold again. Make sure it doesn't look untaken
    if (is_fallthrough) {
      profile_not_taken_branch(!ProfileInterpreter);
    } else {
      profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
    }
    uncommon_trap(Deoptimization::Reason_unreached,
                  Deoptimization::Action_reinterpret,
                  NULL,
                  (is_fallthrough ? "taken always" : "taken never"));
    return;
  }

  Node* val = c->in(1);
  Node* con = c->in(2);
  const Type* tcon = _gvn.type(con);
  const Type* tval = _gvn.type(val);
  bool have_con = tcon->singleton();
  if (tval->singleton()) {
    if (!have_con) {
      // Swap, so constant is in con.
      con  = val;
      tcon = tval;
      val  = c->in(2);
      tval = _gvn.type(val);
      btest = BoolTest(btest).commute();
      have_con = true;
    } else {
      // Do we have two constants?  Then leave well enough alone.
      have_con = false;
    }
  }
  if (!have_con)                        // remaining adjustments need a con
    return;


  int val_in_map = map()->find_edge(val);
  if (val_in_map < 0)  return;          // replace_in_map would be useless
  {
    JVMState* jvms = this->jvms();
    if (!(jvms->is_loc(val_in_map) ||
          jvms->is_stk(val_in_map)))
      return;                           // again, it would be useless
  }

  // Check for a comparison to a constant, and "know" that the compared
  // value is constrained on this path.
  assert(tcon->singleton(), "");
  ConstraintCastNode* ccast = NULL;
  Node* cast = NULL;

  switch (btest) {
  case BoolTest::eq:                    // Constant test?
    {
      const Type* tboth = tcon->join(tval);
      if (tboth == tval)  break;        // Nothing to gain.
      if (tcon->isa_int()) {
        ccast = new (C, 2) CastIINode(val, tboth);
      } else if (tcon == TypePtr::NULL_PTR) {
        // Cast to null, but keep the pointer identity temporarily live.
        ccast = new (C, 2) CastPPNode(val, tboth);
      } else {
        const TypeF* tf = tcon->isa_float_constant();
        const TypeD* td = tcon->isa_double_constant();
        // Exclude tests vs float/double 0 as these could be
        // either +0 or -0.  Just because you are equal to +0
        // doesn't mean you ARE +0!
        if ((!tf || tf->_f != 0.0) &&
            (!td || td->_d != 0.0))
          cast = con;                   // Replace non-constant val by con.
      }
    }
    break;

  case BoolTest::ne:
    if (tcon == TypePtr::NULL_PTR) {
      cast = cast_not_null(val, false);
    }
    break;

  default:
    // (At this point we could record int range types with CastII.)
    break;
  }

  if (ccast != NULL) {
    const Type* tcc = ccast->as_Type()->type();
    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
    // Delay transform() call to allow recovery of pre-cast value
    // at the control merge.
    ccast->set_req(0, control());
    _gvn.set_type_bottom(ccast);
    record_for_igvn(ccast);
    cast = ccast;
  }

  if (cast != NULL) {                   // Here's the payoff.
    replace_in_map(val, cast);
  }
}


//------------------------------do_one_bytecode--------------------------------
// Parse this bytecode, and alter the Parsers JVM->Node mapping
void Parse::do_one_bytecode() {
  Node *a, *b, *c, *d;          // Handy temps
  BoolTest::mask btest;
  int i;

  assert(!has_exceptions(), "bytecode entry state must be clear of throws");

  if (C->check_node_count(NodeLimitFudgeFactor * 5,
                          "out of nodes parsing method")) {
    return;
  }

#ifdef ASSERT
  // for setting breakpoints
  if (TraceOptoParse) {
    tty->print(" @");
    dump_bci(bci());
  }
#endif

  switch (bc()) {
  case Bytecodes::_nop:
    // do nothing
    break;
  case Bytecodes::_lconst_0:
    push_pair(longcon(0));
    break;

  case Bytecodes::_lconst_1:
    push_pair(longcon(1));
    break;

  case Bytecodes::_fconst_0:
    push(zerocon(T_FLOAT));
    break;

  case Bytecodes::_fconst_1:
    push(makecon(TypeF::ONE));
    break;

  case Bytecodes::_fconst_2:
    push(makecon(TypeF::make(2.0f)));
    break;

  case Bytecodes::_dconst_0:
    push_pair(zerocon(T_DOUBLE));
    break;

  case Bytecodes::_dconst_1:
    push_pair(makecon(TypeD::ONE));
    break;

  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  case Bytecodes::_iconst_0: push(intcon( 0)); break;
  case Bytecodes::_iconst_1: push(intcon( 1)); break;
  case Bytecodes::_iconst_2: push(intcon( 2)); break;
  case Bytecodes::_iconst_3: push(intcon( 3)); break;
  case Bytecodes::_iconst_4: push(intcon( 4)); break;
  case Bytecodes::_iconst_5: push(intcon( 5)); break;
  case Bytecodes::_bipush:   push(intcon( iter().get_byte())); break;
  case Bytecodes::_sipush:   push(intcon( iter().get_short())); break;
  case Bytecodes::_aconst_null: push(null());  break;
  case Bytecodes::_ldc:
  case Bytecodes::_ldc_w:
  case Bytecodes::_ldc2_w:
    // If the constant is unresolved, run this BC once in the interpreter.
    if (iter().is_unresolved_string()) {
      uncommon_trap(Deoptimization::make_trap_request
                    (Deoptimization::Reason_unloaded,
                     Deoptimization::Action_reinterpret,
                     iter().get_constant_index()),
                    NULL, "unresolved_string");
      break;
    } else {
      ciConstant constant = iter().get_constant();
      if (constant.basic_type() == T_OBJECT) {
        ciObject* c = constant.as_object();
        if (c->is_klass()) {
          // The constant returned for a klass is the ciKlass for the
          // entry.  We want the java_mirror so get it.
          ciKlass* klass = c->as_klass();
          if (klass->is_loaded()) {
            constant = ciConstant(T_OBJECT, klass->java_mirror());
          } else {
            uncommon_trap(Deoptimization::make_trap_request
                          (Deoptimization::Reason_unloaded,
                           Deoptimization::Action_reinterpret,
                           iter().get_constant_index()),
                          NULL, "unresolved_klass");
            break;
          }
        }
      }
      push_constant(constant);
    }

    break;

  case Bytecodes::_aload_0:
    push( local(0) );
    break;
  case Bytecodes::_aload_1:
    push( local(1) );
    break;
  case Bytecodes::_aload_2:
    push( local(2) );
    break;
  case Bytecodes::_aload_3:
    push( local(3) );
    break;
  case Bytecodes::_aload:
    push( local(iter().get_index()) );
    break;

  case Bytecodes::_fload_0:
  case Bytecodes::_iload_0:
    push( local(0) );
    break;
  case Bytecodes::_fload_1:
  case Bytecodes::_iload_1:
    push( local(1) );
    break;
  case Bytecodes::_fload_2:
  case Bytecodes::_iload_2:
    push( local(2) );
    break;
  case Bytecodes::_fload_3:
  case Bytecodes::_iload_3:
    push( local(3) );
    break;
  case Bytecodes::_fload:
  case Bytecodes::_iload:
    push( local(iter().get_index()) );
    break;
  case Bytecodes::_lload_0:
    push_pair_local( 0 );
    break;
  case Bytecodes::_lload_1:
    push_pair_local( 1 );
    break;
  case Bytecodes::_lload_2:
    push_pair_local( 2 );
    break;
  case Bytecodes::_lload_3:
    push_pair_local( 3 );
    break;
  case Bytecodes::_lload:
    push_pair_local( iter().get_index() );
    break;

  case Bytecodes::_dload_0:
    push_pair_local(0);
    break;
  case Bytecodes::_dload_1:
    push_pair_local(1);
    break;
  case Bytecodes::_dload_2:
    push_pair_local(2);
    break;
  case Bytecodes::_dload_3:
    push_pair_local(3);
    break;
  case Bytecodes::_dload:
    push_pair_local(iter().get_index());
    break;
  case Bytecodes::_fstore_0:
  case Bytecodes::_istore_0:
  case Bytecodes::_astore_0:
    set_local( 0, pop() );
    break;
  case Bytecodes::_fstore_1:
  case Bytecodes::_istore_1:
  case Bytecodes::_astore_1:
    set_local( 1, pop() );
    break;
  case Bytecodes::_fstore_2:
  case Bytecodes::_istore_2:
  case Bytecodes::_astore_2:
    set_local( 2, pop() );
    break;
  case Bytecodes::_fstore_3:
  case Bytecodes::_istore_3:
  case Bytecodes::_astore_3:
    set_local( 3, pop() );
    break;
  case Bytecodes::_fstore:
  case Bytecodes::_istore:
  case Bytecodes::_astore:
    set_local( iter().get_index(), pop() );
    break;
  // long stores
  case Bytecodes::_lstore_0:
    set_pair_local( 0, pop_pair() );
    break;
  case Bytecodes::_lstore_1:
    set_pair_local( 1, pop_pair() );
    break;
  case Bytecodes::_lstore_2:
    set_pair_local( 2, pop_pair() );
    break;
  case Bytecodes::_lstore_3:
    set_pair_local( 3, pop_pair() );
    break;
  case Bytecodes::_lstore:
    set_pair_local( iter().get_index(), pop_pair() );
    break;

  // double stores
  case Bytecodes::_dstore_0:
    set_pair_local( 0, dstore_rounding(pop_pair()) );
    break;
  case Bytecodes::_dstore_1:
    set_pair_local( 1, dstore_rounding(pop_pair()) );
    break;
  case Bytecodes::_dstore_2:
    set_pair_local( 2, dstore_rounding(pop_pair()) );
    break;
  case Bytecodes::_dstore_3:
    set_pair_local( 3, dstore_rounding(pop_pair()) );
    break;
  case Bytecodes::_dstore:
    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
    break;

  case Bytecodes::_pop:  _sp -= 1;   break;
  case Bytecodes::_pop2: _sp -= 2;   break;
  case Bytecodes::_swap:
    a = pop();
    b = pop();
    push(a);
    push(b);
    break;
  case Bytecodes::_dup:
    a = pop();
    push(a);
    push(a);
    break;
  case Bytecodes::_dup_x1:
    a = pop();
    b = pop();
    push( a );
    push( b );
    push( a );
    break;
  case Bytecodes::_dup_x2:
    a = pop();
    b = pop();
    c = pop();
    push( a );
    push( c );
    push( b );
    push( a );
    break;
  case Bytecodes::_dup2:
    a = pop();
    b = pop();
    push( b );
    push( a );
    push( b );
    push( a );
    break;

  case Bytecodes::_dup2_x1:
    // before: .. c, b, a
    // after:  .. b, a, c, b, a
    // not tested
    a = pop();
    b = pop();
    c = pop();
    push( b );
    push( a );
    push( c );
    push( b );
    push( a );
    break;
  case Bytecodes::_dup2_x2:
    // before: .. d, c, b, a
    // after:  .. b, a, d, c, b, a
    // not tested
    a = pop();
    b = pop();
    c = pop();
    d = pop();
    push( b );
    push( a );
    push( d );
    push( c );
    push( b );
    push( a );
    break;

  case Bytecodes::_arraylength: {
    // Must do null-check with value on expression stack
    Node *ary = do_null_check(peek(), T_ARRAY);
    // Compile-time detect of null-exception?
    if (stopped())  return;
    a = pop();
    push(load_array_length(a));
    break;
  }

  case Bytecodes::_baload: array_load(T_BYTE);   break;
  case Bytecodes::_caload: array_load(T_CHAR);   break;
  case Bytecodes::_iaload: array_load(T_INT);    break;
  case Bytecodes::_saload: array_load(T_SHORT);  break;
  case Bytecodes::_faload: array_load(T_FLOAT);  break;
  case Bytecodes::_aaload: array_load(T_OBJECT); break;
  case Bytecodes::_laload: {
    a = array_addressing(T_LONG, 0);
T
twisti 已提交
1544
    if (stopped())  return;     // guaranteed null or range check
D
duke 已提交
1545 1546 1547 1548 1549 1550
    _sp -= 2;                   // Pop array and index
    push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
    break;
  }
  case Bytecodes::_daload: {
    a = array_addressing(T_DOUBLE, 0);
T
twisti 已提交
1551
    if (stopped())  return;     // guaranteed null or range check
D
duke 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
    _sp -= 2;                   // Pop array and index
    push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
    break;
  }
  case Bytecodes::_bastore: array_store(T_BYTE);  break;
  case Bytecodes::_castore: array_store(T_CHAR);  break;
  case Bytecodes::_iastore: array_store(T_INT);   break;
  case Bytecodes::_sastore: array_store(T_SHORT); break;
  case Bytecodes::_fastore: array_store(T_FLOAT); break;
  case Bytecodes::_aastore: {
    d = array_addressing(T_OBJECT, 1);
T
twisti 已提交
1563
    if (stopped())  return;     // guaranteed null or range check
D
duke 已提交
1564 1565 1566 1567
    array_store_check();
    c = pop();                  // Oop to store
    b = pop();                  // index (already used)
    a = pop();                  // the array itself
1568
    const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
D
duke 已提交
1569 1570 1571 1572 1573 1574
    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
    break;
  }
  case Bytecodes::_lastore: {
    a = array_addressing(T_LONG, 2);
T
twisti 已提交
1575
    if (stopped())  return;     // guaranteed null or range check
D
duke 已提交
1576 1577 1578 1579 1580 1581 1582
    c = pop_pair();
    _sp -= 2;                   // Pop array and index
    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
    break;
  }
  case Bytecodes::_dastore: {
    a = array_addressing(T_DOUBLE, 2);
T
twisti 已提交
1583
    if (stopped())  return;     // guaranteed null or range check
D
duke 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
    c = pop_pair();
    _sp -= 2;                   // Pop array and index
    c = dstore_rounding(c);
    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
    break;
  }
  case Bytecodes::_getfield:
    do_getfield();
    break;

  case Bytecodes::_getstatic:
    do_getstatic();
    break;

  case Bytecodes::_putfield:
    do_putfield();
    break;

  case Bytecodes::_putstatic:
    do_putstatic();
    break;

  case Bytecodes::_irem:
    do_irem();
    break;
  case Bytecodes::_idiv:
    // Must keep both values on the expression-stack during null-check
    do_null_check(peek(), T_INT);
    // Compile-time detect of null-exception?
    if (stopped())  return;
    b = pop();
    a = pop();
    push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
    break;
  case Bytecodes::_imul:
    b = pop(); a = pop();
    push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
    break;
  case Bytecodes::_iadd:
    b = pop(); a = pop();
    push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
    break;
  case Bytecodes::_ineg:
    a = pop();
    push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
    break;
  case Bytecodes::_isub:
    b = pop(); a = pop();
    push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
    break;
  case Bytecodes::_iand:
    b = pop(); a = pop();
    push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
    break;
  case Bytecodes::_ior:
    b = pop(); a = pop();
    push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
    break;
  case Bytecodes::_ixor:
    b = pop(); a = pop();
    push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
    break;
  case Bytecodes::_ishl:
    b = pop(); a = pop();
    push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
    break;
  case Bytecodes::_ishr:
    b = pop(); a = pop();
    push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
    break;
  case Bytecodes::_iushr:
    b = pop(); a = pop();
    push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
    break;

  case Bytecodes::_fneg:
    a = pop();
    b = _gvn.transform(new (C, 2) NegFNode (a));
    push(b);
    break;

  case Bytecodes::_fsub:
    b = pop();
    a = pop();
    c = _gvn.transform( new (C, 3) SubFNode(a,b) );
    d = precision_rounding(c);
    push( d );
    break;

  case Bytecodes::_fadd:
    b = pop();
    a = pop();
    c = _gvn.transform( new (C, 3) AddFNode(a,b) );
    d = precision_rounding(c);
    push( d );
    break;

  case Bytecodes::_fmul:
    b = pop();
    a = pop();
    c = _gvn.transform( new (C, 3) MulFNode(a,b) );
    d = precision_rounding(c);
    push( d );
    break;

  case Bytecodes::_fdiv:
    b = pop();
    a = pop();
    c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
    d = precision_rounding(c);
    push( d );
    break;

  case Bytecodes::_frem:
    if (Matcher::has_match_rule(Op_ModF)) {
      // Generate a ModF node.
      b = pop();
      a = pop();
      c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
      d = precision_rounding(c);
      push( d );
    }
    else {
      // Generate a call.
      modf();
    }
    break;

  case Bytecodes::_fcmpl:
    b = pop();
    a = pop();
    c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
    push(c);
    break;
  case Bytecodes::_fcmpg:
    b = pop();
    a = pop();

    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
    // which negates the result sign except for unordered.  Flip the unordered
    // as well by using CmpF3 which implements unordered-lesser instead of
    // unordered-greater semantics.  Finally, commute the result bits.  Result
    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
    c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
    push(c);
    break;

  case Bytecodes::_f2i:
    a = pop();
    push(_gvn.transform(new (C, 2) ConvF2INode(a)));
    break;

  case Bytecodes::_d2i:
    a = pop_pair();
    b = _gvn.transform(new (C, 2) ConvD2INode(a));
    push( b );
    break;

  case Bytecodes::_f2d:
    a = pop();
    b = _gvn.transform( new (C, 2) ConvF2DNode(a));
    push_pair( b );
    break;

  case Bytecodes::_d2f:
    a = pop_pair();
    b = _gvn.transform( new (C, 2) ConvD2FNode(a));
    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
    //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
    push( b );
    break;

  case Bytecodes::_l2f:
    if (Matcher::convL2FSupported()) {
      a = pop_pair();
      b = _gvn.transform( new (C, 2) ConvL2FNode(a));
      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
      // Rather than storing the result into an FP register then pushing
      // out to memory to round, the machine instruction that implements
      // ConvL2D is responsible for rounding.
      // c = precision_rounding(b);
      c = _gvn.transform(b);
      push(c);
    } else {
      l2f();
    }
    break;

  case Bytecodes::_l2d:
    a = pop_pair();
    b = _gvn.transform( new (C, 2) ConvL2DNode(a));
    // For i486.ad, rounding is always necessary (see _l2f above).
    // c = dprecision_rounding(b);
    c = _gvn.transform(b);
    push_pair(c);
    break;

  case Bytecodes::_f2l:
    a = pop();
    b = _gvn.transform( new (C, 2) ConvF2LNode(a));
    push_pair(b);
    break;

  case Bytecodes::_d2l:
    a = pop_pair();
    b = _gvn.transform( new (C, 2) ConvD2LNode(a));
    push_pair(b);
    break;

  case Bytecodes::_dsub:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) SubDNode(a,b) );
    d = dprecision_rounding(c);
    push_pair( d );
    break;

  case Bytecodes::_dadd:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) AddDNode(a,b) );
    d = dprecision_rounding(c);
    push_pair( d );
    break;

  case Bytecodes::_dmul:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) MulDNode(a,b) );
    d = dprecision_rounding(c);
    push_pair( d );
    break;

  case Bytecodes::_ddiv:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
    d = dprecision_rounding(c);
    push_pair( d );
    break;

  case Bytecodes::_dneg:
    a = pop_pair();
    b = _gvn.transform(new (C, 2) NegDNode (a));
    push_pair(b);
    break;

  case Bytecodes::_drem:
    if (Matcher::has_match_rule(Op_ModD)) {
      // Generate a ModD node.
      b = pop_pair();
      a = pop_pair();
      // a % b

      c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
      d = dprecision_rounding(c);
      push_pair( d );
    }
    else {
      // Generate a call.
      modd();
    }
    break;

  case Bytecodes::_dcmpl:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
    push(c);
    break;

  case Bytecodes::_dcmpg:
    b = pop_pair();
    a = pop_pair();
    // Same as dcmpl but need to flip the unordered case.
    // Commute the inputs, which negates the result sign except for unordered.
    // Flip the unordered as well by using CmpD3 which implements
    // unordered-lesser instead of unordered-greater semantics.
    // Finally, negate the result bits.  Result is same as using a
    // CmpD3Greater except we did it with CmpD3 alone.
    c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
    push(c);
    break;


    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  case Bytecodes::_land:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) AndLNode(a,b) );
    push_pair(c);
    break;
  case Bytecodes::_lor:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) OrLNode(a,b) );
    push_pair(c);
    break;
  case Bytecodes::_lxor:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) XorLNode(a,b) );
    push_pair(c);
    break;

  case Bytecodes::_lshl:
    b = pop();                  // the shift count
    a = pop_pair();             // value to be shifted
    c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
    push_pair(c);
    break;
  case Bytecodes::_lshr:
    b = pop();                  // the shift count
    a = pop_pair();             // value to be shifted
    c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
    push_pair(c);
    break;
  case Bytecodes::_lushr:
    b = pop();                  // the shift count
    a = pop_pair();             // value to be shifted
    c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
    push_pair(c);
    break;
  case Bytecodes::_lmul:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) MulLNode(a,b) );
    push_pair(c);
    break;

  case Bytecodes::_lrem:
    // Must keep both values on the expression-stack during null-check
    assert(peek(0) == top(), "long word order");
    do_null_check(peek(1), T_LONG);
    // Compile-time detect of null-exception?
    if (stopped())  return;
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
    push_pair(c);
    break;

  case Bytecodes::_ldiv:
    // Must keep both values on the expression-stack during null-check
    assert(peek(0) == top(), "long word order");
    do_null_check(peek(1), T_LONG);
    // Compile-time detect of null-exception?
    if (stopped())  return;
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
    push_pair(c);
    break;

  case Bytecodes::_ladd:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) AddLNode(a,b) );
    push_pair(c);
    break;
  case Bytecodes::_lsub:
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) SubLNode(a,b) );
    push_pair(c);
    break;
  case Bytecodes::_lcmp:
    // Safepoints are now inserted _before_ branches.  The long-compare
    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
    // slew of control flow.  These are usually followed by a CmpI vs zero and
    // a branch; this pattern then optimizes to the obvious long-compare and
    // branch.  However, if the branch is backwards there's a Safepoint
    // inserted.  The inserted Safepoint captures the JVM state at the
    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
    // long-compare is used to control a loop the debug info will force
    // computation of the 3-way value, even though the generated code uses a
    // long-compare and branch.  We try to rectify the situation by inserting
    // a SafePoint here and have it dominate and kill the safepoint added at a
    // following backwards branch.  At this point the JVM state merely holds 2
    // longs but not the 3-way value.
    if( UseLoopSafepoints ) {
      switch( iter().next_bc() ) {
      case Bytecodes::_ifgt:
      case Bytecodes::_iflt:
      case Bytecodes::_ifge:
      case Bytecodes::_ifle:
      case Bytecodes::_ifne:
      case Bytecodes::_ifeq:
        // If this is a backwards branch in the bytecodes, add Safepoint
        maybe_add_safepoint(iter().next_get_dest());
      }
    }
    b = pop_pair();
    a = pop_pair();
    c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
    push(c);
    break;

  case Bytecodes::_lneg:
    a = pop_pair();
    b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
    push_pair(b);
    break;
  case Bytecodes::_l2i:
    a = pop_pair();
    push( _gvn.transform( new (C, 2) ConvL2INode(a)));
    break;
  case Bytecodes::_i2l:
    a = pop();
    b = _gvn.transform( new (C, 2) ConvI2LNode(a));
    push_pair(b);
    break;
  case Bytecodes::_i2b:
    // Sign extend
    a = pop();
    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
    push( a );
    break;
  case Bytecodes::_i2s:
    a = pop();
    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
    push( a );
    break;
  case Bytecodes::_i2c:
    a = pop();
    push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
    break;

  case Bytecodes::_i2f:
    a = pop();
    b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
    c = precision_rounding(b);
    push (b);
    break;

  case Bytecodes::_i2d:
    a = pop();
    b = _gvn.transform( new (C, 2) ConvI2DNode(a));
    push_pair(b);
    break;

  case Bytecodes::_iinc:        // Increment local
    i = iter().get_index();     // Get local index
    set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
    break;

  // Exit points of synchronized methods must have an unlock node
  case Bytecodes::_return:
    return_current(NULL);
    break;

  case Bytecodes::_ireturn:
  case Bytecodes::_areturn:
  case Bytecodes::_freturn:
    return_current(pop());
    break;
  case Bytecodes::_lreturn:
    return_current(pop_pair());
    break;
  case Bytecodes::_dreturn:
    return_current(pop_pair());
    break;

  case Bytecodes::_athrow:
    // null exception oop throws NULL pointer exception
    do_null_check(peek(), T_OBJECT);
    if (stopped())  return;
2055
    if (env()->jvmti_can_post_exceptions()) {
D
duke 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
      // "Full-speed throwing" is not necessary here,
      // since we're notifying the VM on every throw.
      uncommon_trap(Deoptimization::Reason_unhandled,
                    Deoptimization::Action_none);
      return;
    }
    // Hook the thrown exception directly to subsequent handlers.
    if (BailoutToInterpreterForThrows) {
      // Keep method interpreted from now on.
      uncommon_trap(Deoptimization::Reason_unhandled,
                    Deoptimization::Action_make_not_compilable);
      return;
    }
    add_exception_state(make_exception_state(peek()));
    break;

  case Bytecodes::_goto:   // fall through
  case Bytecodes::_goto_w: {
    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();

    // If this is a backwards branch in the bytecodes, add Safepoint
    maybe_add_safepoint(target_bci);

    // Update method data
    profile_taken_branch(target_bci);

    // Merge the current control into the target basic block
    merge(target_bci);

    // See if we can get some profile data and hand it off to the next block
    Block *target_block = block()->successor_for_bci(target_bci);
    if (target_block->pred_count() != 1)  break;
    ciMethodData* methodData = method()->method_data();
    if (!methodData->is_mature())  break;
    ciProfileData* data = methodData->bci_to_data(bci());
    assert( data->is_JumpData(), "" );
    int taken = ((ciJumpData*)data)->taken();
    taken = method()->scale_count(taken);
    target_block->set_count(taken);
    break;
  }

2098 2099 2100
  case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
  case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
  handle_if_null:
2101 2102
    // If this is a backwards branch in the bytecodes, add Safepoint
    maybe_add_safepoint(iter().get_dest());
2103 2104 2105 2106
    a = null();
    b = pop();
    c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
    do_ifnull(btest, c);
D
duke 已提交
2107 2108 2109 2110 2111
    break;

  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  handle_if_acmp:
2112 2113
    // If this is a backwards branch in the bytecodes, add Safepoint
    maybe_add_safepoint(iter().get_dest());
D
duke 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
    a = pop();
    b = pop();
    c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
    do_if(btest, c);
    break;

  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  handle_ifxx:
2127 2128
    // If this is a backwards branch in the bytecodes, add Safepoint
    maybe_add_safepoint(iter().get_dest());
D
duke 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
    a = _gvn.intcon(0);
    b = pop();
    c = _gvn.transform( new (C, 3) CmpINode(b, a) );
    do_if(btest, c);
    break;

  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  handle_if_icmp:
2142 2143
    // If this is a backwards branch in the bytecodes, add Safepoint
    maybe_add_safepoint(iter().get_dest());
D
duke 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
    a = pop();
    b = pop();
    c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
    do_if(btest, c);
    break;

  case Bytecodes::_tableswitch:
    do_tableswitch();
    break;

  case Bytecodes::_lookupswitch:
    do_lookupswitch();
    break;

  case Bytecodes::_invokestatic:
2159
  case Bytecodes::_invokedynamic:
D
duke 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
  case Bytecodes::_invokespecial:
  case Bytecodes::_invokevirtual:
  case Bytecodes::_invokeinterface:
    do_call();
    break;
  case Bytecodes::_checkcast:
    do_checkcast();
    break;
  case Bytecodes::_instanceof:
    do_instanceof();
    break;
  case Bytecodes::_anewarray:
    do_anewarray();
    break;
  case Bytecodes::_newarray:
    do_newarray((BasicType)iter().get_index());
    break;
  case Bytecodes::_multianewarray:
    do_multianewarray();
    break;
  case Bytecodes::_new:
    do_new();
    break;

  case Bytecodes::_jsr:
  case Bytecodes::_jsr_w:
    do_jsr();
    break;

  case Bytecodes::_ret:
    do_ret();
    break;


  case Bytecodes::_monitorenter:
    do_monitor_enter();
    break;

  case Bytecodes::_monitorexit:
    do_monitor_exit();
    break;

  case Bytecodes::_breakpoint:
    // Breakpoint set concurrently to compile
    // %%% use an uncommon trap?
    C->record_failure("breakpoint in method");
    return;

  default:
#ifndef PRODUCT
    map()->dump(99);
#endif
    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
    ShouldNotReachHere();
  }

#ifndef PRODUCT
  IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  if(printer) {
    char buffer[256];
    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
    bool old = printer->traverse_outs();
    printer->set_traverse_outs(true);
2223
    printer->print_method(C, buffer, 4);
D
duke 已提交
2224 2225 2226 2227
    printer->set_traverse_outs(old);
  }
#endif
}