heapRegionSeq.cpp 10.3 KB
Newer Older
1
/*
X
xdono 已提交
2
 * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_heapRegionSeq.cpp.incl"

// Local to this file.

static int orderRegions(HeapRegion** hr1p, HeapRegion** hr2p) {
  if ((*hr1p)->end() <= (*hr2p)->bottom()) return -1;
  else if ((*hr2p)->end() <= (*hr1p)->bottom()) return 1;
  else if (*hr1p == *hr2p) return 0;
  else {
    assert(false, "We should never compare distinct overlapping regions.");
  }
  return 0;
}

I
iveresov 已提交
40
HeapRegionSeq::HeapRegionSeq(const size_t max_size) :
41 42 43 44 45 46 47 48 49 50 51 52
  _alloc_search_start(0),
  // The line below is the worst bit of C++ hackery I've ever written
  // (Detlefs, 11/23).  You should think of it as equivalent to
  // "_regions(100, true)": initialize the growable array and inform it
  // that it should allocate its elem array(s) on the C heap.  The first
  // argument, however, is actually a comma expression (new-expr, 100).
  // The purpose of the new_expr is to inform the growable array that it
  // is *already* allocated on the C heap: it uses the placement syntax to
  // keep it from actually doing any allocation.
  _regions((ResourceObj::operator new (sizeof(GrowableArray<HeapRegion*>),
                                       (void*)&_regions,
                                       ResourceObj::C_HEAP),
I
iveresov 已提交
53
            (int)max_size),
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
           true),
  _next_rr_candidate(0),
  _seq_bottom(NULL)
{}

// Private methods.

HeapWord*
HeapRegionSeq::alloc_obj_from_region_index(int ind, size_t word_size) {
  assert(G1CollectedHeap::isHumongous(word_size),
         "Allocation size should be humongous");
  int cur = ind;
  int first = cur;
  size_t sumSizes = 0;
  while (cur < _regions.length() && sumSizes < word_size) {
    // Loop invariant:
    //  For all i in [first, cur):
    //       _regions.at(i)->is_empty()
    //    && _regions.at(i) is contiguous with its predecessor, if any
    //  && sumSizes is the sum of the sizes of the regions in the interval
    //       [first, cur)
    HeapRegion* curhr = _regions.at(cur);
    if (curhr->is_empty()
        && !curhr->is_reserved()
        && (first == cur
            || (_regions.at(cur-1)->end() ==
                curhr->bottom()))) {
      sumSizes += curhr->capacity() / HeapWordSize;
    } else {
      first = cur + 1;
      sumSizes = 0;
    }
    cur++;
  }
  if (sumSizes >= word_size) {
    _alloc_search_start = cur;
    // Mark the allocated regions as allocated.
    bool zf = G1CollectedHeap::heap()->allocs_are_zero_filled();
    HeapRegion* first_hr = _regions.at(first);
    for (int i = first; i < cur; i++) {
      HeapRegion* hr = _regions.at(i);
      if (zf)
        hr->ensure_zero_filled();
      {
        MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
        hr->set_zero_fill_allocated();
      }
      size_t sz = hr->capacity() / HeapWordSize;
      HeapWord* tmp = hr->allocate(sz);
      assert(tmp != NULL, "Humongous allocation failure");
      MemRegion mr = MemRegion(tmp, sz);
      SharedHeap::fill_region_with_object(mr);
      hr->declare_filled_region_to_BOT(mr);
      if (i == first) {
        first_hr->set_startsHumongous();
      } else {
        assert(i > first, "sanity");
        hr->set_continuesHumongous(first_hr);
      }
    }
    HeapWord* first_hr_bot = first_hr->bottom();
    HeapWord* obj_end = first_hr_bot + word_size;
    first_hr->set_top(obj_end);
    return first_hr_bot;
  } else {
    // If we started from the beginning, we want to know why we can't alloc.
    return NULL;
  }
}

void HeapRegionSeq::print_empty_runs(bool reserved_are_empty) {
  int empty_run = 0;
  int n_empty = 0;
  bool at_least_one_reserved = false;
  int empty_run_start;
  for (int i = 0; i < _regions.length(); i++) {
    HeapRegion* r = _regions.at(i);
    if (r->continuesHumongous()) continue;
    if (r->is_empty() && (reserved_are_empty || !r->is_reserved())) {
      assert(!r->isHumongous(), "H regions should not be empty.");
      if (empty_run == 0) empty_run_start = i;
      empty_run++;
      n_empty++;
      if (r->is_reserved()) {
        at_least_one_reserved = true;
      }
    } else {
      if (empty_run > 0) {
        gclog_or_tty->print("  %d:%d", empty_run_start, empty_run);
        if (reserved_are_empty && at_least_one_reserved)
          gclog_or_tty->print("(R)");
        empty_run = 0;
        at_least_one_reserved = false;
      }
    }
  }
  if (empty_run > 0) {
    gclog_or_tty->print(" %d:%d", empty_run_start, empty_run);
    if (reserved_are_empty && at_least_one_reserved) gclog_or_tty->print("(R)");
  }
  gclog_or_tty->print_cr(" [tot = %d]", n_empty);
}

int HeapRegionSeq::find(HeapRegion* hr) {
  // FIXME: optimized for adjacent regions of fixed size.
  int ind = hr->hrs_index();
  if (ind != -1) {
    assert(_regions.at(ind) == hr, "Mismatch");
  }
  return ind;
}


// Public methods.

void HeapRegionSeq::insert(HeapRegion* hr) {
I
iveresov 已提交
170
  assert(!_regions.is_full(), "Too many elements in HeapRegionSeq");
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
  if (_regions.length() == 0
      || _regions.top()->end() <= hr->bottom()) {
    hr->set_hrs_index(_regions.length());
    _regions.append(hr);
  } else {
    _regions.append(hr);
    _regions.sort(orderRegions);
    for (int i = 0; i < _regions.length(); i++) {
      _regions.at(i)->set_hrs_index(i);
    }
  }
  char* bot = (char*)_regions.at(0)->bottom();
  if (_seq_bottom == NULL || bot < _seq_bottom) _seq_bottom = bot;
}

size_t HeapRegionSeq::length() {
  return _regions.length();
}

size_t HeapRegionSeq::free_suffix() {
  size_t res = 0;
  int first = _regions.length() - 1;
  int cur = first;
  while (cur >= 0 &&
         (_regions.at(cur)->is_empty()
          && !_regions.at(cur)->is_reserved()
          && (first == cur
              || (_regions.at(cur+1)->bottom() ==
                  _regions.at(cur)->end())))) {
      res++;
      cur--;
  }
  return res;
}

HeapWord* HeapRegionSeq::obj_allocate(size_t word_size) {
  int cur = _alloc_search_start;
  // Make sure "cur" is a valid index.
  assert(cur >= 0, "Invariant.");
  HeapWord* res = alloc_obj_from_region_index(cur, word_size);
  if (res == NULL)
    res = alloc_obj_from_region_index(0, word_size);
  return res;
}

void HeapRegionSeq::iterate(HeapRegionClosure* blk) {
  iterate_from((HeapRegion*)NULL, blk);
}

// The first argument r is the heap region at which iteration begins.
// This operation runs fastest when r is NULL, or the heap region for
// which a HeapRegionClosure most recently returned true, or the
// heap region immediately to its right in the sequence.  In all
// other cases a linear search is required to find the index of r.

void HeapRegionSeq::iterate_from(HeapRegion* r, HeapRegionClosure* blk) {

  // :::: FIXME ::::
  // Static cache value is bad, especially when we start doing parallel
  // remembered set update. For now just don't cache anything (the
  // code in the def'd out blocks).

#if 0
  static int cached_j = 0;
#endif
  int len = _regions.length();
  int j = 0;
  // Find the index of r.
  if (r != NULL) {
#if 0
    assert(cached_j >= 0, "Invariant.");
    if ((cached_j < len) && (r == _regions.at(cached_j))) {
      j = cached_j;
    } else if ((cached_j + 1 < len) && (r == _regions.at(cached_j + 1))) {
      j = cached_j + 1;
    } else {
      j = find(r);
#endif
      if (j < 0) {
        j = 0;
      }
#if 0
    }
#endif
  }
  int i;
  for (i = j; i < len; i += 1) {
    int res = blk->doHeapRegion(_regions.at(i));
    if (res) {
#if 0
      cached_j = i;
#endif
      blk->incomplete();
      return;
    }
  }
  for (i = 0; i < j; i += 1) {
    int res = blk->doHeapRegion(_regions.at(i));
    if (res) {
#if 0
      cached_j = i;
#endif
      blk->incomplete();
      return;
    }
  }
}

void HeapRegionSeq::iterate_from(int idx, HeapRegionClosure* blk) {
  int len = _regions.length();
  int i;
  for (i = idx; i < len; i++) {
    if (blk->doHeapRegion(_regions.at(i))) {
      blk->incomplete();
      return;
    }
  }
  for (i = 0; i < idx; i++) {
    if (blk->doHeapRegion(_regions.at(i))) {
      blk->incomplete();
      return;
    }
  }
}

MemRegion HeapRegionSeq::shrink_by(size_t shrink_bytes,
                                   size_t& num_regions_deleted) {
  assert(shrink_bytes % os::vm_page_size() == 0, "unaligned");
  assert(shrink_bytes % HeapRegion::GrainBytes == 0, "unaligned");

  if (_regions.length() == 0) {
    num_regions_deleted = 0;
    return MemRegion();
  }
  int j = _regions.length() - 1;
  HeapWord* end = _regions.at(j)->end();
  HeapWord* last_start = end;
  while (j >= 0 && shrink_bytes > 0) {
    HeapRegion* cur = _regions.at(j);
    // We have to leave humongous regions where they are,
    // and work around them.
    if (cur->isHumongous()) {
      return MemRegion(last_start, end);
    }
    cur->reset_zero_fill();
    assert(cur == _regions.top(), "Should be top");
    if (!cur->is_empty()) break;
    shrink_bytes -= cur->capacity();
    num_regions_deleted++;
    _regions.pop();
    last_start = cur->bottom();
    // We need to delete these somehow, but can't currently do so here: if
    // we do, the ZF thread may still access the deleted region.  We'll
    // leave this here as a reminder that we have to do something about
    // this.
    // delete cur;
    j--;
  }
  return MemRegion(last_start, end);
}


class PrintHeapRegionClosure : public  HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    gclog_or_tty->print(PTR_FORMAT ":", r);
    r->print();
    return false;
  }
};

void HeapRegionSeq::print() {
  PrintHeapRegionClosure cl;
  iterate(&cl);
}