concurrentMark.cpp 164.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
27
#include "gc_implementation/g1/concurrentMark.inline.hpp"
28 29 30
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
33
#include "gc_implementation/g1/g1RemSet.hpp"
34
#include "gc_implementation/g1/heapRegion.inline.hpp"
35 36
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
37
#include "gc_implementation/shared/vmGCOperations.hpp"
38 39 40 41 42 43
#include "memory/genOopClosures.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
44

45
// Concurrent marking bit map wrapper
46

47
CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter) :
48 49 50 51 52 53 54
  _bm((uintptr_t*)NULL,0),
  _shifter(shifter) {
  _bmStartWord = (HeapWord*)(rs.base());
  _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));

55
  guarantee(brs.is_reserved(), "couldn't allocate concurrent marking bit map");
56 57 58
  // For now we'll just commit all of the bit map up fromt.
  // Later on we'll try to be more parsimonious with swap.
  guarantee(_virtual_space.initialize(brs, brs.size()),
59
            "couldn't reseve backing store for concurrent marking bit map");
60
  assert(_virtual_space.committed_size() == brs.size(),
61
         "didn't reserve backing store for all of concurrent marking bit map?");
62 63 64 65 66 67 68 69 70 71 72 73
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
74 75 76
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
77 78 79 80 81 82 83 84 85 86 87 88
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
89 90 91
  if (limit == NULL) {
    limit = _bmStartWord + _bmWordSize;
  }
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

#ifndef PRODUCT
bool CMBitMapRO::covers(ReservedSpace rs) const {
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
109
  assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
         "size inconsistency");
  return _bmStartWord == (HeapWord*)(rs.base()) &&
         _bmWordSize  == rs.size()>>LogHeapWordSize;
}
#endif

void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

void CMMarkStack::allocate(size_t size) {
  _base = NEW_C_HEAP_ARRAY(oop, size);
164
  if (_base == NULL) {
165
    vm_exit_during_initialization("Failed to allocate CM region mark stack");
166
  }
167 168
  _index = 0;
  _capacity = (jint) size;
169
  _saved_index = -1;
170 171 172 173
  NOT_PRODUCT(_max_depth = 0);
}

CMMarkStack::~CMMarkStack() {
174 175 176
  if (_base != NULL) {
    FREE_C_HEAP_ARRAY(oop, _base);
  }
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
        int ind = index + i;
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}


void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
240
    assert(ind < _capacity, "By overflow test above.");
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    _base[ind] = ptr_arr[i];
  }
}


bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
    jint new_ind = index - k;
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
280 281
      res = false;
      break;
282 283 284 285 286 287
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
void CMMarkStack::note_start_of_gc() {
  assert(_saved_index == -1,
         "note_start_of_gc()/end_of_gc() bracketed incorrectly");
  _saved_index = _index;
}

void CMMarkStack::note_end_of_gc() {
  // This is intentionally a guarantee, instead of an assert. If we
  // accidentally add something to the mark stack during GC, it
  // will be a correctness issue so it's better if we crash. we'll
  // only check this once per GC anyway, so it won't be a performance
  // issue in any way.
  guarantee(_saved_index == _index,
            err_msg("saved index: %d index: %d", _saved_index, _index));
  _saved_index = -1;
}

305
void CMMarkStack::oops_do(OopClosure* f) {
306 307 308
  assert(_saved_index == _index,
         err_msg("saved index: %d index: %d", _saved_index, _index));
  for (int i = 0; i < _index; i += 1) {
309 310 311 312 313 314 315 316 317 318
    f->do_oop(&_base[i]);
  }
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
  return (_g1h->is_obj_ill(obj)
          || (_g1h->is_in_permanent(obj)
              && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
CMRootRegions::CMRootRegions() :
  _young_list(NULL), _cm(NULL), _scan_in_progress(false),
  _should_abort(false),  _next_survivor(NULL) { }

void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
  _young_list = g1h->young_list();
  _cm = cm;
}

void CMRootRegions::prepare_for_scan() {
  assert(!scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  assert(_next_survivor == NULL, "pre-condition");
  _next_survivor = _young_list->first_survivor_region();
  _scan_in_progress = (_next_survivor != NULL);
  _should_abort = false;
}

HeapRegion* CMRootRegions::claim_next() {
  if (_should_abort) {
    // If someone has set the should_abort flag, we return NULL to
    // force the caller to bail out of their loop.
    return NULL;
  }

  // Currently, only survivors can be root regions.
  HeapRegion* res = _next_survivor;
  if (res != NULL) {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    // Read it again in case it changed while we were waiting for the lock.
    res = _next_survivor;
    if (res != NULL) {
      if (res == _young_list->last_survivor_region()) {
        // We just claimed the last survivor so store NULL to indicate
        // that we're done.
        _next_survivor = NULL;
      } else {
        _next_survivor = res->get_next_young_region();
      }
    } else {
      // Someone else claimed the last survivor while we were trying
      // to take the lock so nothing else to do.
    }
  }
  assert(res == NULL || res->is_survivor(), "post-condition");

  return res;
}

void CMRootRegions::scan_finished() {
  assert(scan_in_progress(), "pre-condition");

  // Currently, only survivors can be root regions.
  if (!_should_abort) {
    assert(_next_survivor == NULL, "we should have claimed all survivors");
  }
  _next_survivor = NULL;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    _scan_in_progress = false;
    RootRegionScan_lock->notify_all();
  }
}

bool CMRootRegions::wait_until_scan_finished() {
  if (!scan_in_progress()) return false;

  {
    MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
    while (scan_in_progress()) {
      RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
    }
  }
  return true;
}

397 398 399 400
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

401 402
uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
  return MAX2((n_par_threads + 2) / 4, 1U);
403 404
}

405 406 407 408 409 410
ConcurrentMark::ConcurrentMark(ReservedSpace rs,
                               int max_regions) :
  _markBitMap1(rs, MinObjAlignment - 1),
  _markBitMap2(rs, MinObjAlignment - 1),

  _parallel_marking_threads(0),
411
  _max_parallel_marking_threads(0),
412 413 414 415
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
416
  _cleanup_list("Cleanup List"),
417 418 419 420
  _region_bm(max_regions, false /* in_resource_area*/),
  _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
           CardTableModRefBS::card_shift,
           false /* in_resource_area*/),
421

422 423 424 425 426 427
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),

  _markStack(this),
  // _finger set in set_non_marking_state

428
  _max_task_num(MAX2((uint)ParallelGCThreads, 1U)),
429 430 431 432 433 434 435
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
  _task_queues(new CMTaskQueueSet((int) _max_task_num)),
  _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),

  _has_overflown(false),
  _concurrent(false),
436 437 438
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
439 440 441 442 443 444 445 446

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),
447 448 449 450 451

  _parallel_workers(NULL),

  _count_card_bitmaps(NULL),
  _count_marked_bytes(NULL) {
452 453
  CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose) {
454
    verbose_level = no_verbose;
455 456
  }
  if (verbose_level > high_verbose) {
457
    verbose_level = high_verbose;
458
  }
459 460
  _verbose_level = verbose_level;

461
  if (verbose_low()) {
462 463
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);
464
  }
465

466
  _markStack.allocate(MarkStackSize);
467 468

  // Create & start a ConcurrentMark thread.
469 470 471 472
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

473 474 475 476 477 478
  _g1h = G1CollectedHeap::heap();
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
  assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
479
  satb_qs.set_buffer_size(G1SATBBufferSize);
480

481 482
  _root_regions.init(_g1h, this);

483 484 485
  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);

486 487 488 489 490
  _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_task_num);
  _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_task_num);

  BitMap::idx_t card_bm_size = _card_bm.size();

491 492 493 494 495 496 497
  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_task_num;
  for (int i = 0; i < (int) _max_task_num; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

498 499 500 501 502 503 504 505
    _count_card_bitmaps[i] = BitMap(card_bm_size, false);
    _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions);

    _tasks[i] = new CMTask(i, this,
                           _count_marked_bytes[i],
                           &_count_card_bitmaps[i],
                           task_queue, _task_queues);

506 507 508
    _accum_task_vtime[i] = 0.0;
  }

509 510 511 512 513 514 515 516 517
  // Calculate the card number for the bottom of the heap. Used
  // in biasing indexes into the accounting card bitmaps.
  _heap_bottom_card_num =
    intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
                                CardTableModRefBS::card_shift);

  // Clear all the liveness counting data
  clear_all_count_data();

518 519
  if (ConcGCThreads > ParallelGCThreads) {
    vm_exit_during_initialization("Can't have more ConcGCThreads "
520 521 522 523 524
                                  "than ParallelGCThreads.");
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
525 526 527 528
    _parallel_marking_threads =       0;
    _max_parallel_marking_threads =   0;
    _sleep_factor             =     0.0;
    _marking_task_overhead    =     1.0;
529
  } else {
530 531
    if (ConcGCThreads > 0) {
      // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
532 533
      // if both are set

534
      _parallel_marking_threads = (uint) ConcGCThreads;
535
      _max_parallel_marking_threads = _parallel_marking_threads;
536 537
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
538
    } else if (G1MarkingOverheadPercent > 0) {
539 540 541 542
      // we will calculate the number of parallel marking threads
      // based on a target overhead with respect to the soft real-time
      // goal

J
johnc 已提交
543
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
544
      double overall_cm_overhead =
J
johnc 已提交
545 546
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
547 548 549 550 551 552 553 554
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

555
      _parallel_marking_threads = (uint) marking_thread_num;
556
      _max_parallel_marking_threads = _parallel_marking_threads;
557 558 559
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
560
      _parallel_marking_threads = scale_parallel_threads((uint)ParallelGCThreads);
561
      _max_parallel_marking_threads = _parallel_marking_threads;
562 563 564 565
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

566
    if (parallel_marking_threads() > 1) {
567
      _cleanup_task_overhead = 1.0;
568
    } else {
569
      _cleanup_task_overhead = marking_task_overhead();
570
    }
571 572 573 574 575 576 577 578 579 580 581
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

582
    guarantee(parallel_marking_threads() > 0, "peace of mind");
583
    _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
584
         _max_parallel_marking_threads, false, true);
585
    if (_parallel_workers == NULL) {
586
      vm_exit_during_initialization("Failed necessary allocation.");
587 588 589
    } else {
      _parallel_workers->initialize_workers();
    }
590 591 592 593 594 595 596 597 598
  }

  // so that the call below can read a sensible value
  _heap_start = (HeapWord*) rs.base();
  set_non_marking_state();
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
599
  // update _heap_end.
600
  if (!concurrent_marking_in_progress() && !force) return;
601 602

  MemRegion committed = _g1h->g1_committed();
603
  assert(committed.start() == _heap_start, "start shouldn't change");
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

625 626 627 628
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
629 630 631 632

  // reset all the marking data structures and any necessary flags
  clear_marking_state();

633
  if (verbose_low()) {
634
    gclog_or_tty->print_cr("[global] resetting");
635
  }
636 637 638 639

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
640
  for (int i = 0; i < (int) _max_task_num; ++i) {
641
    _tasks[i]->reset(_nextMarkBitMap);
642
  }
643 644 645 646 647 648

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

649
void ConcurrentMark::set_phase(uint active_tasks, bool concurrent) {
650
  assert(active_tasks <= _max_task_num, "we should not have more");
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
  for (int i = 0; i < (int) _max_task_num; ++i)
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
670 671
    assert(!concurrent_marking_in_progress(), "invariant");
    assert(_finger == _heap_end, "only way to get here");
672 673 674 675 676 677 678 679 680 681 682 683 684
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
  clear_marking_state();
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
685 686
  // The ConcurrentMark instance is never freed.
  ShouldNotReachHere();
687 688 689
}

void ConcurrentMark::clearNextBitmap() {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  // Make sure that the concurrent mark thread looks to still be in
  // the current cycle.
  guarantee(cmThread()->during_cycle(), "invariant");

  // We are finishing up the current cycle by clearing the next
  // marking bitmap and getting it ready for the next cycle. During
  // this time no other cycle can start. So, let's make sure that this
  // is the case.
  guarantee(!g1h->mark_in_progress(), "invariant");

  // clear the mark bitmap (no grey objects to start with).
  // We need to do this in chunks and offer to yield in between
  // each chunk.
  HeapWord* start  = _nextMarkBitMap->startWord();
  HeapWord* end    = _nextMarkBitMap->endWord();
  HeapWord* cur    = start;
  size_t chunkSize = M;
  while (cur < end) {
    HeapWord* next = cur + chunkSize;
712
    if (next > end) {
713
      next = end;
714
    }
715 716 717 718 719 720 721 722 723 724 725 726 727
    MemRegion mr(cur,next);
    _nextMarkBitMap->clearRange(mr);
    cur = next;
    do_yield_check();

    // Repeat the asserts from above. We'll do them as asserts here to
    // minimize their overhead on the product. However, we'll have
    // them as guarantees at the beginning / end of the bitmap
    // clearing to get some checking in the product.
    assert(cmThread()->during_cycle(), "invariant");
    assert(!g1h->mark_in_progress(), "invariant");
  }

728 729 730
  // Clear the liveness counting data
  clear_all_count_data();

731 732 733
  // Repeat the asserts from above.
  guarantee(cmThread()->during_cycle(), "invariant");
  guarantee(!g1h->mark_in_progress(), "invariant");
734 735 736 737 738 739
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
740
      r->note_start_of_marking();
741 742 743 744 745 746 747 748 749 750 751
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

752
#ifndef PRODUCT
753
  if (G1PrintReachableAtInitialMark) {
754
    print_reachable("at-cycle-start",
755
                    VerifyOption_G1UsePrevMarking, true /* all */);
756
  }
757
#endif
758 759 760

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
761 762 763 764

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);
765 766 767 768 769 770
}


void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

771 772 773 774 775 776 777 778
  // If we force an overflow during remark, the remark operation will
  // actually abort and we'll restart concurrent marking. If we always
  // force an oveflow during remark we'll never actually complete the
  // marking phase. So, we initilize this here, at the start of the
  // cycle, so that at the remaining overflow number will decrease at
  // every remark and we'll eventually not need to cause one.
  force_overflow_stw()->init();

779 780 781 782
  // Start Concurrent Marking weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor_cm();
  // enable ("weak") refs discovery
  rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
783
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
784 785

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
786 787 788 789
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
790

791 792
  _root_regions.prepare_for_scan();

793 794 795 796 797 798 799
  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

/*
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
 * Notice that in the next two methods, we actually leave the STS
 * during the barrier sync and join it immediately afterwards. If we
 * do not do this, the following deadlock can occur: one thread could
 * be in the barrier sync code, waiting for the other thread to also
 * sync up, whereas another one could be trying to yield, while also
 * waiting for the other threads to sync up too.
 *
 * Note, however, that this code is also used during remark and in
 * this case we should not attempt to leave / enter the STS, otherwise
 * we'll either hit an asseert (debug / fastdebug) or deadlock
 * (product). So we should only leave / enter the STS if we are
 * operating concurrently.
 *
 * Because the thread that does the sync barrier has left the STS, it
 * is possible to be suspended for a Full GC or an evacuation pause
 * could occur. This is actually safe, since the entering the sync
 * barrier is one of the last things do_marking_step() does, and it
 * doesn't manipulate any data structures afterwards.
 */
819 820

void ConcurrentMark::enter_first_sync_barrier(int task_num) {
821
  if (verbose_low()) {
822
    gclog_or_tty->print_cr("[%d] entering first barrier", task_num);
823
  }
824

825 826 827
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
828
  _first_overflow_barrier_sync.enter();
829 830 831
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
832 833 834
  // at this point everyone should have synced up and not be doing any
  // more work

835
  if (verbose_low()) {
836
    gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);
837
  }
838 839 840 841

  // let task 0 do this
  if (task_num == 0) {
    // task 0 is responsible for clearing the global data structures
842 843 844 845 846 847
    // We should be here because of an overflow. During STW we should
    // not clear the overflow flag since we rely on it being true when
    // we exit this method to abort the pause and restart concurent
    // marking.
    clear_marking_state(concurrent() /* clear_overflow */);
    force_overflow()->update();
848 849 850 851 852 853 854 855 856 857 858 859 860

    if (PrintGC) {
      gclog_or_tty->date_stamp(PrintGCDateStamps);
      gclog_or_tty->stamp(PrintGCTimeStamps);
      gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

void ConcurrentMark::enter_second_sync_barrier(int task_num) {
861
  if (verbose_low()) {
862
    gclog_or_tty->print_cr("[%d] entering second barrier", task_num);
863
  }
864

865 866 867
  if (concurrent()) {
    ConcurrentGCThread::stsLeave();
  }
868
  _second_overflow_barrier_sync.enter();
869 870 871
  if (concurrent()) {
    ConcurrentGCThread::stsJoin();
  }
872 873
  // at this point everything should be re-initialised and ready to go

874
  if (verbose_low()) {
875
    gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
876
  }
877 878
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
#ifndef PRODUCT
void ForceOverflowSettings::init() {
  _num_remaining = G1ConcMarkForceOverflow;
  _force = false;
  update();
}

void ForceOverflowSettings::update() {
  if (_num_remaining > 0) {
    _num_remaining -= 1;
    _force = true;
  } else {
    _force = false;
  }
}

bool ForceOverflowSettings::should_force() {
  if (_force) {
    _force = false;
    return true;
  } else {
    return false;
  }
}
#endif // !PRODUCT

905 906 907 908 909 910
class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
911
  void work(uint worker_id) {
912 913
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
914
    ResourceMark rm;
915 916 917 918 919

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

920 921
    assert(worker_id < _cm->active_tasks(), "invariant");
    CMTask* the_task = _cm->task(worker_id);
922 923 924 925 926
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
927 928 929 930 931 932
        double mark_step_duration_ms = G1ConcMarkStepDurationMillis;

        the_task->do_marking_step(mark_step_duration_ms,
                                  true /* do_stealing    */,
                                  true /* do_termination */);

933 934 935 936 937 938
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

939
        bool ret = _cm->do_yield_check(worker_id);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
963
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
964 965 966 967

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
968
    _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
969 970 971 972 973 974 975 976 977
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

978 979
// Calculates the number of active workers for a concurrent
// phase.
980
uint ConcurrentMark::calc_parallel_marking_threads() {
981
  if (G1CollectedHeap::use_parallel_gc_threads()) {
982
    uint n_conc_workers = 0;
983 984 985 986 987 988 989 990 991 992 993 994 995 996
    if (!UseDynamicNumberOfGCThreads ||
        (!FLAG_IS_DEFAULT(ConcGCThreads) &&
         !ForceDynamicNumberOfGCThreads)) {
      n_conc_workers = max_parallel_marking_threads();
    } else {
      n_conc_workers =
        AdaptiveSizePolicy::calc_default_active_workers(
                                     max_parallel_marking_threads(),
                                     1, /* Minimum workers */
                                     parallel_marking_threads(),
                                     Threads::number_of_non_daemon_threads());
      // Don't scale down "n_conc_workers" by scale_parallel_threads() because
      // that scaling has already gone into "_max_parallel_marking_threads".
    }
997 998
    assert(n_conc_workers > 0, "Always need at least 1");
    return n_conc_workers;
999
  }
1000 1001 1002 1003
  // If we are not running with any parallel GC threads we will not
  // have spawned any marking threads either. Hence the number of
  // concurrent workers should be 0.
  return 0;
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
  // Currently, only survivors can be root regions.
  assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
  G1RootRegionScanClosure cl(_g1h, this, worker_id);

  const uintx interval = PrefetchScanIntervalInBytes;
  HeapWord* curr = hr->bottom();
  const HeapWord* end = hr->top();
  while (curr < end) {
    Prefetch::read(curr, interval);
    oop obj = oop(curr);
    int size = obj->oop_iterate(&cl);
    assert(size == obj->size(), "sanity");
    curr += size;
  }
}

class CMRootRegionScanTask : public AbstractGangTask {
private:
  ConcurrentMark* _cm;

public:
  CMRootRegionScanTask(ConcurrentMark* cm) :
    AbstractGangTask("Root Region Scan"), _cm(cm) { }

  void work(uint worker_id) {
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");

    CMRootRegions* root_regions = _cm->root_regions();
    HeapRegion* hr = root_regions->claim_next();
    while (hr != NULL) {
      _cm->scanRootRegion(hr, worker_id);
      hr = root_regions->claim_next();
    }
  }
};

void ConcurrentMark::scanRootRegions() {
  // scan_in_progress() will have been set to true only if there was
  // at least one root region to scan. So, if it's false, we
  // should not attempt to do any further work.
  if (root_regions()->scan_in_progress()) {
    _parallel_marking_threads = calc_parallel_marking_threads();
    assert(parallel_marking_threads() <= max_parallel_marking_threads(),
           "Maximum number of marking threads exceeded");
    uint active_workers = MAX2(1U, parallel_marking_threads());

    CMRootRegionScanTask task(this);
    if (parallel_marking_threads() > 0) {
      _parallel_workers->set_active_workers((int) active_workers);
      _parallel_workers->run_task(&task);
    } else {
      task.work(0);
    }

    // It's possible that has_aborted() is true here without actually
    // aborting the survivor scan earlier. This is OK as it's
    // mainly used for sanity checking.
    root_regions()->scan_finished();
  }
}

1069 1070 1071 1072 1073 1074 1075 1076 1077
void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;
1078
  force_overflow_conc()->init();
1079 1080 1081 1082 1083 1084

  // _g1h has _n_par_threads
  _parallel_marking_threads = calc_parallel_marking_threads();
  assert(parallel_marking_threads() <= max_parallel_marking_threads(),
    "Maximum number of marking threads exceeded");

1085
  uint active_workers = MAX2(1U, parallel_marking_threads());
1086 1087 1088

  // Parallel task terminator is set in "set_phase()"
  set_phase(active_workers, true /* concurrent */);
1089 1090

  CMConcurrentMarkingTask markingTask(this, cmThread());
1091
  if (parallel_marking_threads() > 0) {
1092 1093 1094 1095
    _parallel_workers->set_active_workers((int)active_workers);
    // Don't set _n_par_threads because it affects MT in proceess_strong_roots()
    // and the decisions on that MT processing is made elsewhere.
    assert(_parallel_workers->active_workers() > 0, "Should have been set");
1096
    _parallel_workers->run_task(&markingTask);
1097
  } else {
1098
    markingTask.work(0);
1099
  }
1100 1101 1102 1103 1104 1105 1106
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
1107

1108 1109 1110 1111 1112 1113 1114 1115
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1116 1117
  SvcGCMarker sgcm(SvcGCMarker::OTHER);

1118 1119 1120 1121
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1122 1123 1124
    Universe::verify(/* allow dirty */ true,
                     /* silent      */ false,
                     /* option      */ VerifyOption_G1UsePrevMarking);
1125 1126
  }

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
    // Clear the flag. We do not need it any more.
    clear_has_overflown();
1143
    if (G1TraceMarkStackOverflow) {
1144
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1145
    }
1146
  } else {
1147 1148 1149 1150
    // Aggregate the per-task counting data that we have accumulated
    // while marking.
    aggregate_count_data();

1151
    SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1152
    // We're done with marking.
1153 1154
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
1155 1156
    satb_mq_set.set_active_all_threads(false, /* new active value */
                                       true /* expected_active */);
1157 1158

    if (VerifyDuringGC) {
1159 1160 1161
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(after)");
      Universe::heap()->prepare_for_verify();
1162 1163 1164
      Universe::verify(/* allow dirty */ true,
                       /* silent      */ false,
                       /* option      */ VerifyOption_G1UseNextMarking);
1165
    }
1166 1167 1168 1169 1170 1171
    assert(!restart_for_overflow(), "sanity");
  }

  // Reset the marking state if marking completed
  if (!restart_for_overflow()) {
    set_non_marking_state();
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
  }

#if VERIFY_OBJS_PROCESSED
  _scan_obj_cl.objs_processed = 0;
  ThreadLocalObjQueue::objs_enqueued = 0;
#endif

  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
}

1188 1189
// Used to calculate the # live objects per region
// for verification purposes
1190 1191 1192 1193
class CalcLiveObjectsClosure: public HeapRegionClosure {

  CMBitMapRO* _bm;
  ConcurrentMark* _cm;
1194 1195 1196 1197 1198
  BitMap* _region_bm;
  BitMap* _card_bm;

  // Debugging
  size_t _tot_words_done;
1199 1200 1201
  size_t _tot_live;
  size_t _tot_used;

1202 1203
  size_t _region_marked_bytes;

1204 1205 1206
  intptr_t _bottom_card_num;

  void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
1207 1208 1209 1210 1211 1212
    assert(start_card_num <= last_card_num, "sanity");
    BitMap::idx_t start_idx = start_card_num - _bottom_card_num;
    BitMap::idx_t last_idx = last_card_num - _bottom_card_num;

    for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
      _card_bm->par_at_put(i, 1);
1213 1214 1215 1216
    }
  }

public:
1217
  CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
1218
                         BitMap* region_bm, BitMap* card_bm) :
1219 1220 1221 1222
    _bm(bm), _cm(cm), _region_bm(region_bm), _card_bm(card_bm),
    _region_marked_bytes(0), _tot_words_done(0),
    _tot_live(0), _tot_used(0),
    _bottom_card_num(cm->heap_bottom_card_num()) { }
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
  // It takes a region that's not empty (i.e., it has at least one
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

    size_t index = hr->hrs_index();
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
      _region_bm->par_at_put((BitMap::idx_t) index, true);
    } else {
      // Starts humongous case: calculate how many regions are part of
1238
      // this humongous region and then set the bit range.
1239
      G1CollectedHeap* g1h = G1CollectedHeap::heap();
1240 1241
      HeapRegion *last_hr = g1h->heap_region_containing_raw(hr->end() - 1);
      size_t end_index = last_hr->hrs_index() + 1;
1242 1243 1244 1245 1246
      _region_bm->par_at_put_range((BitMap::idx_t) index,
                                   (BitMap::idx_t) end_index, true);
    }
  }

1247 1248
  bool doHeapRegion(HeapRegion* hr) {

I
iveresov 已提交
1249
    if (hr->continuesHumongous()) {
1250 1251 1252 1253 1254 1255 1256
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1257 1258
      return false;
    }
1259 1260

    HeapWord* nextTop = hr->next_top_at_mark_start();
1261 1262 1263 1264 1265 1266 1267 1268
    HeapWord* start   = hr->bottom();

    assert(start <= hr->end() && start <= nextTop && nextTop <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", nextTop: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, nextTop, hr->end()));

    // Record the number of word's we'll examine.
1269
    size_t words_done = (nextTop - start);
1270

1271 1272
    // Find the first marked object at or after "start".
    start = _bm->getNextMarkedWordAddress(start, nextTop);
1273

1274 1275 1276 1277 1278 1279
    size_t marked_bytes = 0;

    // Below, the term "card num" means the result of shifting an address
    // by the card shift -- address 0 corresponds to card number 0.  One
    // must subtract the card num of the bottom of the heap to obtain a
    // card table index.
1280

1281 1282 1283
    // The first card num of the sequence of live cards currently being
    // constructed.  -1 ==> no sequence.
    intptr_t start_card_num = -1;
1284

1285 1286 1287 1288 1289 1290 1291
    // The last card num of the sequence of live cards currently being
    // constructed.  -1 ==> no sequence.
    intptr_t last_card_num = -1;

    while (start < nextTop) {
      oop obj = oop(start);
      int obj_sz = obj->size();
1292

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
      // The card num of the start of the current object.
      intptr_t obj_card_num =
        intptr_t(uintptr_t(start) >> CardTableModRefBS::card_shift);
      HeapWord* obj_last = start + obj_sz - 1;
      intptr_t obj_last_card_num =
        intptr_t(uintptr_t(obj_last) >> CardTableModRefBS::card_shift);

      if (obj_card_num != last_card_num) {
        if (start_card_num == -1) {
          assert(last_card_num == -1, "Both or neither.");
          start_card_num = obj_card_num;
        } else {
          assert(last_card_num != -1, "Both or neither.");
          assert(obj_card_num >= last_card_num, "Inv");
          if ((obj_card_num - last_card_num) > 1) {
            // Mark the last run, and start a new one.
            mark_card_num_range(start_card_num, last_card_num);
            start_card_num = obj_card_num;
          }
        }
      }
      // In any case, we set the last card num.
      last_card_num = obj_last_card_num;

1317
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1318

1319 1320 1321
      // Find the next marked object after this one.
      start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
    }
1322

1323
    // Handle the last range, if any.
1324
    if (start_card_num != -1) {
1325
      mark_card_num_range(start_card_num, last_card_num);
1326
    }
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

    // Mark the allocated-since-marking portion...
    HeapWord* top = hr->top();
    if (nextTop < top) {
      start_card_num = intptr_t(uintptr_t(nextTop) >> CardTableModRefBS::card_shift);
      last_card_num = intptr_t(uintptr_t(top) >> CardTableModRefBS::card_shift);

      mark_card_num_range(start_card_num, last_card_num);

      // This definitely means the region has live objects.
      set_bit_for_region(hr);
1338 1339 1340 1341
    }

    // Update the live region bitmap.
    if (marked_bytes > 0) {
1342
      set_bit_for_region(hr);
1343
    }
1344 1345 1346 1347 1348

    // Set the marked bytes for the current region so that
    // it can be queried by a calling verificiation routine
    _region_marked_bytes = marked_bytes;

1349 1350
    _tot_live += hr->next_live_bytes();
    _tot_used += hr->used();
1351
    _tot_words_done = words_done;
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
    return false;
  }

  size_t region_marked_bytes() const { return _region_marked_bytes; }

  // Debugging
  size_t tot_words_done() const      { return _tot_words_done; }
  size_t tot_live() const            { return _tot_live; }
  size_t tot_used() const            { return _tot_used; }
};

// Heap region closure used for verifying the counting data
// that was accumulated concurrently and aggregated during
// the remark pause. This closure is applied to the heap
// regions during the STW cleanup pause.

class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
  ConcurrentMark* _cm;
  CalcLiveObjectsClosure _calc_cl;
  BitMap* _region_bm;   // Region BM to be verified
  BitMap* _card_bm;     // Card BM to be verified
  bool _verbose;        // verbose output?

  BitMap* _exp_region_bm; // Expected Region BM values
  BitMap* _exp_card_bm;   // Expected card BM values

  int _failures;

public:
  VerifyLiveObjectDataHRClosure(ConcurrentMark* cm,
                                BitMap* region_bm,
                                BitMap* card_bm,
                                BitMap* exp_region_bm,
                                BitMap* exp_card_bm,
                                bool verbose) :
    _cm(cm),
    _calc_cl(_cm->nextMarkBitMap(), _cm, exp_region_bm, exp_card_bm),
    _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
    _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
    _failures(0) { }

  int failures() const { return _failures; }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    int failures = 0;

    // Call the CalcLiveObjectsClosure to walk the marking bitmap for
    // this region and set the corresponding bits in the expected region
    // and card bitmaps.
    bool res = _calc_cl.doHeapRegion(hr);
    assert(res == false, "should be continuing");

    MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
                    Mutex::_no_safepoint_check_flag);

    // Verify that _top_at_conc_count == ntams
    if (hr->top_at_conc_mark_count() != hr->next_top_at_mark_start()) {
      if (_verbose) {
        gclog_or_tty->print_cr("Region " SIZE_FORMAT ": top at conc count incorrect: "
                               "expected " PTR_FORMAT ", actual: " PTR_FORMAT,
                               hr->hrs_index(), hr->next_top_at_mark_start(),
                               hr->top_at_conc_mark_count());
      }
      failures += 1;
    }

    // Verify the marked bytes for this region.
    size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
    size_t act_marked_bytes = hr->next_marked_bytes();

    // We're not OK if expected marked bytes > actual marked bytes. It means
    // we have missed accounting some objects during the actual marking.
    if (exp_marked_bytes > act_marked_bytes) {
      if (_verbose) {
        gclog_or_tty->print_cr("Region " SIZE_FORMAT ": marked bytes mismatch: "
                               "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
                               hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
      }
      failures += 1;
    }

    // Verify the bit, for this region, in the actual and expected
    // (which was just calculated) region bit maps.
    // We're not OK if the bit in the calculated expected region
    // bitmap is set and the bit in the actual region bitmap is not.
    BitMap::idx_t index = (BitMap::idx_t)hr->hrs_index();

    bool expected = _exp_region_bm->at(index);
    bool actual = _region_bm->at(index);
    if (expected && !actual) {
      if (_verbose) {
        gclog_or_tty->print_cr("Region " SIZE_FORMAT ": region bitmap mismatch: "
                               "expected: %d, actual: %d",
                               hr->hrs_index(), expected, actual);
      }
      failures += 1;
    }

    // Verify that the card bit maps for the cards spanned by the current
    // region match. We have an error if we have a set bit in the expected
    // bit map and the corresponding bit in the actual bitmap is not set.

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());

    for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
      expected = _exp_card_bm->at(i);
      actual = _card_bm->at(i);

      if (expected && !actual) {
        if (_verbose) {
          gclog_or_tty->print_cr("Region " SIZE_FORMAT ": card bitmap mismatch at " SIZE_FORMAT ": "
                                 "expected: %d, actual: %d",
                                 hr->hrs_index(), i, expected, actual);
1478
        }
1479
        failures += 1;
1480 1481 1482
      }
    }

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    if (failures > 0 && _verbose)  {
      gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
                             "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
                             HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
                             _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
    }

    _failures += failures;

    // We could stop iteration over the heap when we
    // find the first voilating region by returning true.
1494 1495
    return false;
  }
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
};


class G1ParVerifyFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

  uint    _n_workers;

  BitMap* _expected_region_bm;
  BitMap* _expected_card_bm;

  int  _failures;
  bool _verbose;

public:
  G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
                            BitMap* region_bm, BitMap* card_bm,
                            BitMap* expected_region_bm, BitMap* expected_card_bm)
    : AbstractGangTask("G1 verify final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
      _failures(0), _verbose(false),
      _n_workers(0) {
    assert(VerifyDuringGC, "don't call this otherwise");

    // Use the value already set as the number of active threads
    // in the call to run_task().
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
    } else {
      _n_workers = 1;
    }

    assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
    assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");

    _verbose = _cm->verbose_medium();
  }

  void work(uint worker_id) {
    assert(worker_id < _n_workers, "invariant");

    VerifyLiveObjectDataHRClosure verify_cl(_cm,
                                            _actual_region_bm, _actual_card_bm,
                                            _expected_region_bm,
                                            _expected_card_bm,
                                            _verbose);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&verify_cl,
                                            worker_id,
                                            _n_workers,
                                            HeapRegion::VerifyCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&verify_cl);
    }

    Atomic::add(verify_cl.failures(), &_failures);
  }
1562

1563
  int failures() const { return _failures; }
1564 1565
};

1566 1567 1568 1569 1570 1571
// Final update of count data (during cleanup).
// Adds [top_at_count, NTAMS) to the marked bytes for each
// region. Sets the bits in the card bitmap corresponding
// to the interval [top_at_count, top], and sets the
// liveness bit for each region containing live data
// in the region bitmap.
1572

1573 1574 1575 1576
class FinalCountDataUpdateClosure: public HeapRegionClosure {
  ConcurrentMark* _cm;
  BitMap* _region_bm;
  BitMap* _card_bm;
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
  size_t _total_live_bytes;
  size_t _total_used_bytes;
  size_t _total_words_done;

  void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
    assert(start_idx <= last_idx, "sanity");

    // Set the inclusive bit range [start_idx, last_idx].
    // For small ranges (up to 8 cards) use a simple loop; otherwise
    // use par_at_put_range.
    if ((last_idx - start_idx) <= 8) {
      for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
        _card_bm->par_set_bit(i);
      }
    } else {
      assert(last_idx < _card_bm->size(), "sanity");
      // Note BitMap::par_at_put_range() is exclusive.
      _card_bm->par_at_put_range(start_idx, last_idx+1, true);
    }
  }

  // It takes a region that's not empty (i.e., it has at least one
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

    size_t index = hr->hrs_index();
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
      _region_bm->par_set_bit((BitMap::idx_t) index);
    } else {
      // Starts humongous case: calculate how many regions are part of
      // this humongous region and then set the bit range.
      G1CollectedHeap* g1h = G1CollectedHeap::heap();
      HeapRegion *last_hr = g1h->heap_region_containing_raw(hr->end() - 1);
      size_t end_index = last_hr->hrs_index() + 1;
      _region_bm->par_at_put_range((BitMap::idx_t) index,
                                   (BitMap::idx_t) end_index, true);
    }
  }

 public:
  FinalCountDataUpdateClosure(ConcurrentMark* cm,
                              BitMap* region_bm,
                              BitMap* card_bm) :
    _cm(cm), _region_bm(region_bm), _card_bm(card_bm),
    _total_words_done(0), _total_live_bytes(0), _total_used_bytes(0) { }

  bool doHeapRegion(HeapRegion* hr) {

    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->top_at_conc_mark_count();
    HeapWord* ntams = hr->next_top_at_mark_start();
    HeapWord* top   = hr->top();

    assert(hr->bottom() <= start && start <= hr->end() &&
           hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");

    size_t words_done = ntams - hr->bottom();

    if (start < ntams) {
      // Region was changed between remark and cleanup pauses
      // We need to add (ntams - start) to the marked bytes
      // for this region, and set bits for the range
      // [ card_idx(start), card_idx(ntams) ) in the card bitmap.
      size_t live_bytes = (ntams - start) * HeapWordSize;
      hr->add_to_marked_bytes(live_bytes);

      // Record the new top at conc count
      hr->set_top_at_conc_mark_count(ntams);

      // The setting of the bits in the card bitmap takes place below
    }

    // Mark the allocated-since-marking portion...
    if (ntams < top) {
      // This definitely means the region has live objects.
      set_bit_for_region(hr);
    }

    // Now set the bits for [start, top]
    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top);
    set_card_bitmap_range(start_idx, last_idx);

    // Set the bit for the region if it contains live data
    if (hr->next_marked_bytes() > 0) {
      set_bit_for_region(hr);
    }

    _total_words_done += words_done;
    _total_used_bytes += hr->used();
    _total_live_bytes += hr->next_marked_bytes();

    return false;
  }

  size_t total_words_done() const { return _total_words_done; }
  size_t total_live_bytes() const { return _total_live_bytes; }
  size_t total_used_bytes() const { return _total_used_bytes; }
};
1692 1693 1694 1695

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
1696 1697 1698 1699
  ConcurrentMark* _cm;
  BitMap* _actual_region_bm;
  BitMap* _actual_card_bm;

1700
  uint    _n_workers;
1701

1702 1703
  size_t *_live_bytes;
  size_t *_used_bytes;
1704

1705
public:
1706 1707 1708 1709 1710
  G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
    : AbstractGangTask("G1 final counting"),
      _g1h(g1h), _cm(_g1h->concurrent_mark()),
      _actual_region_bm(region_bm), _actual_card_bm(card_bm),
      _n_workers(0) {
1711 1712 1713 1714 1715 1716 1717
    // Use the value already set as the number of active threads
    // in the call to run_task().  Needed for the allocation of
    // _live_bytes and _used_bytes.
    if (G1CollectedHeap::use_parallel_gc_threads()) {
      assert( _g1h->workers()->active_workers() > 0,
        "Should have been previously set");
      _n_workers = _g1h->workers()->active_workers();
1718
    } else {
1719
      _n_workers = 1;
1720
    }
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730
    _live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
    _used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  }

  ~G1ParFinalCountTask() {
    FREE_C_HEAP_ARRAY(size_t, _live_bytes);
    FREE_C_HEAP_ARRAY(size_t, _used_bytes);
  }

1731
  void work(uint worker_id) {
1732 1733 1734 1735 1736 1737
    assert(worker_id < _n_workers, "invariant");

    FinalCountDataUpdateClosure final_update_cl(_cm,
                                                _actual_region_bm,
                                                _actual_card_bm);

1738
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1739 1740 1741
      _g1h->heap_region_par_iterate_chunked(&final_update_cl,
                                            worker_id,
                                            _n_workers,
1742
                                            HeapRegion::FinalCountClaimValue);
1743
    } else {
1744
      _g1h->heap_region_iterate(&final_update_cl);
1745 1746
    }

1747 1748
    _live_bytes[worker_id] = final_update_cl.total_live_bytes();
    _used_bytes[worker_id] = final_update_cl.total_used_bytes();
1749
  }
1750

1751 1752
  size_t live_bytes()  {
    size_t live_bytes = 0;
1753
    for (uint i = 0; i < _n_workers; ++i)
1754 1755 1756
      live_bytes += _live_bytes[i];
    return live_bytes;
  }
1757

1758 1759
  size_t used_bytes()  {
    size_t used_bytes = 0;
1760
    for (uint i = 0; i < _n_workers; ++i)
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
      used_bytes += _used_bytes[i];
    return used_bytes;
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
  size_t _regions_claimed;
  size_t _freed_bytes;
T
tonyp 已提交
1774
  FreeRegionList* _local_cleanup_list;
T
tonyp 已提交
1775
  OldRegionSet* _old_proxy_set;
T
tonyp 已提交
1776 1777
  HumongousRegionSet* _humongous_proxy_set;
  HRRSCleanupTask* _hrrs_cleanup_task;
1778 1779 1780 1781 1782
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
T
tonyp 已提交
1783 1784
                             int worker_num,
                             FreeRegionList* local_cleanup_list,
T
tonyp 已提交
1785
                             OldRegionSet* old_proxy_set,
T
tonyp 已提交
1786
                             HumongousRegionSet* humongous_proxy_set,
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
                             HRRSCleanupTask* hrrs_cleanup_task) :
    _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _local_cleanup_list(local_cleanup_list),
    _old_proxy_set(old_proxy_set),
    _humongous_proxy_set(humongous_proxy_set),
    _hrrs_cleanup_task(hrrs_cleanup_task) { }

1797 1798
  size_t freed_bytes() { return _freed_bytes; }

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
  bool doHeapRegion(HeapRegion *hr) {
    // We use a claim value of zero here because all regions
    // were claimed with value 1 in the FinalCount task.
    hr->reset_gc_time_stamp();
    if (!hr->continuesHumongous()) {
      double start = os::elapsedTime();
      _regions_claimed++;
      hr->note_end_of_marking();
      _max_live_bytes += hr->max_live_bytes();
      _g1->free_region_if_empty(hr,
                                &_freed_bytes,
                                _local_cleanup_list,
                                _old_proxy_set,
                                _humongous_proxy_set,
                                _hrrs_cleanup_task,
                                true /* par */);
      double region_time = (os::elapsedTime() - start);
      _claimed_region_time += region_time;
      if (region_time > _max_region_time) {
        _max_region_time = region_time;
      }
    }
    return false;
  }
1823 1824 1825 1826 1827 1828 1829 1830 1831

  size_t max_live_bytes() { return _max_live_bytes; }
  size_t regions_claimed() { return _regions_claimed; }
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
1832

1833 1834 1835 1836
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
1837 1838
  FreeRegionList* _cleanup_list;

1839 1840
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
1841
                   FreeRegionList* cleanup_list) :
1842
    AbstractGangTask("G1 note end"), _g1h(g1h),
1843
    _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1844

1845
  void work(uint worker_id) {
1846
    double start = os::elapsedTime();
T
tonyp 已提交
1847
    FreeRegionList local_cleanup_list("Local Cleanup List");
T
tonyp 已提交
1848
    OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
T
tonyp 已提交
1849 1850
    HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
    HRRSCleanupTask hrrs_cleanup_task;
1851
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
T
tonyp 已提交
1852
                                           &old_proxy_set,
T
tonyp 已提交
1853 1854
                                           &humongous_proxy_set,
                                           &hrrs_cleanup_task);
1855
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1856
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1857
                                            _g1h->workers()->active_workers(),
1858
                                            HeapRegion::NoteEndClaimValue);
1859 1860 1861 1862 1863
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

1864 1865 1866
    // Now update the lists
    _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
                                            NULL /* free_list */,
T
tonyp 已提交
1867
                                            &old_proxy_set,
T
tonyp 已提交
1868
                                            &humongous_proxy_set,
1869
                                            true /* par */);
1870 1871 1872 1873
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
1874

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
      // If we iterate over the global cleanup list at the end of
      // cleanup to do this printing we will not guarantee to only
      // generate output for the newly-reclaimed regions (the list
      // might not be empty at the beginning of cleanup; we might
      // still be working on its previous contents). So we do the
      // printing here, before we append the new regions to the global
      // cleanup list.

      G1HRPrinter* hr_printer = _g1h->hr_printer();
      if (hr_printer->is_active()) {
        HeapRegionLinkedListIterator iter(&local_cleanup_list);
        while (iter.more_available()) {
          HeapRegion* hr = iter.get_next();
          hr_printer->cleanup(hr);
        }
      }

T
tonyp 已提交
1892 1893 1894 1895
      _cleanup_list->add_as_tail(&local_cleanup_list);
      assert(local_cleanup_list.is_empty(), "post-condition");

      HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1896 1897 1898 1899
    }
    double end = os::elapsedTime();
    if (G1PrintParCleanupStats) {
      gclog_or_tty->print("     Worker thread %d [%8.3f..%8.3f = %8.3f ms] "
1900 1901
                          "claimed %u regions (tot = %8.3f ms, max = %8.3f ms).\n",
                          worker_id, start, end, (end-start)*1000.0,
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
                          g1_note_end.regions_claimed(),
                          g1_note_end.claimed_region_time_sec()*1000.0,
                          g1_note_end.max_region_time_sec()*1000.0);
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1920
    _region_bm(region_bm), _card_bm(card_bm) { }
1921

1922
  void work(uint worker_id) {
1923
    if (G1CollectedHeap::use_parallel_gc_threads()) {
1924
      _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1925
                       HeapRegion::ScrubRemSetClaimValue);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

T
tonyp 已提交
1945
  HRSPhaseSetter x(HRSPhaseCleanup);
1946 1947
  g1h->verify_region_sets_optional();

1948 1949 1950 1951
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
1952 1953 1954
    Universe::verify(/* allow dirty */ true,
                     /* silent      */ false,
                     /* option      */ VerifyOption_G1UsePrevMarking);
1955 1956
  }

1957 1958 1959 1960 1961
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

T
tonyp 已提交
1962 1963
  HeapRegionRemSet::reset_for_cleanup_tasks();

1964
  uint n_workers;
1965

1966
  // Do counting once more with the world stopped for good measure.
1967 1968
  G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);

1969
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1970
   assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1971 1972
           "sanity check");

1973 1974
    g1h->set_par_threads();
    n_workers = g1h->n_par_threads();
1975
    assert(g1h->n_par_threads() == n_workers,
1976
           "Should not have been reset");
1977
    g1h->workers()->run_task(&g1_par_count_task);
1978
    // Done with the parallel phase so reset to 0.
1979
    g1h->set_par_threads(0);
1980

1981
    assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
1982
           "sanity check");
1983
  } else {
1984
    n_workers = 1;
1985 1986 1987
    g1_par_count_task.work(0);
  }

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
  if (VerifyDuringGC) {
    // Verify that the counting data accumulated during marking matches
    // that calculated by walking the marking bitmap.

    // Bitmaps to hold expected values
    BitMap expected_region_bm(_region_bm.size(), false);
    BitMap expected_card_bm(_card_bm.size(), false);

    G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
                                                 &_region_bm,
                                                 &_card_bm,
                                                 &expected_region_bm,
                                                 &expected_card_bm);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      g1h->set_par_threads((int)n_workers);
      g1h->workers()->run_task(&g1_par_verify_task);
      // Done with the parallel phase so reset to 0.
      g1h->set_par_threads(0);

      assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
             "sanity check");
    } else {
      g1_par_verify_task.work(0);
    }

    guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
  }

2017 2018 2019 2020 2021 2022 2023
  size_t known_garbage_bytes =
    g1_par_count_task.used_bytes() - g1_par_count_task.live_bytes();
  g1p->set_known_garbage_bytes(known_garbage_bytes);

  size_t start_used_bytes = g1h->used();
  g1h->set_marking_complete();

2024 2025 2026 2027 2028 2029 2030 2031 2032
  ergo_verbose4(ErgoConcCycles,
           "finish cleanup",
           ergo_format_byte("occupancy")
           ergo_format_byte("capacity")
           ergo_format_byte_perc("known garbage"),
           start_used_bytes, g1h->capacity(),
           known_garbage_bytes,
           ((double) known_garbage_bytes / (double) g1h->capacity()) * 100.0);

2033 2034 2035 2036 2037 2038 2039 2040 2041
  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("Cleanup:");
    gclog_or_tty->print_cr("  Finalize counting: %8.3f ms",
                           this_final_counting_time*1000.0);
  }
  _total_counting_time += this_final_counting_time;

2042 2043 2044 2045 2046
  if (G1PrintRegionLivenessInfo) {
    G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
    _g1h->heap_region_iterate(&cl);
  }

2047 2048 2049 2050 2051 2052 2053
  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
  double note_end_start = os::elapsedTime();
2054
  G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2055
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2056
    g1h->set_par_threads((int)n_workers);
2057 2058
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
2059 2060 2061

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
2062 2063 2064
  } else {
    g1_par_note_end_task.work(0);
  }
2065 2066 2067 2068 2069 2070 2071

  if (!cleanup_list_is_empty()) {
    // The cleanup list is not empty, so we'll have to process it
    // concurrently. Notify anyone else that might be wanting free
    // regions that there will be more free regions coming soon.
    g1h->set_free_regions_coming();
  }
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
  double note_end_end = os::elapsedTime();
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("  note end of marking: %8.3f ms.",
                           (note_end_end - note_end_start)*1000.0);
  }

  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2083
    if (G1CollectedHeap::use_parallel_gc_threads()) {
2084
      g1h->set_par_threads((int)n_workers);
2085 2086
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
2087 2088 2089 2090

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
2102
  g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

  if (PrintGC || PrintGCDetails) {
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

  size_t cleaned_up_bytes = start_used_bytes - g1h->used();
  g1p->decrease_known_garbage_bytes(cleaned_up_bytes);

2118 2119 2120 2121
  // Clean up will have freed any regions completely full of garbage.
  // Update the soft reference policy with the new heap occupancy.
  Universe::update_heap_info_at_gc();

2122 2123 2124 2125
  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

2126 2127 2128 2129
  // We reclaimed old regions so we should calculate the sizes to make
  // sure we update the old gen/space data.
  g1h->g1mm()->update_sizes();

J
johnc 已提交
2130
  if (VerifyDuringGC) {
2131 2132 2133
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(after)");
    Universe::heap()->prepare_for_verify();
2134 2135 2136
    Universe::verify(/* allow dirty */ true,
                     /* silent      */ false,
                     /* option      */ VerifyOption_G1UsePrevMarking);
2137
  }
2138 2139

  g1h->verify_region_sets_optional();
2140 2141 2142 2143 2144
}

void ConcurrentMark::completeCleanup() {
  if (has_aborted()) return;

2145 2146 2147
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  _cleanup_list.verify_optional();
T
tonyp 已提交
2148
  FreeRegionList tmp_free_list("Tmp Free List");
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

  if (G1ConcRegionFreeingVerbose) {
    gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
                           "cleanup list has "SIZE_FORMAT" entries",
                           _cleanup_list.length());
  }

  // Noone else should be accessing the _cleanup_list at this point,
  // so it's not necessary to take any locks
  while (!_cleanup_list.is_empty()) {
    HeapRegion* hr = _cleanup_list.remove_head();
    assert(hr != NULL, "the list was not empty");
2161
    hr->par_clear();
T
tonyp 已提交
2162
    tmp_free_list.add_as_tail(hr);
2163 2164 2165 2166 2167 2168 2169

    // Instead of adding one region at a time to the secondary_free_list,
    // we accumulate them in the local list and move them a few at a
    // time. This also cuts down on the number of notify_all() calls
    // we do during this process. We'll also append the local list when
    // _cleanup_list is empty (which means we just removed the last
    // region from the _cleanup_list).
T
tonyp 已提交
2170
    if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2171 2172 2173 2174 2175 2176
        _cleanup_list.is_empty()) {
      if (G1ConcRegionFreeingVerbose) {
        gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
                               "appending "SIZE_FORMAT" entries to the "
                               "secondary_free_list, clean list still has "
                               SIZE_FORMAT" entries",
T
tonyp 已提交
2177
                               tmp_free_list.length(),
2178 2179 2180 2181 2182
                               _cleanup_list.length());
      }

      {
        MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
T
tonyp 已提交
2183
        g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2184 2185 2186 2187 2188 2189 2190
        SecondaryFreeList_lock->notify_all();
      }

      if (G1StressConcRegionFreeing) {
        for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
          os::sleep(Thread::current(), (jlong) 1, false);
        }
2191 2192 2193
      }
    }
  }
T
tonyp 已提交
2194
  assert(tmp_free_list.is_empty(), "post-condition");
2195 2196
}

2197 2198
// Support closures for reference procssing in G1

2199 2200 2201 2202 2203
bool G1CMIsAliveClosure::do_object_b(oop obj) {
  HeapWord* addr = (HeapWord*)obj;
  return addr != NULL &&
         (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
}
2204 2205 2206 2207 2208

class G1CMKeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
  ConcurrentMark*  _cm;
 public:
2209 2210 2211 2212
  G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm) :
    _g1(g1), _cm(cm) {
    assert(Thread::current()->is_VM_thread(), "otherwise fix worker id");
  }
2213

2214 2215
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
2216

2217
  template <class T> void do_oop_work(T* p) {
2218 2219 2220
    oop obj = oopDesc::load_decode_heap_oop(p);
    HeapWord* addr = (HeapWord*)obj;

2221
    if (_cm->verbose_high()) {
2222
      gclog_or_tty->print_cr("\t[0] we're looking at location "
2223 2224 2225
                             "*"PTR_FORMAT" = "PTR_FORMAT,
                             p, (void*) obj);
    }
2226 2227

    if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(obj)) {
2228
      _cm->mark_and_count(obj);
2229
      _cm->mark_stack_push(obj);
2230 2231 2232 2233 2234
    }
  }
};

class G1CMDrainMarkingStackClosure: public VoidClosure {
2235
  ConcurrentMark*               _cm;
2236 2237 2238
  CMMarkStack*                  _markStack;
  G1CMKeepAliveClosure*         _oopClosure;
 public:
2239
  G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMMarkStack* markStack,
2240
                               G1CMKeepAliveClosure* oopClosure) :
2241
    _cm(cm),
2242
    _markStack(markStack),
2243
    _oopClosure(oopClosure) { }
2244 2245

  void do_void() {
2246
    _markStack->drain((OopClosure*)_oopClosure, _cm->nextMarkBitMap(), false);
2247 2248 2249
  }
};

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
// 'Keep Alive' closure used by parallel reference processing.
// An instance of this closure is used in the parallel reference processing
// code rather than an instance of G1CMKeepAliveClosure. We could have used
// the G1CMKeepAliveClosure as it is MT-safe. Also reference objects are
// placed on to discovered ref lists once so we can mark and push with no
// need to check whether the object has already been marked. Using the
// G1CMKeepAliveClosure would mean, however, having all the worker threads
// operating on the global mark stack. This means that an individual
// worker would be doing lock-free pushes while it processes its own
// discovered ref list followed by drain call. If the discovered ref lists
// are unbalanced then this could cause interference with the other
// workers. Using a CMTask (and its embedded local data structures)
// avoids that potential interference.
class G1CMParKeepAliveAndDrainClosure: public OopClosure {
  ConcurrentMark*  _cm;
  CMTask*          _task;
  int              _ref_counter_limit;
  int              _ref_counter;
 public:
2269 2270 2271
  G1CMParKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task) :
    _cm(cm), _task(task),
    _ref_counter_limit(G1RefProcDrainInterval) {
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
    assert(_ref_counter_limit > 0, "sanity");
    _ref_counter = _ref_counter_limit;
  }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  template <class T> void do_oop_work(T* p) {
    if (!_cm->has_overflown()) {
      oop obj = oopDesc::load_decode_heap_oop(p);
2282
      if (_cm->verbose_high()) {
2283 2284 2285
        gclog_or_tty->print_cr("\t[%d] we're looking at location "
                               "*"PTR_FORMAT" = "PTR_FORMAT,
                               _task->task_id(), p, (void*) obj);
2286
      }
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

      _task->deal_with_reference(obj);
      _ref_counter--;

      if (_ref_counter == 0) {
        // We have dealt with _ref_counter_limit references, pushing them and objects
        // reachable from them on to the local stack (and possibly the global stack).
        // Call do_marking_step() to process these entries. We call the routine in a
        // loop, which we'll exit if there's nothing more to do (i.e. we're done
        // with the entries that we've pushed as a result of the deal_with_reference
        // calls above) or we overflow.
        // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
        // while there may still be some work to do. (See the comment at the
        // beginning of CMTask::do_marking_step() for those conditions - one of which
        // is reaching the specified time target.) It is only when
        // CMTask::do_marking_step() returns without setting the has_aborted() flag
        // that the marking has completed.
        do {
          double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
          _task->do_marking_step(mark_step_duration_ms,
                                 false /* do_stealing    */,
                                 false /* do_termination */);
        } while (_task->has_aborted() && !_cm->has_overflown());
        _ref_counter = _ref_counter_limit;
      }
    } else {
2313
      if (_cm->verbose_high()) {
2314
         gclog_or_tty->print_cr("\t[%d] CM Overflow", _task->task_id());
2315
      }
2316 2317 2318 2319 2320 2321 2322 2323 2324
    }
  }
};

class G1CMParDrainMarkingStackClosure: public VoidClosure {
  ConcurrentMark* _cm;
  CMTask* _task;
 public:
  G1CMParDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task) :
2325
    _cm(cm), _task(task) { }
2326 2327 2328

  void do_void() {
    do {
2329 2330 2331 2332
      if (_cm->verbose_high()) {
        gclog_or_tty->print_cr("\t[%d] Drain: Calling do marking_step",
                               _task->task_id());
      }
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353

      // We call CMTask::do_marking_step() to completely drain the local and
      // global marking stacks. The routine is called in a loop, which we'll
      // exit if there's nothing more to do (i.e. we'completely drained the
      // entries that were pushed as a result of applying the
      // G1CMParKeepAliveAndDrainClosure to the entries on the discovered ref
      // lists above) or we overflow the global marking stack.
      // Note: CMTask::do_marking_step() can set the CMTask::has_aborted() flag
      // while there may still be some work to do. (See the comment at the
      // beginning of CMTask::do_marking_step() for those conditions - one of which
      // is reaching the specified time target.) It is only when
      // CMTask::do_marking_step() returns without setting the has_aborted() flag
      // that the marking has completed.

      _task->do_marking_step(1000000000.0 /* something very large */,
                             true /* do_stealing    */,
                             true /* do_termination */);
    } while (_task->has_aborted() && !_cm->has_overflown());
  }
};

2354 2355 2356 2357
// Implementation of AbstractRefProcTaskExecutor for parallel
// reference processing at the end of G1 concurrent marking

class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2358 2359 2360 2361 2362 2363 2364
private:
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;
  WorkGang*        _workers;
  int              _active_workers;

public:
2365
  G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2366 2367 2368
                        ConcurrentMark* cm,
                        WorkGang* workers,
                        int n_workers) :
2369 2370
    _g1h(g1h), _cm(cm),
    _workers(workers), _active_workers(n_workers) { }
2371 2372 2373 2374 2375 2376

  // Executes the given task using concurrent marking worker threads.
  virtual void execute(ProcessTask& task);
  virtual void execute(EnqueueTask& task);
};

2377
class G1CMRefProcTaskProxy: public AbstractGangTask {
2378 2379 2380 2381 2382 2383
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  ProcessTask&     _proc_task;
  G1CollectedHeap* _g1h;
  ConcurrentMark*  _cm;

public:
2384
  G1CMRefProcTaskProxy(ProcessTask& proc_task,
2385
                     G1CollectedHeap* g1h,
2386
                     ConcurrentMark* cm) :
2387
    AbstractGangTask("Process reference objects in parallel"),
2388
    _proc_task(proc_task), _g1h(g1h), _cm(cm) { }
2389

2390 2391
  virtual void work(uint worker_id) {
    CMTask* marking_task = _cm->task(worker_id);
2392
    G1CMIsAliveClosure g1_is_alive(_g1h);
2393
    G1CMParKeepAliveAndDrainClosure g1_par_keep_alive(_cm, marking_task);
2394 2395
    G1CMParDrainMarkingStackClosure g1_par_drain(_cm, marking_task);

2396
    _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2397 2398 2399
  }
};

2400
void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2401 2402
  assert(_workers != NULL, "Need parallel worker threads.");

2403
  G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2404 2405 2406 2407 2408 2409 2410 2411 2412

  // We need to reset the phase for each task execution so that
  // the termination protocol of CMTask::do_marking_step works.
  _cm->set_phase(_active_workers, false /* concurrent */);
  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&proc_task_proxy);
  _g1h->set_par_threads(0);
}

2413
class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2414 2415 2416 2417
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _enq_task;

public:
2418
  G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2419
    AbstractGangTask("Enqueue reference objects in parallel"),
2420
    _enq_task(enq_task) { }
2421

2422 2423
  virtual void work(uint worker_id) {
    _enq_task.work(worker_id);
2424 2425 2426
  }
};

2427
void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2428 2429
  assert(_workers != NULL, "Need parallel worker threads.");

2430
  G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2431 2432 2433 2434 2435 2436

  _g1h->set_par_threads(_active_workers);
  _workers->run_task(&enq_task_proxy);
  _g1h->set_par_threads(0);
}

2437 2438 2439 2440
void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  ResourceMark rm;
  HandleMark   hm;

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // Is alive closure.
  G1CMIsAliveClosure g1_is_alive(g1h);

  // Inner scope to exclude the cleaning of the string and symbol
  // tables from the displayed time.
  {
    bool verbose = PrintGC && PrintGCDetails;
    if (verbose) {
      gclog_or_tty->put(' ');
    }
    TraceTime t("GC ref-proc", verbose, false, gclog_or_tty);
2454

2455
    ReferenceProcessor* rp = g1h->ref_processor_cm();
2456

2457 2458
    // See the comment in G1CollectedHeap::ref_processing_init()
    // about how reference processing currently works in G1.
2459

2460 2461 2462
    // Process weak references.
    rp->setup_policy(clear_all_soft_refs);
    assert(_markStack.isEmpty(), "mark stack should be empty");
2463

2464
    G1CMKeepAliveClosure g1_keep_alive(g1h, this);
2465
    G1CMDrainMarkingStackClosure
2466
      g1_drain_mark_stack(this, &_markStack, &g1_keep_alive);
2467

2468 2469
    // We use the work gang from the G1CollectedHeap and we utilize all
    // the worker threads.
2470 2471
    uint active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1U;
    active_workers = MAX2(MIN2(active_workers, _max_task_num), 1U);
2472

2473
    G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2474
                                              g1h->workers(), active_workers);
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

    if (rp->processing_is_mt()) {
      // Set the degree of MT here.  If the discovery is done MT, there
      // may have been a different number of threads doing the discovery
      // and a different number of discovered lists may have Ref objects.
      // That is OK as long as the Reference lists are balanced (see
      // balance_all_queues() and balance_queues()).
      rp->set_active_mt_degree(active_workers);

      rp->process_discovered_references(&g1_is_alive,
2485 2486 2487 2488
                                      &g1_keep_alive,
                                      &g1_drain_mark_stack,
                                      &par_task_executor);

2489 2490 2491 2492 2493 2494 2495 2496 2497
      // The work routines of the parallel keep_alive and drain_marking_stack
      // will set the has_overflown flag if we overflow the global marking
      // stack.
    } else {
      rp->process_discovered_references(&g1_is_alive,
                                        &g1_keep_alive,
                                        &g1_drain_mark_stack,
                                        NULL);
    }
2498

2499 2500 2501 2502 2503 2504 2505
    assert(_markStack.overflow() || _markStack.isEmpty(),
            "mark stack should be empty (unless it overflowed)");
    if (_markStack.overflow()) {
      // Should have been done already when we tried to push an
      // entry on to the global mark stack. But let's do it again.
      set_has_overflown();
    }
2506

2507 2508 2509 2510 2511 2512
    if (rp->processing_is_mt()) {
      assert(rp->num_q() == active_workers, "why not");
      rp->enqueue_discovered_references(&par_task_executor);
    } else {
      rp->enqueue_discovered_references();
    }
2513

2514
    rp->verify_no_references_recorded();
2515
    assert(!rp->discovery_enabled(), "Post condition");
2516 2517
  }

2518
  // Now clean up stale oops in StringTable
2519
  StringTable::unlink(&g1_is_alive);
2520 2521
  // Clean up unreferenced symbols in symbol table.
  SymbolTable::unlink();
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
  ConcurrentMark *_cm;

public:
2535
  void work(uint worker_id) {
2536 2537
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
2538 2539
    if (worker_id < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_id);
2540 2541
      task->record_start_time();
      do {
2542 2543 2544
        task->do_marking_step(1000000000.0 /* something very large */,
                              true /* do_stealing    */,
                              true /* do_termination */);
2545 2546 2547 2548 2549 2550 2551
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

2552
  CMRemarkTask(ConcurrentMark* cm, int active_workers) :
2553
    AbstractGangTask("Par Remark"), _cm(cm) {
2554
    _cm->terminator()->reset_for_reuse(active_workers);
2555
  }
2556 2557 2558 2559 2560 2561 2562 2563 2564
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

2565
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2566
    G1CollectedHeap::StrongRootsScope srs(g1h);
2567
    // this is remark, so we'll use up all active threads
2568
    uint active_workers = g1h->workers()->active_workers();
2569 2570
    if (active_workers == 0) {
      assert(active_workers > 0, "Should have been set earlier");
2571
      active_workers = (uint) ParallelGCThreads;
2572 2573
      g1h->workers()->set_active_workers(active_workers);
    }
2574
    set_phase(active_workers, false /* concurrent */);
2575 2576 2577 2578
    // Leave _parallel_marking_threads at it's
    // value originally calculated in the ConcurrentMark
    // constructor and pass values of the active workers
    // through the gang in the task.
2579

2580
    CMRemarkTask remarkTask(this, active_workers);
2581
    g1h->set_par_threads(active_workers);
2582 2583 2584
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
2585
    G1CollectedHeap::StrongRootsScope srs(g1h);
2586
    // this is remark, so we'll use up all available threads
2587
    uint active_workers = 1;
2588
    set_phase(active_workers, false /* concurrent */);
2589

2590
    CMRemarkTask remarkTask(this, active_workers);
2591 2592 2593 2594 2595
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
    remarkTask.work(0);
  }
2596 2597
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

  print_stats();

#if VERIFY_OBJS_PROCESSED
  if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
    gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
                           _scan_obj_cl.objs_processed,
                           ThreadLocalObjQueue::objs_enqueued);
    guarantee(_scan_obj_cl.objs_processed ==
              ThreadLocalObjQueue::objs_enqueued,
              "Different number of objs processed and enqueued.");
  }
#endif
}

2613 2614
#ifndef PRODUCT

2615
class PrintReachableOopClosure: public OopClosure {
2616 2617 2618
private:
  G1CollectedHeap* _g1h;
  outputStream*    _out;
2619
  VerifyOption     _vo;
2620
  bool             _all;
2621 2622

public:
2623 2624
  PrintReachableOopClosure(outputStream* out,
                           VerifyOption  vo,
2625
                           bool          all) :
2626
    _g1h(G1CollectedHeap::heap()),
2627
    _out(out), _vo(vo), _all(all) { }
2628

2629 2630
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
2631

2632 2633
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
2634 2635 2636
    const char* str = NULL;
    const char* str2 = "";

2637 2638 2639 2640 2641
    if (obj == NULL) {
      str = "";
    } else if (!_g1h->is_in_g1_reserved(obj)) {
      str = " O";
    } else {
2642
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
2643
      guarantee(hr != NULL, "invariant");
2644
      bool over_tams = false;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
      bool marked = false;

      switch (_vo) {
        case VerifyOption_G1UsePrevMarking:
          over_tams = hr->obj_allocated_since_prev_marking(obj);
          marked = _g1h->isMarkedPrev(obj);
          break;
        case VerifyOption_G1UseNextMarking:
          over_tams = hr->obj_allocated_since_next_marking(obj);
          marked = _g1h->isMarkedNext(obj);
          break;
        case VerifyOption_G1UseMarkWord:
          marked = obj->is_gc_marked();
          break;
        default:
          ShouldNotReachHere();
2661 2662 2663
      }

      if (over_tams) {
2664 2665
        str = " >";
        if (marked) {
2666
          str2 = " AND MARKED";
2667
        }
2668 2669
      } else if (marked) {
        str = " M";
2670
      } else {
2671
        str = " NOT";
2672
      }
2673 2674
    }

2675
    _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2676 2677 2678 2679
                   p, (void*) obj, str, str2);
  }
};

2680
class PrintReachableObjectClosure : public ObjectClosure {
2681
private:
2682 2683 2684 2685 2686
  G1CollectedHeap* _g1h;
  outputStream*    _out;
  VerifyOption     _vo;
  bool             _all;
  HeapRegion*      _hr;
2687 2688

public:
2689 2690
  PrintReachableObjectClosure(outputStream* out,
                              VerifyOption  vo,
2691 2692
                              bool          all,
                              HeapRegion*   hr) :
2693 2694
    _g1h(G1CollectedHeap::heap()),
    _out(out), _vo(vo), _all(all), _hr(hr) { }
2695

2696
  void do_object(oop o) {
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
    bool over_tams = false;
    bool marked = false;

    switch (_vo) {
      case VerifyOption_G1UsePrevMarking:
        over_tams = _hr->obj_allocated_since_prev_marking(o);
        marked = _g1h->isMarkedPrev(o);
        break;
      case VerifyOption_G1UseNextMarking:
        over_tams = _hr->obj_allocated_since_next_marking(o);
        marked = _g1h->isMarkedNext(o);
        break;
      case VerifyOption_G1UseMarkWord:
        marked = o->is_gc_marked();
        break;
      default:
        ShouldNotReachHere();
2714 2715 2716 2717 2718 2719
    }
    bool print_it = _all || over_tams || marked;

    if (print_it) {
      _out->print_cr(" "PTR_FORMAT"%s",
                     o, (over_tams) ? " >" : (marked) ? " M" : "");
2720
      PrintReachableOopClosure oopCl(_out, _vo, _all);
2721 2722
      o->oop_iterate(&oopCl);
    }
2723 2724 2725
  }
};

2726
class PrintReachableRegionClosure : public HeapRegionClosure {
2727 2728
private:
  outputStream* _out;
2729
  VerifyOption  _vo;
2730
  bool          _all;
2731 2732 2733 2734 2735 2736

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2737
    HeapWord* p = NULL;
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752

    switch (_vo) {
      case VerifyOption_G1UsePrevMarking:
        p = hr->prev_top_at_mark_start();
        break;
      case VerifyOption_G1UseNextMarking:
        p = hr->next_top_at_mark_start();
        break;
      case VerifyOption_G1UseMarkWord:
        // When we are verifying marking using the mark word
        // TAMS has no relevance.
        assert(p == NULL, "post-condition");
        break;
      default:
        ShouldNotReachHere();
2753
    }
2754
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2755
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2756 2757 2758 2759 2760 2761 2762 2763
    _out->cr();

    HeapWord* from = b;
    HeapWord* to   = t;

    if (to > from) {
      _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
      _out->cr();
2764
      PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2765 2766 2767
      hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
      _out->cr();
    }
2768 2769 2770 2771

    return false;
  }

2772 2773
  PrintReachableRegionClosure(outputStream* out,
                              VerifyOption  vo,
2774
                              bool          all) :
2775
    _out(out), _vo(vo), _all(all) { }
2776 2777
};

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static const char* verify_option_to_tams(VerifyOption vo) {
  switch (vo) {
    case VerifyOption_G1UsePrevMarking:
      return "PTAMS";
    case VerifyOption_G1UseNextMarking:
      return "NTAMS";
    default:
      return "NONE";
  }
}

2789
void ConcurrentMark::print_reachable(const char* str,
2790
                                     VerifyOption vo,
2791 2792 2793
                                     bool all) {
  gclog_or_tty->cr();
  gclog_or_tty->print_cr("== Doing heap dump... ");
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2817
  out->print_cr("-- USING %s", verify_option_to_tams(vo));
2818 2819
  out->cr();

2820
  out->print_cr("--- ITERATING OVER REGIONS");
2821
  out->cr();
2822
  PrintReachableRegionClosure rcl(out, vo, all);
2823
  _g1h->heap_region_iterate(&rcl);
2824
  out->cr();
2825

2826
  gclog_or_tty->print_cr("  done");
2827
  gclog_or_tty->flush();
2828 2829
}

2830 2831
#endif // PRODUCT

2832
void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2833 2834 2835
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2836 2837 2838
}

void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2839 2840 2841
  _nextMarkBitMap->clearRange(mr);
}

2842 2843 2844 2845 2846
void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
  clearRangePrevBitmap(mr);
  clearRangeNextBitmap(mr);
}

2847 2848 2849 2850 2851 2852 2853 2854
HeapRegion*
ConcurrentMark::claim_region(int task_num) {
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2855
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
    // Note on how this code handles humongous regions. In the
    // normal case the finger will reach the start of a "starts
    // humongous" (SH) region. Its end will either be the end of the
    // last "continues humongous" (CH) region in the sequence, or the
    // standard end of the SH region (if the SH is the only region in
    // the sequence). That way claim_region() will skip over the CH
    // regions. However, there is a subtle race between a CM thread
    // executing this method and a mutator thread doing a humongous
    // object allocation. The two are not mutually exclusive as the CM
    // thread does not need to hold the Heap_lock when it gets
    // here. So there is a chance that claim_region() will come across
    // a free region that's in the progress of becoming a SH or a CH
    // region. In the former case, it will either
    //   a) Miss the update to the region's end, in which case it will
    //      visit every subsequent CH region, will find their bitmaps
    //      empty, and do nothing, or
    //   b) Will observe the update of the region's end (in which case
    //      it will skip the subsequent CH regions).
    // If it comes across a region that suddenly becomes CH, the
    // scenario will be similar to b). So, the race between
    // claim_region() and a humongous object allocation might force us
    // to do a bit of unnecessary work (due to some unnecessary bitmap
    // iterations) but it should not introduce and correctness issues.
    HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2881 2882 2883 2884
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

2885
    if (verbose_low()) {
2886 2887 2888 2889
      gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
                             task_num, curr_region, bottom, end, limit);
2890
    }
2891

2892 2893
    // Is the gap between reading the finger and doing the CAS too long?
    HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2894 2895 2896 2897 2898
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2899
      assert(_finger >= end, "the finger should have moved forward");
2900

2901
      if (verbose_low()) {
2902 2903
        gclog_or_tty->print_cr("[%d] we were successful with region = "
                               PTR_FORMAT, task_num, curr_region);
2904
      }
2905 2906

      if (limit > bottom) {
2907
        if (verbose_low()) {
2908 2909
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
                                 "returning it ", task_num, curr_region);
2910
        }
2911 2912
        return curr_region;
      } else {
2913 2914
        assert(limit == bottom,
               "the region limit should be at bottom");
2915
        if (verbose_low()) {
2916 2917
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
                                 "returning NULL", task_num, curr_region);
2918
        }
2919 2920 2921 2922 2923
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2924
      assert(_finger > finger, "the finger should have moved forward");
2925
      if (verbose_low()) {
2926 2927 2928 2929
        gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
                               task_num, _finger, finger);
2930
      }
2931 2932 2933 2934 2935 2936 2937 2938 2939

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
  VerifyNoCSetOopsStack,
  VerifyNoCSetOopsQueues,
  VerifyNoCSetOopsSATBCompleted,
  VerifyNoCSetOopsSATBThread
};

class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
private:
  G1CollectedHeap* _g1h;
  VerifyNoCSetOopsPhase _phase;
  int _info;

  const char* phase_str() {
    switch (_phase) {
    case VerifyNoCSetOopsStack:         return "Stack";
    case VerifyNoCSetOopsQueues:        return "Queue";
    case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
    case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
    default:                            ShouldNotReachHere();
    }
    return NULL;
  }

  void do_object_work(oop obj) {
    guarantee(!_g1h->obj_in_cs(obj),
              err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
                      (void*) obj, phase_str(), _info));
  }

public:
  VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }

  void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
    _phase = phase;
    _info = info;
  }

  virtual void do_oop(oop* p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    do_object_work(obj);
  }

  virtual void do_oop(narrowOop* p) {
    // We should not come across narrow oops while scanning marking
    // stacks and SATB buffers.
    ShouldNotReachHere();
  }
2989

2990 2991
  virtual void do_object(oop obj) {
    do_object_work(obj);
2992
  }
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
};

void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
                                         bool verify_enqueued_buffers,
                                         bool verify_thread_buffers,
                                         bool verify_fingers) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  if (!G1CollectedHeap::heap()->mark_in_progress()) {
    return;
  }

  VerifyNoCSetOopsClosure cl;
3005

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
  if (verify_stacks) {
    // Verify entries on the global mark stack
    cl.set_phase(VerifyNoCSetOopsStack);
    _markStack.oops_do(&cl);

    // Verify entries on the task queues
    for (int i = 0; i < (int) _max_task_num; i += 1) {
      cl.set_phase(VerifyNoCSetOopsQueues, i);
      OopTaskQueue* queue = _task_queues->queue(i);
      queue->oops_do(&cl);
    }
3017 3018
  }

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();

  // Verify entries on the enqueued SATB buffers
  if (verify_enqueued_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBCompleted);
    satb_qs.iterate_completed_buffers_read_only(&cl);
  }

  // Verify entries on the per-thread SATB buffers
  if (verify_thread_buffers) {
    cl.set_phase(VerifyNoCSetOopsSATBThread);
    satb_qs.iterate_thread_buffers_read_only(&cl);
  }

  if (verify_fingers) {
    // Verify the global finger
    HeapWord* global_finger = finger();
    if (global_finger != NULL && global_finger < _heap_end) {
      // The global finger always points to a heap region boundary. We
      // use heap_region_containing_raw() to get the containing region
      // given that the global finger could be pointing to a free region
      // which subsequently becomes continues humongous. If that
      // happens, heap_region_containing() will return the bottom of the
      // corresponding starts humongous region and the check below will
      // not hold any more.
      HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
      guarantee(global_finger == global_hr->bottom(),
                err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
                        global_finger, HR_FORMAT_PARAMS(global_hr)));
    }

    // Verify the task fingers
    assert(parallel_marking_threads() <= _max_task_num, "sanity");
    for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
      CMTask* task = _tasks[i];
      HeapWord* task_finger = task->finger();
      if (task_finger != NULL && task_finger < _heap_end) {
        // See above note on the global finger verification.
        HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
        guarantee(task_finger == task_hr->bottom() ||
                  !task_hr->in_collection_set(),
                  err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
                          task_finger, HR_FORMAT_PARAMS(task_hr)));
      }
    }
  }
3065
}
3066
#endif // PRODUCT
3067

3068
void ConcurrentMark::clear_marking_state(bool clear_overflow) {
3069 3070
  _markStack.setEmpty();
  _markStack.clear_overflow();
3071 3072 3073 3074 3075
  if (clear_overflow) {
    clear_has_overflown();
  } else {
    assert(has_overflown(), "pre-condition");
  }
3076 3077 3078 3079 3080 3081 3082 3083
  _finger = _heap_start;

  for (int i = 0; i < (int)_max_task_num; ++i) {
    OopTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
// Aggregate the counting data that was constructed concurrently
// with marking.
class AggregateCountDataHRClosure: public HeapRegionClosure {
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
  size_t _max_task_num;

 public:
  AggregateCountDataHRClosure(ConcurrentMark *cm,
                              BitMap* cm_card_bm,
                              size_t max_task_num) :
    _cm(cm), _cm_card_bm(cm_card_bm),
    _max_task_num(max_task_num) { }

  bool is_card_aligned(HeapWord* p) {
    return ((uintptr_t(p) & (CardTableModRefBS::card_size - 1)) == 0);
  }

  bool doHeapRegion(HeapRegion* hr) {
    if (hr->continuesHumongous()) {
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed.
      // Note that we cannot rely on their associated
      // "starts humongous" region to have their bit set to 1
      // since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
      return false;
    }

    HeapWord* start = hr->bottom();
    HeapWord* limit = hr->next_top_at_mark_start();
    HeapWord* end = hr->end();

    assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
           err_msg("Preconditions not met - "
                   "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
                   "top: "PTR_FORMAT", end: "PTR_FORMAT,
                   start, limit, hr->top(), hr->end()));

    assert(hr->next_marked_bytes() == 0, "Precondition");

    if (start == limit) {
      // NTAMS of this region has not been set so nothing to do.
      return false;
    }

    assert(is_card_aligned(start), "sanity");
    assert(is_card_aligned(end), "sanity");

    BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
    BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
    BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);

    // If ntams is not card aligned then we bump the index for
    // limit so that we get the card spanning ntams.
    if (!is_card_aligned(limit)) {
      limit_idx += 1;
    }

    assert(limit_idx <= end_idx, "or else use atomics");

    // Aggregate the "stripe" in the count data associated with hr.
    size_t hrs_index = hr->hrs_index();
    size_t marked_bytes = 0;

    for (int i = 0; (size_t)i < _max_task_num; i += 1) {
      size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
      BitMap* task_card_bm = _cm->count_card_bitmap_for(i);

      // Fetch the marked_bytes in this region for task i and
      // add it to the running total for this region.
      marked_bytes += marked_bytes_array[hrs_index];

      // Now union the bitmaps[0,max_task_num)[start_idx..limit_idx)
      // into the global card bitmap.
      BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);

      while (scan_idx < limit_idx) {
        assert(task_card_bm->at(scan_idx) == true, "should be");
        _cm_card_bm->set_bit(scan_idx);
        assert(_cm_card_bm->at(scan_idx) == true, "should be");

        // BitMap::get_next_one_offset() can handle the case when
        // its left_offset parameter is greater than its right_offset
        // parameter. If does, however, have an early exit if
        // left_offset == right_offset. So let's limit the value
        // passed in for left offset here.
        BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
        scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
      }
    }

    // Update the marked bytes for this region.
    hr->add_to_marked_bytes(marked_bytes);

    // Now set the top at count to NTAMS.
    hr->set_top_at_conc_mark_count(limit);

    // Next heap region
    return false;
  }
};

class G1AggregateCountDataTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  ConcurrentMark* _cm;
  BitMap* _cm_card_bm;
  size_t _max_task_num;
  int _active_workers;

public:
  G1AggregateCountDataTask(G1CollectedHeap* g1h,
                           ConcurrentMark* cm,
                           BitMap* cm_card_bm,
                           size_t max_task_num,
                           int n_workers) :
    AbstractGangTask("Count Aggregation"),
    _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
    _max_task_num(max_task_num),
    _active_workers(n_workers) { }

  void work(uint worker_id) {
    AggregateCountDataHRClosure cl(_cm, _cm_card_bm, _max_task_num);

    if (G1CollectedHeap::use_parallel_gc_threads()) {
      _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
                                            _active_workers,
                                            HeapRegion::AggregateCountClaimValue);
    } else {
      _g1h->heap_region_iterate(&cl);
    }
  }
};


void ConcurrentMark::aggregate_count_data() {
  int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
                        _g1h->workers()->active_workers() :
                        1);

  G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
                                           _max_task_num, n_workers);

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
    _g1h->set_par_threads(n_workers);
    _g1h->workers()->run_task(&g1_par_agg_task);
    _g1h->set_par_threads(0);

    assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
           "sanity check");
    _g1h->reset_heap_region_claim_values();
  } else {
    g1_par_agg_task.work(0);
  }
}

// Clear the per-worker arrays used to store the per-region counting data
void ConcurrentMark::clear_all_count_data() {
  // Clear the global card bitmap - it will be filled during
  // liveness count aggregation (during remark) and the
  // final counting task.
  _card_bm.clear();

  // Clear the global region bitmap - it will be filled as part
  // of the final counting task.
  _region_bm.clear();

  size_t max_regions = _g1h->max_regions();
  assert(_max_task_num != 0, "unitialized");

  for (int i = 0; (size_t) i < _max_task_num; i += 1) {
    BitMap* task_card_bm = count_card_bitmap_for(i);
    size_t* marked_bytes_array = count_marked_bytes_array_for(i);

    assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
    assert(marked_bytes_array != NULL, "uninitialized");

    memset(marked_bytes_array, 0, (max_regions * sizeof(size_t)));
    task_card_bm->clear();
  }
}

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
3284 3285
  // Clear the liveness counting data
  clear_all_count_data();
3286 3287
  // Empty mark stack
  clear_marking_state();
3288
  for (int i = 0; i < (int)_max_task_num; ++i) {
3289
    _tasks[i]->clear_region_fields();
3290
  }
3291 3292 3293 3294
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
3295 3296 3297 3298 3299
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3338
                "(%8.2f s marking).",
3339
                cmThread()->vtime_accum(),
3340
                cmThread()->vtime_mark_accum());
3341 3342
}

T
tonyp 已提交
3343 3344 3345 3346
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  _parallel_workers->print_worker_threads_on(st);
}

3347
// We take a break if someone is trying to stop the world.
3348
bool ConcurrentMark::do_yield_check(uint worker_id) {
3349
  if (should_yield()) {
3350
    if (worker_id == 0) {
3351
      _g1h->g1_policy()->record_concurrent_pause();
3352
    }
3353
    cmThread()->yield();
3354
    if (worker_id == 0) {
3355
      _g1h->g1_policy()->record_concurrent_pause_end();
3356
    }
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
3374 3375
  return containing_card_is_marked(start) &&
         containing_card_is_marked(last);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
  for (int i = 0; i < (int) _max_task_num; ++i) {
    gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
  }
  gclog_or_tty->print_cr("");
}
#endif

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
void CMTask::scan_object(oop obj) {
  assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");

  if (_cm->verbose_high()) {
    gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
                           _task_id, (void*) obj);
  }

  size_t obj_size = obj->size();
  _words_scanned += obj_size;

  obj->oop_iterate(_cm_oop_closure);
  statsOnly( ++_objs_scanned );
  check_limits();
}

3406 3407 3408 3409 3410 3411 3412 3413 3414
// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;

public:
3415 3416
  CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
    _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3417 3418 3419

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3420 3421
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
3422

3423 3424 3425 3426 3427
    statsOnly( _task->increase_objs_found_on_bitmap() );
    assert(addr >= _task->finger(), "invariant");

    // We move that task's local finger along.
    _task->move_finger_to(addr);
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

3454 3455 3456 3457 3458
G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
                               ConcurrentMark* cm,
                               CMTask* task)
  : _g1h(g1h), _cm(cm), _task(task) {
  assert(_ref_processor == NULL, "should be initialized to NULL");
3459

3460
  if (G1UseConcMarkReferenceProcessing) {
3461
    _ref_processor = g1h->ref_processor_cm();
3462
    assert(_ref_processor != NULL, "should not be NULL");
3463
  }
3464
}
3465 3466

void CMTask::setup_for_region(HeapRegion* hr) {
3467 3468 3469 3470 3471
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
3472

3473
  if (_cm->verbose_low()) {
3474 3475
    gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
                           _task_id, hr);
3476
  }
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
3489
    if (_cm->verbose_low()) {
3490 3491 3492
      gclog_or_tty->print_cr("[%d] found an empty region "
                             "["PTR_FORMAT", "PTR_FORMAT")",
                             _task_id, bottom, limit);
3493
    }
3494 3495 3496 3497 3498 3499 3500
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
3501
    assert(limit >= _finger, "peace of mind");
3502
  } else {
3503
    assert(limit < _region_limit, "only way to get here");
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
3521
  assert(_curr_region != NULL, "invariant");
3522
  if (_cm->verbose_low()) {
3523 3524
    gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
                           _task_id, _curr_region);
3525
  }
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;
}

3537 3538 3539 3540 3541 3542 3543 3544 3545
void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
  if (cm_oop_closure == NULL) {
    assert(_cm_oop_closure != NULL, "invariant");
  } else {
    assert(_cm_oop_closure == NULL, "invariant");
  }
  _cm_oop_closure = cm_oop_closure;
}

3546
void CMTask::reset(CMBitMap* nextMarkBitMap) {
3547
  guarantee(nextMarkBitMap != NULL, "invariant");
3548

3549
  if (_cm->verbose_low()) {
3550
    gclog_or_tty->print_cr("[%d] resetting", _task_id);
3551
  }
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

void CMTask::reached_limit() {
3595 3596 3597
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3598 3599 3600 3601
  regular_clock_call();
}

void CMTask::regular_clock_call() {
3602
  if (has_aborted()) return;
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
3619
  if (!concurrent()) return;
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
3632
  if (_words_scanned >= _words_scanned_limit) {
3633
    ++_clock_due_to_scanning;
3634 3635
  }
  if (_refs_reached >= _refs_reached_limit) {
3636
    ++_clock_due_to_marking;
3637
  }
3638 3639 3640 3641 3642 3643

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
3644 3645 3646 3647 3648 3649 3650
      gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
                        "scanned = %d%s, refs reached = %d%s",
                        _task_id, last_interval_ms,
                        _words_scanned,
                        (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                        _refs_reached,
                        (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
3668
    _has_timed_out = true;
3669 3670 3671 3672 3673 3674 3675 3676
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3677
    if (_cm->verbose_low()) {
3678 3679
      gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
                             _task_id);
3680
    }
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

3703
  if (_cm->verbose_medium()) {
3704
    gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);
3705
  }
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
3731 3732 3733 3734
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] aborting due to global stack overflow",
                               _task_id);
      }
3735 3736 3737 3738
      set_has_aborted();
    } else {
      // the transfer was successful

3739
      if (_cm->verbose_medium()) {
3740 3741
        gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
                               _task_id, n);
3742
      }
3743
      statsOnly( int tmp_size = _cm->mark_stack_size();
3744
                 if (tmp_size > _global_max_size) {
3745
                   _global_max_size = tmp_size;
3746
                 }
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3761 3762
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3763 3764 3765 3766
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
3767
    if (_cm->verbose_medium()) {
3768 3769
      gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
                             _task_id, n);
3770
    }
3771 3772 3773 3774
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3775
      assert(success, "invariant");
3776 3777 3778
    }

    statsOnly( int tmp_size = _task_queue->size();
3779
               if (tmp_size > _local_max_size) {
3780
                 _local_max_size = tmp_size;
3781
               }
3782 3783 3784 3785 3786 3787 3788 3789
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
3790
  if (has_aborted()) return;
3791 3792 3793 3794 3795

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
3796
  if (partially) {
3797
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3798
  } else {
3799
    target_size = 0;
3800
  }
3801 3802

  if (_task_queue->size() > target_size) {
3803
    if (_cm->verbose_high()) {
3804 3805
      gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
                             _task_id, target_size);
3806
    }
3807 3808 3809 3810 3811 3812

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

3813
      if (_cm->verbose_high()) {
3814 3815
        gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
                               (void*) obj);
3816
      }
3817

3818
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
T
tonyp 已提交
3819
      assert(!_g1h->is_on_master_free_list(
3820
                  _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3821 3822 3823

      scan_object(obj);

3824
      if (_task_queue->size() <= target_size || has_aborted()) {
3825
        ret = false;
3826
      } else {
3827
        ret = _task_queue->pop_local(obj);
3828
      }
3829 3830
    }

3831
    if (_cm->verbose_high()) {
3832 3833
      gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
                             _task_id, _task_queue->size());
3834
    }
3835 3836 3837 3838
  }
}

void CMTask::drain_global_stack(bool partially) {
3839
  if (has_aborted()) return;
3840 3841 3842

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3843
  assert(partially || _task_queue->size() == 0, "invariant");
3844 3845 3846 3847 3848 3849 3850 3851

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
3852
  if (partially) {
3853
    target_size = _cm->partial_mark_stack_size_target();
3854
  } else {
3855
    target_size = 0;
3856
  }
3857 3858

  if (_cm->mark_stack_size() > target_size) {
3859
    if (_cm->verbose_low()) {
3860 3861
      gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
                             _task_id, target_size);
3862
    }
3863 3864 3865 3866 3867 3868

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

3869
    if (_cm->verbose_low()) {
3870 3871
      gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
                             _task_id, _cm->mark_stack_size());
3872
    }
3873 3874 3875 3876 3877 3878 3879 3880
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
3881
  if (has_aborted()) return;
3882 3883 3884 3885 3886 3887 3888 3889 3890

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3891
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3892
    satb_mq_set.set_par_closure(_task_id, &oc);
3893
  } else {
3894
    satb_mq_set.set_closure(&oc);
3895
  }
3896 3897 3898

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
3899
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3900 3901
    while (!has_aborted() &&
           satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
3902
      if (_cm->verbose_medium()) {
3903
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3904
      }
3905 3906 3907 3908 3909 3910
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
3911
      if (_cm->verbose_medium()) {
3912
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
3913
      }
3914 3915 3916 3917 3918 3919 3920
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
3921
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3922
      satb_mq_set.par_iterate_closure_all_threads(_task_id);
3923
    } else {
3924
      satb_mq_set.iterate_closure_all_threads();
3925
    }
3926 3927 3928 3929
  }

  _draining_satb_buffers = false;

3930 3931 3932
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3933

3934
  if (G1CollectedHeap::use_parallel_gc_threads()) {
3935
    satb_mq_set.set_par_closure(_task_id, NULL);
3936
  } else {
3937
    satb_mq_set.set_closure(NULL);
3938
  }
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::print_stats() {
  gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
                         _task_id, _calls);
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
3973
  gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

    The do_marking_step(time_target_ms) method is the building block
    of the parallel marking framework. It can be called in parallel
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

    The data structures that is uses to do marking work are the
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

4032
      (4) SATB Buffer Queue. This is where completed SATB buffers are
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

4044 4045 4046 4047 4048 4049
      (2) When a global overflow (on the global stack) has been
      triggered. Before the task aborts, it will actually sync up with
      the other tasks to ensure that all the marking data structures
      (local queues, stacks, fingers etc.)  are re-initialised so that
      when do_marking_step() completes, the marking phase can
      immediately restart.
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

 *****************************************************************************/

4086 4087 4088
void CMTask::do_marking_step(double time_target_ms,
                             bool do_stealing,
                             bool do_termination) {
4089 4090
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
4091 4092

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4093 4094 4095
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
  assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
4096

4097 4098
  assert(!_claimed,
         "only one thread should claim this task at any one time");
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
4121
  _has_timed_out = false;
4122 4123 4124 4125
  _draining_satb_buffers = false;

  ++_calls;

4126
  if (_cm->verbose_low()) {
4127 4128 4129
    gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
                           "target = %1.2lfms >>>>>>>>>>",
                           _task_id, _calls, _time_target_ms);
4130
  }
4131 4132 4133 4134 4135

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4136 4137
  G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
  set_cm_oop_closure(&cm_oop_closure);
4138 4139

  if (_cm->has_overflown()) {
4140 4141 4142 4143
    // This can happen if the mark stack overflows during a GC pause
    // and this task, after a yield point, restarts. We have to abort
    // as we need to get into the overflow protocol which happens
    // right at the end of this task.
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
4159 4160
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

4176
      if (_cm->verbose_low()) {
4177 4178 4179 4180
        gclog_or_tty->print_cr("[%d] we're scanning part "
                               "["PTR_FORMAT", "PTR_FORMAT") "
                               "of region "PTR_FORMAT,
                               _task_id, _finger, _region_limit, _curr_region);
4181
      }
4182 4183 4184

      // Let's iterate over the bitmap of the part of the
      // region that is left.
4185
      if (mr.is_empty() || _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4186 4187 4188 4189 4190
        // We successfully completed iterating over the region. Now,
        // let's give up the region.
        giveup_current_region();
        regular_clock_call();
      } else {
4191
        assert(has_aborted(), "currently the only way to do so");
4192 4193 4194 4195 4196
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
4197
        assert(_finger != NULL, "invariant");
4198 4199 4200 4201 4202 4203 4204 4205

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
4206 4207 4208 4209
        assert(_finger < _region_limit, "invariant");
        HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
4210
          giveup_current_region();
4211
        } else {
4212
          move_finger_to(new_finger);
4213
        }
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
4231 4232 4233 4234
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
4235
      if (_cm->verbose_low()) {
4236
        gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
4237
      }
4238 4239 4240 4241 4242
      HeapRegion* claimed_region = _cm->claim_region(_task_id);
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

4243
        if (_cm->verbose_low()) {
4244 4245 4246
          gclog_or_tty->print_cr("[%d] we successfully claimed "
                                 "region "PTR_FORMAT,
                                 _task_id, claimed_region);
4247
        }
4248 4249

        setup_for_region(claimed_region);
4250
        assert(_curr_region == claimed_region, "invariant");
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
4261 4262
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
4263 4264 4265 4266 4267
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
4268
    // tasks might be pushing objects to it concurrently.
4269 4270
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
4271

4272
    if (_cm->verbose_low()) {
4273
      gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);
4274
    }
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
4287
  if (do_stealing && !has_aborted()) {
4288 4289 4290 4291
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
4292
    // tasks might be pushing objects to it concurrently.
4293 4294
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
4295

4296
    if (_cm->verbose_low()) {
4297
      gclog_or_tty->print_cr("[%d] starting to steal", _task_id);
4298
    }
4299 4300 4301 4302 4303 4304

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

      if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
4305
        if (_cm->verbose_medium()) {
4306 4307
          gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
                                 _task_id, (void*) obj);
4308
        }
4309 4310 4311

        statsOnly( ++_steals );

4312 4313
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

4326 4327 4328 4329 4330 4331 4332 4333 4334
  // If we are about to wrap up and go into termination, check if we
  // should raise the overflow flag.
  if (do_termination && !has_aborted()) {
    if (_cm->force_overflow()->should_force()) {
      _cm->set_has_overflown();
      regular_clock_call();
    }
  }

4335 4336
  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
4337
  if (do_termination && !has_aborted()) {
4338
    // We cannot check whether the global stack is empty, since other
4339
    // tasks might be concurrently pushing objects on it.
4340 4341 4342
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
4343

4344
    if (_cm->verbose_low()) {
4345
      gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);
4346
    }
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
    bool finished = _cm->terminator()->offer_termination(this);
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

      if (_task_id == 0) {
        // let's allow task 0 to do this
        if (concurrent()) {
4363
          assert(_cm->concurrent_marking_in_progress(), "invariant");
4364 4365 4366 4367 4368 4369 4370 4371
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
4372 4373 4374 4375 4376 4377 4378 4379
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4380

4381
      if (_cm->verbose_low()) {
4382
        gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
4383
      }
4384 4385 4386 4387
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

4388 4389 4390 4391
      if (_cm->verbose_low()) {
        gclog_or_tty->print_cr("[%d] apparently there is more work to do",
                               _task_id);
      }
4392 4393 4394 4395 4396 4397 4398 4399 4400

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
4401
  set_cm_oop_closure(NULL);
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

4412
    if (_has_timed_out) {
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

4428
      if (_cm->verbose_low()) {
4429
        gclog_or_tty->print_cr("[%d] detected overflow", _task_id);
4430
      }
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452

      _cm->enter_first_sync_barrier(_task_id);
      // When we exit this sync barrier we know that all tasks have
      // stopped doing marking work. So, it's now safe to
      // re-initialise our data structures. At the end of this method,
      // task 0 will clear the global data structures.

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

      // ...and enter the second barrier.
      _cm->enter_second_sync_barrier(_task_id);
      // At this point everything has bee re-initialised and we're
      // ready to restart.
    }

    if (_cm->verbose_low()) {
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4453
      if (_cm->has_aborted()) {
4454 4455
        gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
                               _task_id);
4456
      }
4457 4458
    }
  } else {
4459
    if (_cm->verbose_low()) {
4460 4461 4462
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
4463
    }
4464 4465 4466 4467 4468 4469 4470
  }

  _claimed = false;
}

CMTask::CMTask(int task_id,
               ConcurrentMark* cm,
4471 4472
               size_t* marked_bytes,
               BitMap* card_bm,
4473 4474 4475 4476 4477 4478 4479 4480
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
    _task_id(task_id), _cm(cm),
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
4481
    _cm_oop_closure(NULL),
4482 4483
    _marked_bytes_array(marked_bytes),
    _card_bm(card_bm) {
4484 4485
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
4486 4487 4488 4489 4490 4491

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545

// These are formatting macros that are used below to ensure
// consistent formatting. The *_H_* versions are used to format the
// header for a particular value and they should be kept consistent
// with the corresponding macro. Also note that most of the macros add
// the necessary white space (as a prefix) which makes them a bit
// easier to compose.

// All the output lines are prefixed with this string to be able to
// identify them easily in a large log file.
#define G1PPRL_LINE_PREFIX            "###"

#define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
#ifdef _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
#else // _LP64
#define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
#endif // _LP64

// For per-region info
#define G1PPRL_TYPE_FORMAT            "   %-4s"
#define G1PPRL_TYPE_H_FORMAT          "   %4s"
#define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
#define G1PPRL_BYTE_H_FORMAT          "  %9s"
#define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
#define G1PPRL_DOUBLE_H_FORMAT        "  %14s"

// For summary info
#define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
#define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
#define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
#define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"

G1PrintRegionLivenessInfoClosure::
G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
  : _out(out),
    _total_used_bytes(0), _total_capacity_bytes(0),
    _total_prev_live_bytes(0), _total_next_live_bytes(0),
    _hum_used_bytes(0), _hum_capacity_bytes(0),
    _hum_prev_live_bytes(0), _hum_next_live_bytes(0) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  MemRegion g1_committed = g1h->g1_committed();
  MemRegion g1_reserved = g1h->g1_reserved();
  double now = os::elapsedTime();

  // Print the header of the output.
  _out->cr();
  _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
  _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
                 G1PPRL_SUM_ADDR_FORMAT("committed")
                 G1PPRL_SUM_ADDR_FORMAT("reserved")
                 G1PPRL_SUM_BYTE_FORMAT("region-size"),
                 g1_committed.start(), g1_committed.end(),
                 g1_reserved.start(), g1_reserved.end(),
4546
                 HeapRegion::GrainBytes);
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "type", "address-range",
                 "used", "prev-live", "next-live", "gc-eff");
4557 4558 4559 4560 4561 4562 4563 4564 4565
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_H_FORMAT
                 G1PPRL_ADDR_BASE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_BYTE_H_FORMAT
                 G1PPRL_DOUBLE_H_FORMAT,
                 "", "",
                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)");
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
}

// It takes as a parameter a reference to one of the _hum_* fields, it
// deduces the corresponding value for a region in a humongous region
// series (either the region size, or what's left if the _hum_* field
// is < the region size), and updates the _hum_* field accordingly.
size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
  size_t bytes = 0;
  // The > 0 check is to deal with the prev and next live bytes which
  // could be 0.
  if (*hum_bytes > 0) {
4577
    bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
    *hum_bytes -= bytes;
  }
  return bytes;
}

// It deduces the values for a region in a humongous region series
// from the _hum_* fields and updates those accordingly. It assumes
// that that _hum_* fields have already been set up from the "starts
// humongous" region and we visit the regions in address order.
void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
                                                     size_t* capacity_bytes,
                                                     size_t* prev_live_bytes,
                                                     size_t* next_live_bytes) {
  assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
  *used_bytes      = get_hum_bytes(&_hum_used_bytes);
  *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
  *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
  *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
}

bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
  const char* type = "";
  HeapWord* bottom       = r->bottom();
  HeapWord* end          = r->end();
  size_t capacity_bytes  = r->capacity();
  size_t used_bytes      = r->used();
  size_t prev_live_bytes = r->live_bytes();
  size_t next_live_bytes = r->next_live_bytes();
  double gc_eff          = r->gc_efficiency();
  if (r->used() == 0) {
    type = "FREE";
  } else if (r->is_survivor()) {
    type = "SURV";
  } else if (r->is_young()) {
    type = "EDEN";
  } else if (r->startsHumongous()) {
    type = "HUMS";

    assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
           _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
           "they should have been zeroed after the last time we used them");
    // Set up the _hum_* fields.
    _hum_capacity_bytes  = capacity_bytes;
    _hum_used_bytes      = used_bytes;
    _hum_prev_live_bytes = prev_live_bytes;
    _hum_next_live_bytes = next_live_bytes;
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    end = bottom + HeapRegion::GrainWords;
  } else if (r->continuesHumongous()) {
    type = "HUMC";
    get_hum_bytes(&used_bytes, &capacity_bytes,
                  &prev_live_bytes, &next_live_bytes);
    assert(end == bottom + HeapRegion::GrainWords, "invariant");
  } else {
    type = "OLD";
  }

  _total_used_bytes      += used_bytes;
  _total_capacity_bytes  += capacity_bytes;
  _total_prev_live_bytes += prev_live_bytes;
  _total_next_live_bytes += next_live_bytes;

  // Print a line for this particular region.
  _out->print_cr(G1PPRL_LINE_PREFIX
                 G1PPRL_TYPE_FORMAT
                 G1PPRL_ADDR_BASE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_BYTE_FORMAT
                 G1PPRL_DOUBLE_FORMAT,
                 type, bottom, end,
                 used_bytes, prev_live_bytes, next_live_bytes, gc_eff);

  return false;
}

G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
  // Print the footer of the output.
  _out->print_cr(G1PPRL_LINE_PREFIX);
  _out->print_cr(G1PPRL_LINE_PREFIX
                 " SUMMARY"
                 G1PPRL_SUM_MB_FORMAT("capacity")
                 G1PPRL_SUM_MB_PERC_FORMAT("used")
                 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
                 G1PPRL_SUM_MB_PERC_FORMAT("next-live"),
                 bytes_to_mb(_total_capacity_bytes),
                 bytes_to_mb(_total_used_bytes),
                 perc(_total_used_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_prev_live_bytes),
                 perc(_total_prev_live_bytes, _total_capacity_bytes),
                 bytes_to_mb(_total_next_live_bytes),
                 perc(_total_next_live_bytes, _total_capacity_bytes));
  _out->cr();
}