psScavenge.cpp 28.6 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 2002-2009 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */


# include "incls/_precompiled.incl"
# include "incls/_psScavenge.cpp.incl"

HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
int                        PSScavenge::_consecutive_skipped_scavenges = 0;
ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
CardTableExtension*        PSScavenge::_card_table = NULL;
bool                       PSScavenge::_survivor_overflow = false;
int                        PSScavenge::_tenuring_threshold = 0;
HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
elapsedTimer               PSScavenge::_accumulated_time;
GrowableArray<markOop>*    PSScavenge::_preserved_mark_stack = NULL;
GrowableArray<oop>*        PSScavenge::_preserved_oop_stack = NULL;
CollectorCounters*         PSScavenge::_counters = NULL;

// Define before use
class PSIsAliveClosure: public BoolObjectClosure {
public:
  void do_object(oop p) {
    assert(false, "Do not call.");
  }
  bool do_object_b(oop p) {
    return (!PSScavenge::is_obj_in_young((HeapWord*) p)) || p->is_forwarded();
  }
};

PSIsAliveClosure PSScavenge::_is_alive_closure;

class PSKeepAliveClosure: public OopClosure {
protected:
  MutableSpace* _to_space;
  PSPromotionManager* _promotion_manager;

public:
  PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    _to_space = heap->young_gen()->to_space();

    assert(_promotion_manager != NULL, "Sanity");
  }

68 69 70 71
  template <class T> void do_oop_work(T* p) {
    assert (!oopDesc::is_null(*p), "expected non-null ref");
    assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
            "expected an oop while scanning weak refs");
D
duke 已提交
72 73

    // Weak refs may be visited more than once.
74
    if (PSScavenge::should_scavenge(p, _to_space)) {
D
duke 已提交
75 76 77
      PSScavenge::copy_and_push_safe_barrier(_promotion_manager, p);
    }
  }
78 79
  virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
  virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
D
duke 已提交
80 81 82 83 84 85 86 87
};

class PSEvacuateFollowersClosure: public VoidClosure {
 private:
  PSPromotionManager* _promotion_manager;
 public:
  PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}

88
  virtual void do_void() {
D
duke 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    assert(_promotion_manager != NULL, "Sanity");
    _promotion_manager->drain_stacks(true);
    guarantee(_promotion_manager->stacks_empty(),
              "stacks should be empty at this point");
  }
};

class PSPromotionFailedClosure : public ObjectClosure {
  virtual void do_object(oop obj) {
    if (obj->is_forwarded()) {
      obj->init_mark();
    }
  }
};

class PSRefProcTaskProxy: public GCTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask & _rp_task;
  uint          _work_id;
public:
  PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
    : _rp_task(rp_task),
      _work_id(work_id)
  { }

private:
  virtual char* name() { return (char *)"Process referents by policy in parallel"; }
  virtual void do_it(GCTaskManager* manager, uint which);
};

void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
{
  PSPromotionManager* promotion_manager =
    PSPromotionManager::gc_thread_promotion_manager(which);
  assert(promotion_manager != NULL, "sanity check");
  PSKeepAliveClosure keep_alive(promotion_manager);
  PSEvacuateFollowersClosure evac_followers(promotion_manager);
  PSIsAliveClosure is_alive;
  _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
}

class PSRefEnqueueTaskProxy: public GCTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;
  uint         _work_id;

public:
  PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
    : _enq_task(enq_task),
      _work_id(work_id)
  { }

  virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
  virtual void do_it(GCTaskManager* manager, uint which)
  {
    _enq_task.work(_work_id);
  }
};

class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

void PSRefProcTaskExecutor::execute(ProcessTask& task)
{
  GCTaskQueue* q = GCTaskQueue::create();
  for(uint i=0; i<ParallelGCThreads; i++) {
    q->enqueue(new PSRefProcTaskProxy(task, i));
  }
  ParallelTaskTerminator terminator(
    ParallelScavengeHeap::gc_task_manager()->workers(),
    UseDepthFirstScavengeOrder ?
        (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth()
      : (TaskQueueSetSuper*) PSPromotionManager::stack_array_breadth());
  if (task.marks_oops_alive() && ParallelGCThreads > 1) {
    for (uint j=0; j<ParallelGCThreads; j++) {
      q->enqueue(new StealTask(&terminator));
    }
  }
  ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
}


void PSRefProcTaskExecutor::execute(EnqueueTask& task)
{
  GCTaskQueue* q = GCTaskQueue::create();
  for(uint i=0; i<ParallelGCThreads; i++) {
    q->enqueue(new PSRefEnqueueTaskProxy(task, i));
  }
  ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
}

// This method contains all heap specific policy for invoking scavenge.
// PSScavenge::invoke_no_policy() will do nothing but attempt to
// scavenge. It will not clean up after failed promotions, bail out if
// we've exceeded policy time limits, or any other special behavior.
// All such policy should be placed here.
//
// Note that this method should only be called from the vm_thread while
// at a safepoint!
void PSScavenge::invoke()
{
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  assert(!Universe::heap()->is_gc_active(), "not reentrant");

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  PSAdaptiveSizePolicy* policy = heap->size_policy();

  // Before each allocation/collection attempt, find out from the
  // policy object if GCs are, on the whole, taking too long. If so,
  // bail out without attempting a collection.
  if (!policy->gc_time_limit_exceeded()) {
    IsGCActiveMark mark;

    bool scavenge_was_done = PSScavenge::invoke_no_policy();

    PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
    if (UsePerfData)
      counters->update_full_follows_scavenge(0);
    if (!scavenge_was_done ||
        policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
      if (UsePerfData)
        counters->update_full_follows_scavenge(full_follows_scavenge);

      GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
      if (UseParallelOldGC) {
        PSParallelCompact::invoke_no_policy(false);
      } else {
        PSMarkSweep::invoke_no_policy(false);
      }
    }
  }
}

// This method contains no policy. You should probably
// be calling invoke() instead.
bool PSScavenge::invoke_no_policy() {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");

  TimeStamp scavenge_entry;
  TimeStamp scavenge_midpoint;
  TimeStamp scavenge_exit;

  scavenge_entry.update();

  if (GC_locker::check_active_before_gc()) {
    return false;
  }

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  GCCause::Cause gc_cause = heap->gc_cause();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  // Check for potential problems.
  if (!should_attempt_scavenge()) {
    return false;
  }

  bool promotion_failure_occurred = false;

  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();
  PSPermGen* perm_gen = heap->perm_gen();
  PSAdaptiveSizePolicy* size_policy = heap->size_policy();
  heap->increment_total_collections();

  AdaptiveSizePolicyOutput(size_policy, heap->total_collections());

  if ((gc_cause != GCCause::_java_lang_system_gc) ||
       UseAdaptiveSizePolicyWithSystemGC) {
    // Gather the feedback data for eden occupancy.
    young_gen->eden_space()->accumulate_statistics();
  }

268 269 270 271 272
  if (ZapUnusedHeapArea) {
    // Save information needed to minimize mangling
    heap->record_gen_tops_before_GC();
  }

D
duke 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

  assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
  assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");

  size_t prev_used = heap->used();
  assert(promotion_failed() == false, "Sanity");

  // Fill in TLABs
  heap->accumulate_statistics_all_tlabs();
  heap->ensure_parsability(true);  // retire TLABs

  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyBeforeGC:");
    Universe::verify(true);
  }

  {
    ResourceMark rm;
    HandleMark hm;

    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t1("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
    TraceCollectorStats tcs(counters());
    TraceMemoryManagerStats tms(false /* not full GC */);

    if (TraceGen0Time) accumulated_time()->start();

    // Let the size policy know we're starting
    size_policy->minor_collection_begin();

    // Verify the object start arrays.
    if (VerifyObjectStartArray &&
        VerifyBeforeGC) {
      old_gen->verify_object_start_array();
      perm_gen->verify_object_start_array();
    }

    // Verify no unmarked old->young roots
    if (VerifyRememberedSets) {
      CardTableExtension::verify_all_young_refs_imprecise();
    }

    if (!ScavengeWithObjectsInToSpace) {
      assert(young_gen->to_space()->is_empty(),
             "Attempt to scavenge with live objects in to_space");
323
      young_gen->to_space()->clear(SpaceDecorator::Mangle);
D
duke 已提交
324 325 326 327 328 329 330 331 332
    } else if (ZapUnusedHeapArea) {
      young_gen->to_space()->mangle_unused_area();
    }
    save_to_space_top_before_gc();

    NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
    COMPILER2_PRESENT(DerivedPointerTable::clear());

    reference_processor()->enable_discovery();
333
    reference_processor()->setup_policy(false);
D
duke 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

    // We track how much was promoted to the next generation for
    // the AdaptiveSizePolicy.
    size_t old_gen_used_before = old_gen->used_in_bytes();

    // For PrintGCDetails
    size_t young_gen_used_before = young_gen->used_in_bytes();

    // Reset our survivor overflow.
    set_survivor_overflow(false);

    // We need to save the old/perm top values before
    // creating the promotion_manager. We pass the top
    // values to the card_table, to prevent it from
    // straying into the promotion labs.
    HeapWord* old_top = old_gen->object_space()->top();
    HeapWord* perm_top = perm_gen->object_space()->top();

    // Release all previously held resources
    gc_task_manager()->release_all_resources();

    PSPromotionManager::pre_scavenge();

    // We'll use the promotion manager again later.
    PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
    {
      // TraceTime("Roots");

      GCTaskQueue* q = GCTaskQueue::create();

      for(uint i=0; i<ParallelGCThreads; i++) {
        q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i));
      }

      q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top));

      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
      // We scan the thread roots in parallel
      Threads::create_thread_roots_tasks(q);
      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));

      ParallelTaskTerminator terminator(
        gc_task_manager()->workers(),
        promotion_manager->depth_first() ?
            (TaskQueueSetSuper*) promotion_manager->stack_array_depth()
          : (TaskQueueSetSuper*) promotion_manager->stack_array_breadth());
      if (ParallelGCThreads>1) {
        for (uint j=0; j<ParallelGCThreads; j++) {
          q->enqueue(new StealTask(&terminator));
        }
      }

      gc_task_manager()->execute_and_wait(q);
    }

    scavenge_midpoint.update();

    // Process reference objects discovered during scavenge
    {
398
      reference_processor()->setup_policy(false); // not always_clear
D
duke 已提交
399 400 401 402 403
      PSKeepAliveClosure keep_alive(promotion_manager);
      PSEvacuateFollowersClosure evac_followers(promotion_manager);
      if (reference_processor()->processing_is_mt()) {
        PSRefProcTaskExecutor task_executor;
        reference_processor()->process_discovered_references(
404
          &_is_alive_closure, &keep_alive, &evac_followers, &task_executor);
D
duke 已提交
405 406
      } else {
        reference_processor()->process_discovered_references(
407
          &_is_alive_closure, &keep_alive, &evac_followers, NULL);
D
duke 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
      }
    }

    // Enqueue reference objects discovered during scavenge.
    if (reference_processor()->processing_is_mt()) {
      PSRefProcTaskExecutor task_executor;
      reference_processor()->enqueue_discovered_references(&task_executor);
    } else {
      reference_processor()->enqueue_discovered_references(NULL);
    }

    // Finally, flush the promotion_manager's labs, and deallocate its stacks.
    assert(promotion_manager->claimed_stack_empty(), "Sanity");
    PSPromotionManager::post_scavenge();

    promotion_failure_occurred = promotion_failed();
    if (promotion_failure_occurred) {
      clean_up_failed_promotion();
      if (PrintGC) {
        gclog_or_tty->print("--");
      }
    }

    // Let the size policy know we're done.  Note that we count promotion
    // failure cleanup time as part of the collection (otherwise, we're
    // implicitly saying it's mutator time).
    size_policy->minor_collection_end(gc_cause);

    if (!promotion_failure_occurred) {
      // Swap the survivor spaces.
438 439 440 441


      young_gen->eden_space()->clear(SpaceDecorator::Mangle);
      young_gen->from_space()->clear(SpaceDecorator::Mangle);
D
duke 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
      young_gen->swap_spaces();

      size_t survived = young_gen->from_space()->used_in_bytes();
      size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
      size_policy->update_averages(_survivor_overflow, survived, promoted);

      if (UseAdaptiveSizePolicy) {
        // Calculate the new survivor size and tenuring threshold

        if (PrintAdaptiveSizePolicy) {
          gclog_or_tty->print("AdaptiveSizeStart: ");
          gclog_or_tty->stamp();
          gclog_or_tty->print_cr(" collection: %d ",
                         heap->total_collections());

          if (Verbose) {
            gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
              " perm_gen_capacity: %d ",
              old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
              perm_gen->capacity_in_bytes());
          }
        }


        if (UsePerfData) {
          PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
          counters->update_old_eden_size(
            size_policy->calculated_eden_size_in_bytes());
          counters->update_old_promo_size(
            size_policy->calculated_promo_size_in_bytes());
          counters->update_old_capacity(old_gen->capacity_in_bytes());
          counters->update_young_capacity(young_gen->capacity_in_bytes());
          counters->update_survived(survived);
          counters->update_promoted(promoted);
          counters->update_survivor_overflowed(_survivor_overflow);
        }

        size_t survivor_limit =
          size_policy->max_survivor_size(young_gen->max_size());
        _tenuring_threshold =
          size_policy->compute_survivor_space_size_and_threshold(
                                                           _survivor_overflow,
                                                           _tenuring_threshold,
                                                           survivor_limit);

       if (PrintTenuringDistribution) {
         gclog_or_tty->cr();
         gclog_or_tty->print_cr("Desired survivor size %ld bytes, new threshold %d (max %d)",
                                size_policy->calculated_survivor_size_in_bytes(),
                                _tenuring_threshold, MaxTenuringThreshold);
       }

        if (UsePerfData) {
          PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
          counters->update_tenuring_threshold(_tenuring_threshold);
          counters->update_survivor_size_counters();
        }

        // Do call at minor collections?
        // Don't check if the size_policy is ready at this
        // level.  Let the size_policy check that internally.
        if (UseAdaptiveSizePolicy &&
            UseAdaptiveGenerationSizePolicyAtMinorCollection &&
            ((gc_cause != GCCause::_java_lang_system_gc) ||
              UseAdaptiveSizePolicyWithSystemGC)) {

          // Calculate optimial free space amounts
          assert(young_gen->max_size() >
            young_gen->from_space()->capacity_in_bytes() +
            young_gen->to_space()->capacity_in_bytes(),
            "Sizes of space in young gen are out-of-bounds");
          size_t max_eden_size = young_gen->max_size() -
            young_gen->from_space()->capacity_in_bytes() -
            young_gen->to_space()->capacity_in_bytes();
          size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
                                   young_gen->eden_space()->used_in_bytes(),
                                   old_gen->used_in_bytes(),
                                   perm_gen->used_in_bytes(),
                                   young_gen->eden_space()->capacity_in_bytes(),
                                   old_gen->max_gen_size(),
                                   max_eden_size,
                                   false  /* full gc*/,
                                   gc_cause);

        }
        // Resize the young generation at every collection
        // even if new sizes have not been calculated.  This is
        // to allow resizes that may have been inhibited by the
        // relative location of the "to" and "from" spaces.

        // Resizing the old gen at minor collects can cause increases
        // that don't feed back to the generation sizing policy until
        // a major collection.  Don't resize the old gen here.

        heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
                        size_policy->calculated_survivor_size_in_bytes());

        if (PrintAdaptiveSizePolicy) {
          gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
                         heap->total_collections());
        }
      }

      // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
      // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
      // Also update() will case adaptive NUMA chunk resizing.
      assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
      young_gen->eden_space()->update();

      heap->gc_policy_counters()->update_counters();

      heap->resize_all_tlabs();

      assert(young_gen->to_space()->is_empty(), "to space should be empty now");
    }

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

    NOT_PRODUCT(reference_processor()->verify_no_references_recorded());

    // Re-verify object start arrays
    if (VerifyObjectStartArray &&
        VerifyAfterGC) {
      old_gen->verify_object_start_array();
      perm_gen->verify_object_start_array();
    }

    // Verify all old -> young cards are now precise
    if (VerifyRememberedSets) {
      // Precise verification will give false positives. Until this is fixed,
      // use imprecise verification.
      // CardTableExtension::verify_all_young_refs_precise();
      CardTableExtension::verify_all_young_refs_imprecise();
    }

    if (TraceGen0Time) accumulated_time()->stop();

    if (PrintGC) {
      if (PrintGCDetails) {
        // Don't print a GC timestamp here.  This is after the GC so
        // would be confusing.
        young_gen->print_used_change(young_gen_used_before);
      }
      heap->print_heap_change(prev_used);
    }

    // Track memory usage and detect low memory
    MemoryService::track_memory_usage();
    heap->update_counters();
  }

  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
    HandleMark hm;  // Discard invalid handles created during verification
    gclog_or_tty->print(" VerifyAfterGC:");
    Universe::verify(false);
  }

  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }

603 604 605 606 607 608
  if (ZapUnusedHeapArea) {
    young_gen->eden_space()->check_mangled_unused_area_complete();
    young_gen->from_space()->check_mangled_unused_area_complete();
    young_gen->to_space()->check_mangled_unused_area_complete();
  }

D
duke 已提交
609 610 611 612 613 614 615 616 617
  scavenge_exit.update();

  if (PrintGCTaskTimeStamps) {
    tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
                  scavenge_entry.ticks(), scavenge_midpoint.ticks(),
                  scavenge_exit.ticks());
    gc_task_manager()->print_task_time_stamps();
  }

618 619 620 621
#ifdef TRACESPINNING
  ParallelTaskTerminator::print_termination_counts();
#endif

D
duke 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
  return !promotion_failure_occurred;
}

// This method iterates over all objects in the young generation,
// unforwarding markOops. It then restores any preserved mark oops,
// and clears the _preserved_mark_stack.
void PSScavenge::clean_up_failed_promotion() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  assert(promotion_failed(), "Sanity");

  PSYoungGen* young_gen = heap->young_gen();

  {
    ResourceMark rm;

    // Unforward all pointers in the young gen.
    PSPromotionFailedClosure unforward_closure;
    young_gen->object_iterate(&unforward_closure);

    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("Restoring %d marks",
                              _preserved_oop_stack->length());
    }

    // Restore any saved marks.
    for (int i=0; i < _preserved_oop_stack->length(); i++) {
      oop obj       = _preserved_oop_stack->at(i);
      markOop mark  = _preserved_mark_stack->at(i);
      obj->set_mark(mark);
    }

    // Deallocate the preserved mark and oop stacks.
    // The stacks were allocated as CHeap objects, so
    // we must call delete to prevent mem leaks.
    delete _preserved_mark_stack;
    _preserved_mark_stack = NULL;
    delete _preserved_oop_stack;
    _preserved_oop_stack = NULL;
  }

  // Reset the PromotionFailureALot counters.
  NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
}

// This method is called whenever an attempt to promote an object
// fails. Some markOops will need preserving, some will not. Note
// that the entire eden is traversed after a failed promotion, with
// all forwarded headers replaced by the default markOop. This means
// it is not neccessary to preserve most markOops.
void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
  if (_preserved_mark_stack == NULL) {
    ThreadCritical tc; // Lock and retest
    if (_preserved_mark_stack == NULL) {
      assert(_preserved_oop_stack == NULL, "Sanity");
      _preserved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
      _preserved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
    }
  }

  // Because we must hold the ThreadCritical lock before using
  // the stacks, we should be safe from observing partial allocations,
  // which are also guarded by the ThreadCritical lock.
  if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
    ThreadCritical tc;
    _preserved_oop_stack->push(obj);
    _preserved_mark_stack->push(obj_mark);
  }
}

bool PSScavenge::should_attempt_scavenge() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();

  if (UsePerfData) {
    counters->update_scavenge_skipped(not_skipped);
  }

  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();

  if (!ScavengeWithObjectsInToSpace) {
    // Do not attempt to promote unless to_space is empty
    if (!young_gen->to_space()->is_empty()) {
      _consecutive_skipped_scavenges++;
      if (UsePerfData) {
        counters->update_scavenge_skipped(to_space_not_empty);
      }
      return false;
    }
  }

  // Test to see if the scavenge will likely fail.
  PSAdaptiveSizePolicy* policy = heap->size_policy();

  // A similar test is done in the policy's should_full_GC().  If this is
  // changed, decide if that test should also be changed.
  size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
  size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
  bool result = promotion_estimate < old_gen->free_in_bytes();

  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
    gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
      " padded_average_promoted " SIZE_FORMAT
      " free in old gen " SIZE_FORMAT,
      (size_t) policy->average_promoted_in_bytes(),
      (size_t) policy->padded_average_promoted_in_bytes(),
      old_gen->free_in_bytes());
    if (young_gen->used_in_bytes() <
        (size_t) policy->padded_average_promoted_in_bytes()) {
      gclog_or_tty->print_cr(" padded_promoted_average is greater"
        " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
    }
  }

  if (result) {
    _consecutive_skipped_scavenges = 0;
  } else {
    _consecutive_skipped_scavenges++;
    if (UsePerfData) {
      counters->update_scavenge_skipped(promoted_too_large);
    }
  }
  return result;
}

  // Used to add tasks
GCTaskManager* const PSScavenge::gc_task_manager() {
  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
   "shouldn't return NULL");
  return ParallelScavengeHeap::gc_task_manager();
}

void PSScavenge::initialize() {
  // Arguments must have been parsed

  if (AlwaysTenure) {
    _tenuring_threshold = 0;
  } else if (NeverTenure) {
    _tenuring_threshold = markOopDesc::max_age + 1;
  } else {
    // We want to smooth out our startup times for the AdaptiveSizePolicy
    _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
                                                    MaxTenuringThreshold;
  }

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  PSYoungGen* young_gen = heap->young_gen();
  PSOldGen* old_gen = heap->old_gen();
  PSPermGen* perm_gen = heap->perm_gen();

  // Set boundary between young_gen and old_gen
  assert(perm_gen->reserved().end() <= old_gen->object_space()->bottom(),
         "perm above old");
  assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
         "old above young");
  _young_generation_boundary = young_gen->eden_space()->bottom();

  // Initialize ref handling object for scavenging.
  MemRegion mr = young_gen->reserved();
  _ref_processor = ReferenceProcessor::create_ref_processor(
    mr,                         // span
    true,                       // atomic_discovery
    true,                       // mt_discovery
    NULL,                       // is_alive_non_header
    ParallelGCThreads,
    ParallelRefProcEnabled);

  // Cache the cardtable
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  _card_table = (CardTableExtension*)bs;

  _counters = new CollectorCounters("PSScavenge", 0);
}