sharedRuntime.cpp 97.9 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_sharedRuntime.cpp.incl"
#include <math.h>

HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
                      char*, int, char*, int, char*, int);
HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
                      char*, int, char*, int, char*, int);

// Implementation of SharedRuntime

#ifndef PRODUCT
// For statistics
int SharedRuntime::_ic_miss_ctr = 0;
int SharedRuntime::_wrong_method_ctr = 0;
int SharedRuntime::_resolve_static_ctr = 0;
int SharedRuntime::_resolve_virtual_ctr = 0;
int SharedRuntime::_resolve_opt_virtual_ctr = 0;
int SharedRuntime::_implicit_null_throws = 0;
int SharedRuntime::_implicit_div0_throws = 0;
int SharedRuntime::_throw_null_ctr = 0;

int SharedRuntime::_nof_normal_calls = 0;
int SharedRuntime::_nof_optimized_calls = 0;
int SharedRuntime::_nof_inlined_calls = 0;
int SharedRuntime::_nof_megamorphic_calls = 0;
int SharedRuntime::_nof_static_calls = 0;
int SharedRuntime::_nof_inlined_static_calls = 0;
int SharedRuntime::_nof_interface_calls = 0;
int SharedRuntime::_nof_optimized_interface_calls = 0;
int SharedRuntime::_nof_inlined_interface_calls = 0;
int SharedRuntime::_nof_megamorphic_interface_calls = 0;
int SharedRuntime::_nof_removable_exceptions = 0;

int SharedRuntime::_new_instance_ctr=0;
int SharedRuntime::_new_array_ctr=0;
int SharedRuntime::_multi1_ctr=0;
int SharedRuntime::_multi2_ctr=0;
int SharedRuntime::_multi3_ctr=0;
int SharedRuntime::_multi4_ctr=0;
int SharedRuntime::_multi5_ctr=0;
int SharedRuntime::_mon_enter_stub_ctr=0;
int SharedRuntime::_mon_exit_stub_ctr=0;
int SharedRuntime::_mon_enter_ctr=0;
int SharedRuntime::_mon_exit_ctr=0;
int SharedRuntime::_partial_subtype_ctr=0;
int SharedRuntime::_jbyte_array_copy_ctr=0;
int SharedRuntime::_jshort_array_copy_ctr=0;
int SharedRuntime::_jint_array_copy_ctr=0;
int SharedRuntime::_jlong_array_copy_ctr=0;
int SharedRuntime::_oop_array_copy_ctr=0;
int SharedRuntime::_checkcast_array_copy_ctr=0;
int SharedRuntime::_unsafe_array_copy_ctr=0;
int SharedRuntime::_generic_array_copy_ctr=0;
int SharedRuntime::_slow_array_copy_ctr=0;
int SharedRuntime::_find_handler_ctr=0;
int SharedRuntime::_rethrow_ctr=0;

int     SharedRuntime::_ICmiss_index                    = 0;
int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];

void SharedRuntime::trace_ic_miss(address at) {
  for (int i = 0; i < _ICmiss_index; i++) {
    if (_ICmiss_at[i] == at) {
      _ICmiss_count[i]++;
      return;
    }
  }
  int index = _ICmiss_index++;
  if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
  _ICmiss_at[index] = at;
  _ICmiss_count[index] = 1;
}

void SharedRuntime::print_ic_miss_histogram() {
  if (ICMissHistogram) {
    tty->print_cr ("IC Miss Histogram:");
    int tot_misses = 0;
    for (int i = 0; i < _ICmiss_index; i++) {
      tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
      tot_misses += _ICmiss_count[i];
    }
    tty->print_cr ("Total IC misses: %7d", tot_misses);
  }
}
#endif // PRODUCT

114 115 116 117 118 119 120 121
#ifndef SERIALGC

// G1 write-barrier pre: executed before a pointer store.
JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
  if (orig == NULL) {
    assert(false, "should be optimized out");
    return;
  }
122
  assert(orig->is_oop(true /* ignore mark word */), "Error");
123 124 125 126 127 128 129 130 131 132 133
  // store the original value that was in the field reference
  thread->satb_mark_queue().enqueue(orig);
JRT_END

// G1 write-barrier post: executed after a pointer store.
JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
  thread->dirty_card_queue().enqueue(card_addr);
JRT_END

#endif // !SERIALGC

D
duke 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
  return x * y;
JRT_END


JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
  if (x == min_jlong && y == CONST64(-1)) {
    return x;
  } else {
    return x / y;
  }
JRT_END


JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
  if (x == min_jlong && y == CONST64(-1)) {
    return 0;
  } else {
    return x % y;
  }
JRT_END


const juint  float_sign_mask  = 0x7FFFFFFF;
const juint  float_infinity   = 0x7F800000;
const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
const julong double_infinity  = CONST64(0x7FF0000000000000);

JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
#ifdef _WIN64
  // 64-bit Windows on amd64 returns the wrong values for
  // infinity operands.
  union { jfloat f; juint i; } xbits, ybits;
  xbits.f = x;
  ybits.f = y;
  // x Mod Infinity == x unless x is infinity
  if ( ((xbits.i & float_sign_mask) != float_infinity) &&
       ((ybits.i & float_sign_mask) == float_infinity) ) {
    return x;
  }
#endif
  return ((jfloat)fmod((double)x,(double)y));
JRT_END


JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
#ifdef _WIN64
  union { jdouble d; julong l; } xbits, ybits;
  xbits.d = x;
  ybits.d = y;
  // x Mod Infinity == x unless x is infinity
  if ( ((xbits.l & double_sign_mask) != double_infinity) &&
       ((ybits.l & double_sign_mask) == double_infinity) ) {
    return x;
  }
#endif
  return ((jdouble)fmod((double)x,(double)y));
JRT_END


JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
196 197 198 199 200 201 202
  if (g_isnan(x))
    return 0;
  if (x >= (jfloat) max_jint)
    return max_jint;
  if (x <= (jfloat) min_jint)
    return min_jint;
  return (jint) x;
D
duke 已提交
203 204 205 206
JRT_END


JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
207 208 209 210 211 212 213
  if (g_isnan(x))
    return 0;
  if (x >= (jfloat) max_jlong)
    return max_jlong;
  if (x <= (jfloat) min_jlong)
    return min_jlong;
  return (jlong) x;
D
duke 已提交
214 215 216 217
JRT_END


JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
218 219 220 221 222 223 224
  if (g_isnan(x))
    return 0;
  if (x >= (jdouble) max_jint)
    return max_jint;
  if (x <= (jdouble) min_jint)
    return min_jint;
  return (jint) x;
D
duke 已提交
225 226 227 228
JRT_END


JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
229 230 231 232 233 234 235
  if (g_isnan(x))
    return 0;
  if (x >= (jdouble) max_jlong)
    return max_jlong;
  if (x <= (jdouble) min_jlong)
    return min_jlong;
  return (jlong) x;
D
duke 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
JRT_END


JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
  return (jfloat)x;
JRT_END


JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
  return (jfloat)x;
JRT_END


JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
  return (jdouble)x;
JRT_END

// Exception handling accross interpreter/compiler boundaries
//
// exception_handler_for_return_address(...) returns the continuation address.
// The continuation address is the entry point of the exception handler of the
// previous frame depending on the return address.

address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
  assert(frame::verify_return_pc(return_address), "must be a return pc");

  // the fastest case first
  CodeBlob* blob = CodeCache::find_blob(return_address);
  if (blob != NULL && blob->is_nmethod()) {
    nmethod* code = (nmethod*)blob;
    assert(code != NULL, "nmethod must be present");
    // native nmethods don't have exception handlers
    assert(!code->is_native_method(), "no exception handler");
    assert(code->header_begin() != code->exception_begin(), "no exception handler");
    if (code->is_deopt_pc(return_address)) {
      return SharedRuntime::deopt_blob()->unpack_with_exception();
    } else {
      return code->exception_begin();
    }
  }

  // Entry code
  if (StubRoutines::returns_to_call_stub(return_address)) {
    return StubRoutines::catch_exception_entry();
  }
  // Interpreted code
  if (Interpreter::contains(return_address)) {
    return Interpreter::rethrow_exception_entry();
  }

  // Compiled code
  if (CodeCache::contains(return_address)) {
    CodeBlob* blob = CodeCache::find_blob(return_address);
    if (blob->is_nmethod()) {
      nmethod* code = (nmethod*)blob;
      assert(code != NULL, "nmethod must be present");
      assert(code->header_begin() != code->exception_begin(), "no exception handler");
      return code->exception_begin();
    }
    if (blob->is_runtime_stub()) {
      ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
    }
  }
  guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
#ifndef PRODUCT
  { ResourceMark rm;
    tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
    tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
    tty->print_cr("b) other problem");
  }
#endif // PRODUCT
  ShouldNotReachHere();
  return NULL;
}


JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
  return raw_exception_handler_for_return_address(return_address);
JRT_END

address SharedRuntime::get_poll_stub(address pc) {
  address stub;
  // Look up the code blob
  CodeBlob *cb = CodeCache::find_blob(pc);

  // Should be an nmethod
  assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );

  // Look up the relocation information
  assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
    "safepoint polling: type must be poll" );

  assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
    "Only polling locations are used for safepoint");

  bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
  if (at_poll_return) {
    assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
           "polling page return stub not created yet");
    stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
  } else {
    assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
           "polling page safepoint stub not created yet");
    stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
  }
#ifndef PRODUCT
  if( TraceSafepoint ) {
    char buf[256];
    jio_snprintf(buf, sizeof(buf),
                 "... found polling page %s exception at pc = "
                 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
                 at_poll_return ? "return" : "loop",
                 (intptr_t)pc, (intptr_t)stub);
    tty->print_raw_cr(buf);
  }
#endif // PRODUCT
  return stub;
}


oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
  assert(caller.is_interpreted_frame(), "");
  int args_size = ArgumentSizeComputer(sig).size() + 1;
  assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
  oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
  assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
  return result;
}


void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
  if (JvmtiExport::can_post_exceptions()) {
    vframeStream vfst(thread, true);
    methodHandle method = methodHandle(thread, vfst.method());
    address bcp = method()->bcp_from(vfst.bci());
    JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
  }
  Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
}

void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
  Handle h_exception = Exceptions::new_exception(thread, name, message);
  throw_and_post_jvmti_exception(thread, h_exception);
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
// The interpreter code to call this tracing function is only
// called/generated when TraceRedefineClasses has the right bits
// set. Since obsolete methods are never compiled, we don't have
// to modify the compilers to generate calls to this function.
//
JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
    JavaThread* thread, methodOopDesc* method))
  assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");

  if (method->is_obsolete()) {
    // We are calling an obsolete method, but this is not necessarily
    // an error. Our method could have been redefined just after we
    // fetched the methodOop from the constant pool.

    // RC_TRACE macro has an embedded ResourceMark
    RC_TRACE_WITH_THREAD(0x00001000, thread,
                         ("calling obsolete method '%s'",
                          method->name_and_sig_as_C_string()));
    if (RC_TRACE_ENABLED(0x00002000)) {
      // this option is provided to debug calls to obsolete methods
      guarantee(false, "faulting at call to an obsolete method.");
    }
  }
  return 0;
JRT_END

D
duke 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
// ret_pc points into caller; we are returning caller's exception handler
// for given exception
address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
                                                    bool force_unwind, bool top_frame_only) {
  assert(nm != NULL, "must exist");
  ResourceMark rm;

  ScopeDesc* sd = nm->scope_desc_at(ret_pc);
  // determine handler bci, if any
  EXCEPTION_MARK;

  int handler_bci = -1;
  int scope_depth = 0;
  if (!force_unwind) {
    int bci = sd->bci();
    do {
      bool skip_scope_increment = false;
      // exception handler lookup
      KlassHandle ek (THREAD, exception->klass());
      handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
      if (HAS_PENDING_EXCEPTION) {
        // We threw an exception while trying to find the exception handler.
        // Transfer the new exception to the exception handle which will
        // be set into thread local storage, and do another lookup for an
        // exception handler for this exception, this time starting at the
        // BCI of the exception handler which caused the exception to be
        // thrown (bugs 4307310 and 4546590). Set "exception" reference
        // argument to ensure that the correct exception is thrown (4870175).
        exception = Handle(THREAD, PENDING_EXCEPTION);
        CLEAR_PENDING_EXCEPTION;
        if (handler_bci >= 0) {
          bci = handler_bci;
          handler_bci = -1;
          skip_scope_increment = true;
        }
      }
      if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
        sd = sd->sender();
        if (sd != NULL) {
          bci = sd->bci();
        }
        ++scope_depth;
      }
    } while (!top_frame_only && handler_bci < 0 && sd != NULL);
  }

  // found handling method => lookup exception handler
  int catch_pco = ret_pc - nm->instructions_begin();

  ExceptionHandlerTable table(nm);
  HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
  if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
    // Allow abbreviated catch tables.  The idea is to allow a method
    // to materialize its exceptions without committing to the exact
    // routing of exceptions.  In particular this is needed for adding
    // a synthethic handler to unlock monitors when inlining
    // synchonized methods since the unlock path isn't represented in
    // the bytecodes.
    t = table.entry_for(catch_pco, -1, 0);
  }

#ifdef COMPILER1
  if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
    // Exception is not handled by this frame so unwind.  Note that
    // this is not the same as how C2 does this.  C2 emits a table
    // entry that dispatches to the unwind code in the nmethod.
    return NULL;
  }
#endif /* COMPILER1 */


  if (t == NULL) {
    tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
    tty->print_cr("   Exception:");
    exception->print();
    tty->cr();
    tty->print_cr(" Compiled exception table :");
    table.print();
    nm->print_code();
    guarantee(false, "missing exception handler");
    return NULL;
  }

  return nm->instructions_begin() + t->pco();
}

JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
  // These errors occur only at call sites
  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
JRT_END

498 499 500 501 502
JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
  // These errors occur only at call sites
  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
JRT_END

D
duke 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
JRT_END

JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
JRT_END

JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
  // This entry point is effectively only used for NullPointerExceptions which occur at inline
  // cache sites (when the callee activation is not yet set up) so we are at a call site
  throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
JRT_END

JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
  // We avoid using the normal exception construction in this case because
  // it performs an upcall to Java, and we're already out of stack space.
  klassOop k = SystemDictionary::StackOverflowError_klass();
  oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
  Handle exception (thread, exception_oop);
  if (StackTraceInThrowable) {
    java_lang_Throwable::fill_in_stack_trace(exception);
  }
  throw_and_post_jvmti_exception(thread, exception);
JRT_END

address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
                                                           address pc,
                                                           SharedRuntime::ImplicitExceptionKind exception_kind)
{
  address target_pc = NULL;

  if (Interpreter::contains(pc)) {
#ifdef CC_INTERP
    // C++ interpreter doesn't throw implicit exceptions
    ShouldNotReachHere();
#else
    switch (exception_kind) {
      case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
      case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
      case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
      default:                      ShouldNotReachHere();
    }
#endif // !CC_INTERP
  } else {
    switch (exception_kind) {
      case STACK_OVERFLOW: {
        // Stack overflow only occurs upon frame setup; the callee is
        // going to be unwound. Dispatch to a shared runtime stub
        // which will cause the StackOverflowError to be fabricated
        // and processed.
        // For stack overflow in deoptimization blob, cleanup thread.
        if (thread->deopt_mark() != NULL) {
          Deoptimization::cleanup_deopt_info(thread, NULL);
        }
        return StubRoutines::throw_StackOverflowError_entry();
      }

      case IMPLICIT_NULL: {
        if (VtableStubs::contains(pc)) {
          // We haven't yet entered the callee frame. Fabricate an
          // exception and begin dispatching it in the caller. Since
          // the caller was at a call site, it's safe to destroy all
          // caller-saved registers, as these entry points do.
          VtableStub* vt_stub = VtableStubs::stub_containing(pc);
568 569 570 571

          // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
          if (vt_stub == NULL) return NULL;

D
duke 已提交
572 573 574 575 576 577 578 579
          if (vt_stub->is_abstract_method_error(pc)) {
            assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
            return StubRoutines::throw_AbstractMethodError_entry();
          } else {
            return StubRoutines::throw_NullPointerException_at_call_entry();
          }
        } else {
          CodeBlob* cb = CodeCache::find_blob(pc);
580 581 582

          // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
          if (cb == NULL) return NULL;
D
duke 已提交
583 584 585 586 587 588 589 590

          // Exception happened in CodeCache. Must be either:
          // 1. Inline-cache check in C2I handler blob,
          // 2. Inline-cache check in nmethod, or
          // 3. Implict null exception in nmethod

          if (!cb->is_nmethod()) {
            guarantee(cb->is_adapter_blob(),
591
                      "exception happened outside interpreter, nmethods and vtable stubs (1)");
D
duke 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
            // There is no handler here, so we will simply unwind.
            return StubRoutines::throw_NullPointerException_at_call_entry();
          }

          // Otherwise, it's an nmethod.  Consult its exception handlers.
          nmethod* nm = (nmethod*)cb;
          if (nm->inlinecache_check_contains(pc)) {
            // exception happened inside inline-cache check code
            // => the nmethod is not yet active (i.e., the frame
            // is not set up yet) => use return address pushed by
            // caller => don't push another return address
            return StubRoutines::throw_NullPointerException_at_call_entry();
          }

#ifndef PRODUCT
          _implicit_null_throws++;
#endif
          target_pc = nm->continuation_for_implicit_exception(pc);
          guarantee(target_pc != 0, "must have a continuation point");
        }

        break; // fall through
      }


      case IMPLICIT_DIVIDE_BY_ZERO: {
        nmethod* nm = CodeCache::find_nmethod(pc);
        guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
#ifndef PRODUCT
        _implicit_div0_throws++;
#endif
        target_pc = nm->continuation_for_implicit_exception(pc);
        guarantee(target_pc != 0, "must have a continuation point");
        break; // fall through
      }

      default: ShouldNotReachHere();
    }

    guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
    assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");

    // for AbortVMOnException flag
    NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
    if (exception_kind == IMPLICIT_NULL) {
      Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
    } else {
      Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
    }
    return target_pc;
  }

  ShouldNotReachHere();
  return NULL;
}


JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
{
  THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
}
JNI_END


address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
  return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
}


#ifndef PRODUCT
JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
  const frame f = thread->last_frame();
  assert(f.is_interpreted_frame(), "must be an interpreted frame");
#ifndef PRODUCT
  methodHandle mh(THREAD, f.interpreter_frame_method());
  BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
#endif // !PRODUCT
  return preserve_this_value;
JRT_END
#endif // !PRODUCT


JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
  os::yield_all(attempts);
JRT_END


JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
  assert(obj->is_oop(), "must be a valid oop");
  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
JRT_END


jlong SharedRuntime::get_java_tid(Thread* thread) {
  if (thread != NULL) {
    if (thread->is_Java_thread()) {
      oop obj = ((JavaThread*)thread)->threadObj();
      return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
    }
  }
  return 0;
}

/**
 * This function ought to be a void function, but cannot be because
 * it gets turned into a tail-call on sparc, which runs into dtrace bug
 * 6254741.  Once that is fixed we can remove the dummy return value.
 */
int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
  return dtrace_object_alloc_base(Thread::current(), o);
}

int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
  assert(DTraceAllocProbes, "wrong call");
  Klass* klass = o->blueprint();
  int size = o->size();
  symbolOop name = klass->name();
  HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
                   name->bytes(), name->utf8_length(), size * HeapWordSize);
  return 0;
}

JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
    JavaThread* thread, methodOopDesc* method))
  assert(DTraceMethodProbes, "wrong call");
  symbolOop kname = method->klass_name();
  symbolOop name = method->name();
  symbolOop sig = method->signature();
  HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
      kname->bytes(), kname->utf8_length(),
      name->bytes(), name->utf8_length(),
      sig->bytes(), sig->utf8_length());
  return 0;
JRT_END

JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
    JavaThread* thread, methodOopDesc* method))
  assert(DTraceMethodProbes, "wrong call");
  symbolOop kname = method->klass_name();
  symbolOop name = method->name();
  symbolOop sig = method->signature();
  HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
      kname->bytes(), kname->utf8_length(),
      name->bytes(), name->utf8_length(),
      sig->bytes(), sig->utf8_length());
  return 0;
JRT_END


// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
// for a call current in progress, i.e., arguments has been pushed on stack
// put callee has not been invoked yet.  Used by: resolve virtual/static,
// vtable updates, etc.  Caller frame must be compiled.
Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  ResourceMark rm(THREAD);

  // last java frame on stack (which includes native call frames)
  vframeStream vfst(thread, true);  // Do not skip and javaCalls

  return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
}


// Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
// for a call current in progress, i.e., arguments has been pushed on stack
// but callee has not been invoked yet.  Caller frame must be compiled.
Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
                                              vframeStream& vfst,
                                              Bytecodes::Code& bc,
                                              CallInfo& callinfo, TRAPS) {
  Handle receiver;
  Handle nullHandle;  //create a handy null handle for exception returns

  assert(!vfst.at_end(), "Java frame must exist");

  // Find caller and bci from vframe
  methodHandle caller (THREAD, vfst.method());
  int          bci    = vfst.bci();

  // Find bytecode
  Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
  bc = bytecode->adjusted_invoke_code();
  int bytecode_index = bytecode->index();

  // Find receiver for non-static call
  if (bc != Bytecodes::_invokestatic) {
    // This register map must be update since we need to find the receiver for
    // compiled frames. The receiver might be in a register.
    RegisterMap reg_map2(thread);
    frame stubFrame   = thread->last_frame();
    // Caller-frame is a compiled frame
    frame callerFrame = stubFrame.sender(&reg_map2);

    methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
    if (callee.is_null()) {
      THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
    }
    // Retrieve from a compiled argument list
    receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));

    if (receiver.is_null()) {
      THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
    }
  }

  // Resolve method. This is parameterized by bytecode.
  constantPoolHandle constants (THREAD, caller->constants());
  assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
  LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));

#ifdef ASSERT
  // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
805
  if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
D
duke 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
    assert(receiver.not_null(), "should have thrown exception");
    KlassHandle receiver_klass (THREAD, receiver->klass());
    klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
                            // klass is already loaded
    KlassHandle static_receiver_klass (THREAD, rk);
    assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
    if (receiver_klass->oop_is_instance()) {
      if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
        tty->print_cr("ERROR: Klass not yet initialized!!");
        receiver_klass.print();
      }
      assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
    }
  }
#endif

  return receiver;
}

methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  ResourceMark rm(THREAD);
  // We need first to check if any Java activations (compiled, interpreted)
  // exist on the stack since last JavaCall.  If not, we need
  // to get the target method from the JavaCall wrapper.
  vframeStream vfst(thread, true);  // Do not skip any javaCalls
  methodHandle callee_method;
  if (vfst.at_end()) {
    // No Java frames were found on stack since we did the JavaCall.
    // Hence the stack can only contain an entry_frame.  We need to
    // find the target method from the stub frame.
    RegisterMap reg_map(thread, false);
    frame fr = thread->last_frame();
    assert(fr.is_runtime_frame(), "must be a runtimeStub");
    fr = fr.sender(&reg_map);
    assert(fr.is_entry_frame(), "must be");
    // fr is now pointing to the entry frame.
    callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
    assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  } else {
    Bytecodes::Code bc;
    CallInfo callinfo;
    find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
    callee_method = callinfo.selected_method();
  }
  assert(callee_method()->is_method(), "must be");
  return callee_method;
}

// Resolves a call.
methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
                                           bool is_virtual,
                                           bool is_optimized, TRAPS) {
  methodHandle callee_method;
  callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
    int retry_count = 0;
    while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
863
           callee_method->method_holder() != SystemDictionary::Object_klass()) {
D
duke 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
      // If has a pending exception then there is no need to re-try to
      // resolve this method.
      // If the method has been redefined, we need to try again.
      // Hack: we have no way to update the vtables of arrays, so don't
      // require that java.lang.Object has been updated.

      // It is very unlikely that method is redefined more than 100 times
      // in the middle of resolve. If it is looping here more than 100 times
      // means then there could be a bug here.
      guarantee((retry_count++ < 100),
                "Could not resolve to latest version of redefined method");
      // method is redefined in the middle of resolve so re-try.
      callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
    }
  }
  return callee_method;
}

// Resolves a call.  The compilers generate code for calls that go here
// and are patched with the real destination of the call.
methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
                                           bool is_virtual,
                                           bool is_optimized, TRAPS) {

  ResourceMark rm(thread);
  RegisterMap cbl_map(thread, false);
  frame caller_frame = thread->last_frame().sender(&cbl_map);

  CodeBlob* cb = caller_frame.cb();
  guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
  // make sure caller is not getting deoptimized
  // and removed before we are done with it.
  // CLEANUP - with lazy deopt shouldn't need this lock
  nmethodLocker caller_lock((nmethod*)cb);


  // determine call info & receiver
  // note: a) receiver is NULL for static calls
  //       b) an exception is thrown if receiver is NULL for non-static calls
  CallInfo call_info;
  Bytecodes::Code invoke_code = Bytecodes::_illegal;
  Handle receiver = find_callee_info(thread, invoke_code,
                                     call_info, CHECK_(methodHandle()));
  methodHandle callee_method = call_info.selected_method();

  assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
         ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");

#ifndef PRODUCT
  // tracing/debugging/statistics
  int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
                (is_virtual) ? (&_resolve_virtual_ctr) :
                               (&_resolve_static_ctr);
  Atomic::inc(addr);

  if (TraceCallFixup) {
    ResourceMark rm(thread);
    tty->print("resolving %s%s (%s) call to",
      (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
      Bytecodes::name(invoke_code));
    callee_method->print_short_name(tty);
    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  }
#endif

  // Compute entry points. This might require generation of C2I converter
  // frames, so we cannot be holding any locks here. Furthermore, the
  // computation of the entry points is independent of patching the call.  We
  // always return the entry-point, but we only patch the stub if the call has
  // not been deoptimized.  Return values: For a virtual call this is an
  // (cached_oop, destination address) pair. For a static call/optimized
  // virtual this is just a destination address.

  StaticCallInfo static_call_info;
  CompiledICInfo virtual_call_info;


  // Make sure the callee nmethod does not get deoptimized and removed before
  // we are done patching the code.
  nmethod* nm = callee_method->code();
  nmethodLocker nl_callee(nm);
#ifdef ASSERT
  address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
#endif

  if (is_virtual) {
    assert(receiver.not_null(), "sanity check");
    bool static_bound = call_info.resolved_method()->can_be_statically_bound();
    KlassHandle h_klass(THREAD, receiver->klass());
    CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
                     is_optimized, static_bound, virtual_call_info,
                     CHECK_(methodHandle()));
  } else {
    // static call
    CompiledStaticCall::compute_entry(callee_method, static_call_info);
  }

  // grab lock, check for deoptimization and potentially patch caller
  {
    MutexLocker ml_patch(CompiledIC_lock);

    // Now that we are ready to patch if the methodOop was redefined then
    // don't update call site and let the caller retry.

    if (!callee_method->is_old()) {
#ifdef ASSERT
      // We must not try to patch to jump to an already unloaded method.
      if (dest_entry_point != 0) {
        assert(CodeCache::find_blob(dest_entry_point) != NULL,
               "should not unload nmethod while locked");
      }
#endif
      if (is_virtual) {
        CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
        if (inline_cache->is_clean()) {
          inline_cache->set_to_monomorphic(virtual_call_info);
        }
      } else {
        CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
        if (ssc->is_clean()) ssc->set(static_call_info);
      }
    }

  } // unlock CompiledIC_lock

  return callee_method;
}


// Inline caches exist only in compiled code
JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
#ifdef ASSERT
  RegisterMap reg_map(thread, false);
  frame stub_frame = thread->last_frame();
  assert(stub_frame.is_runtime_frame(), "sanity check");
  frame caller_frame = stub_frame.sender(&reg_map);
  assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
#endif /* ASSERT */

  methodHandle callee_method;
  JRT_BLOCK
    callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
    // Return methodOop through TLS
    thread->set_vm_result(callee_method());
  JRT_BLOCK_END
  // return compiled code entry point after potential safepoints
  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  return callee_method->verified_code_entry();
JRT_END


// Handle call site that has been made non-entrant
JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  // 6243940 We might end up in here if the callee is deoptimized
  // as we race to call it.  We don't want to take a safepoint if
  // the caller was interpreted because the caller frame will look
  // interpreted to the stack walkers and arguments are now
  // "compiled" so it is much better to make this transition
  // invisible to the stack walking code. The i2c path will
  // place the callee method in the callee_target. It is stashed
  // there because if we try and find the callee by normal means a
  // safepoint is possible and have trouble gc'ing the compiled args.
  RegisterMap reg_map(thread, false);
  frame stub_frame = thread->last_frame();
  assert(stub_frame.is_runtime_frame(), "sanity check");
  frame caller_frame = stub_frame.sender(&reg_map);
1030 1031 1032 1033 1034 1035

  // MethodHandle invokes don't have a CompiledIC and should always
  // simply redispatch to the callee_target.
  address   sender_pc = caller_frame.pc();
  CodeBlob* sender_cb = caller_frame.cb();
  nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
  bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
  if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
    // If the callee_target is set, then we have come here via an i2c
    // adapter.
    methodOop callee = thread->callee_target();
    if (callee != NULL) {
      assert(callee->is_method(), "sanity");
      is_mh_invoke_via_adapter = true;
    }
  }
1046 1047

  if (caller_frame.is_interpreted_frame() ||
1048 1049
      caller_frame.is_entry_frame()       ||
      is_mh_invoke_via_adapter) {
D
duke 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    methodOop callee = thread->callee_target();
    guarantee(callee != NULL && callee->is_method(), "bad handshake");
    thread->set_vm_result(callee);
    thread->set_callee_target(NULL);
    return callee->get_c2i_entry();
  }

  // Must be compiled to compiled path which is safe to stackwalk
  methodHandle callee_method;
  JRT_BLOCK
    // Force resolving of caller (if we called from compiled frame)
    callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
    thread->set_vm_result(callee_method());
  JRT_BLOCK_END
  // return compiled code entry point after potential safepoints
  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  return callee_method->verified_code_entry();
JRT_END


// resolve a static call and patch code
JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  methodHandle callee_method;
  JRT_BLOCK
    callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
    thread->set_vm_result(callee_method());
  JRT_BLOCK_END
  // return compiled code entry point after potential safepoints
  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  return callee_method->verified_code_entry();
JRT_END


// resolve virtual call and update inline cache to monomorphic
JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  methodHandle callee_method;
  JRT_BLOCK
    callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
    thread->set_vm_result(callee_method());
  JRT_BLOCK_END
  // return compiled code entry point after potential safepoints
  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  return callee_method->verified_code_entry();
JRT_END


// Resolve a virtual call that can be statically bound (e.g., always
// monomorphic, so it has no inline cache).  Patch code to resolved target.
JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  methodHandle callee_method;
  JRT_BLOCK
    callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
    thread->set_vm_result(callee_method());
  JRT_BLOCK_END
  // return compiled code entry point after potential safepoints
  assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  return callee_method->verified_code_entry();
JRT_END





methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  ResourceMark rm(thread);
  CallInfo call_info;
  Bytecodes::Code bc;

  // receiver is NULL for static calls. An exception is thrown for NULL
  // receivers for non-static calls
  Handle receiver = find_callee_info(thread, bc, call_info,
                                     CHECK_(methodHandle()));
  // Compiler1 can produce virtual call sites that can actually be statically bound
  // If we fell thru to below we would think that the site was going megamorphic
  // when in fact the site can never miss. Worse because we'd think it was megamorphic
  // we'd try and do a vtable dispatch however methods that can be statically bound
  // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  // reresolution of the  call site (as if we did a handle_wrong_method and not an
  // plain ic_miss) and the site will be converted to an optimized virtual call site
  // never to miss again. I don't believe C2 will produce code like this but if it
  // did this would still be the correct thing to do for it too, hence no ifdef.
  //
  if (call_info.resolved_method()->can_be_statically_bound()) {
    methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
    if (TraceCallFixup) {
      RegisterMap reg_map(thread, false);
      frame caller_frame = thread->last_frame().sender(&reg_map);
      ResourceMark rm(thread);
      tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
      callee_method->print_short_name(tty);
      tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
      tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
    }
    return callee_method;
  }

  methodHandle callee_method = call_info.selected_method();

  bool should_be_mono = false;

#ifndef PRODUCT
  Atomic::inc(&_ic_miss_ctr);

  // Statistics & Tracing
  if (TraceCallFixup) {
    ResourceMark rm(thread);
    tty->print("IC miss (%s) call to", Bytecodes::name(bc));
    callee_method->print_short_name(tty);
    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  }

  if (ICMissHistogram) {
    MutexLocker m(VMStatistic_lock);
    RegisterMap reg_map(thread, false);
    frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
    // produce statistics under the lock
    trace_ic_miss(f.pc());
  }
#endif

  // install an event collector so that when a vtable stub is created the
  // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  // event can't be posted when the stub is created as locks are held
  // - instead the event will be deferred until the event collector goes
  // out of scope.
  JvmtiDynamicCodeEventCollector event_collector;

  // Update inline cache to megamorphic. Skip update if caller has been
  // made non-entrant or we are called from interpreted.
  { MutexLocker ml_patch (CompiledIC_lock);
    RegisterMap reg_map(thread, false);
    frame caller_frame = thread->last_frame().sender(&reg_map);
    CodeBlob* cb = caller_frame.cb();
    if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
      // Not a non-entrant nmethod, so find inline_cache
      CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
      bool should_be_mono = false;
      if (inline_cache->is_optimized()) {
        if (TraceCallFixup) {
          ResourceMark rm(thread);
          tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
          callee_method->print_short_name(tty);
          tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
        }
        should_be_mono = true;
      } else {
        compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
        if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {

          if (receiver()->klass() == ic_oop->holder_klass()) {
            // This isn't a real miss. We must have seen that compiled code
            // is now available and we want the call site converted to a
            // monomorphic compiled call site.
            // We can't assert for callee_method->code() != NULL because it
            // could have been deoptimized in the meantime
            if (TraceCallFixup) {
              ResourceMark rm(thread);
              tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
              callee_method->print_short_name(tty);
              tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
            }
            should_be_mono = true;
          }
        }
      }

      if (should_be_mono) {

        // We have a path that was monomorphic but was going interpreted
        // and now we have (or had) a compiled entry. We correct the IC
        // by using a new icBuffer.
        CompiledICInfo info;
        KlassHandle receiver_klass(THREAD, receiver()->klass());
        inline_cache->compute_monomorphic_entry(callee_method,
                                                receiver_klass,
                                                inline_cache->is_optimized(),
                                                false,
                                                info, CHECK_(methodHandle()));
        inline_cache->set_to_monomorphic(info);
      } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
        // Change to megamorphic
        inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
      } else {
        // Either clean or megamorphic
      }
    }
  } // Release CompiledIC_lock

  return callee_method;
}

//
// Resets a call-site in compiled code so it will get resolved again.
// This routines handles both virtual call sites, optimized virtual call
// sites, and static call sites. Typically used to change a call sites
// destination from compiled to interpreted.
//
methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  ResourceMark rm(thread);
  RegisterMap reg_map(thread, false);
  frame stub_frame = thread->last_frame();
  assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  frame caller = stub_frame.sender(&reg_map);

  // Do nothing if the frame isn't a live compiled frame.
  // nmethod could be deoptimized by the time we get here
  // so no update to the caller is needed.

  if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {

    address pc = caller.pc();
    Events::log("update call-site at pc " INTPTR_FORMAT, pc);

    // Default call_addr is the location of the "basic" call.
    // Determine the address of the call we a reresolving. With
    // Inline Caches we will always find a recognizable call.
    // With Inline Caches disabled we may or may not find a
    // recognizable call. We will always find a call for static
    // calls and for optimized virtual calls. For vanilla virtual
    // calls it depends on the state of the UseInlineCaches switch.
    //
    // With Inline Caches disabled we can get here for a virtual call
    // for two reasons:
    //   1 - calling an abstract method. The vtable for abstract methods
    //       will run us thru handle_wrong_method and we will eventually
    //       end up in the interpreter to throw the ame.
    //   2 - a racing deoptimization. We could be doing a vanilla vtable
    //       call and between the time we fetch the entry address and
    //       we jump to it the target gets deoptimized. Similar to 1
    //       we will wind up in the interprter (thru a c2i with c2).
    //
    address call_addr = NULL;
    {
      // Get call instruction under lock because another thread may be
      // busy patching it.
      MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
      // Location of call instruction
      if (NativeCall::is_call_before(pc)) {
        NativeCall *ncall = nativeCall_before(pc);
        call_addr = ncall->instruction_address();
      }
    }

    // Check for static or virtual call
    bool is_static_call = false;
    nmethod* caller_nm = CodeCache::find_nmethod(pc);
    // Make sure nmethod doesn't get deoptimized and removed until
    // this is done with it.
    // CLEANUP - with lazy deopt shouldn't need this lock
    nmethodLocker nmlock(caller_nm);

    if (call_addr != NULL) {
      RelocIterator iter(caller_nm, call_addr, call_addr+1);
      int ret = iter.next(); // Get item
      if (ret) {
        assert(iter.addr() == call_addr, "must find call");
        if (iter.type() == relocInfo::static_call_type) {
          is_static_call = true;
        } else {
          assert(iter.type() == relocInfo::virtual_call_type ||
                 iter.type() == relocInfo::opt_virtual_call_type
                , "unexpected relocInfo. type");
        }
      } else {
        assert(!UseInlineCaches, "relocation info. must exist for this address");
      }

      // Cleaning the inline cache will force a new resolve. This is more robust
      // than directly setting it to the new destination, since resolving of calls
      // is always done through the same code path. (experience shows that it
      // leads to very hard to track down bugs, if an inline cache gets updated
      // to a wrong method). It should not be performance critical, since the
      // resolve is only done once.

      MutexLocker ml(CompiledIC_lock);
      //
      // We do not patch the call site if the nmethod has been made non-entrant
      // as it is a waste of time
      //
      if (caller_nm->is_in_use()) {
        if (is_static_call) {
          CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
          ssc->set_to_clean();
        } else {
          // compiled, dispatched call (which used to call an interpreted method)
          CompiledIC* inline_cache = CompiledIC_at(call_addr);
          inline_cache->set_to_clean();
        }
      }
    }

  }

  methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));


#ifndef PRODUCT
  Atomic::inc(&_wrong_method_ctr);

  if (TraceCallFixup) {
    ResourceMark rm(thread);
    tty->print("handle_wrong_method reresolving call to");
    callee_method->print_short_name(tty);
    tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  }
#endif

  return callee_method;
}

// ---------------------------------------------------------------------------
// We are calling the interpreter via a c2i. Normally this would mean that
// we were called by a compiled method. However we could have lost a race
// where we went int -> i2c -> c2i and so the caller could in fact be
// interpreted. If the caller is compiled we attampt to patch the caller
// so he no longer calls into the interpreter.
IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  methodOop moop(method);

  address entry_point = moop->from_compiled_entry();

  // It's possible that deoptimization can occur at a call site which hasn't
  // been resolved yet, in which case this function will be called from
  // an nmethod that has been patched for deopt and we can ignore the
  // request for a fixup.
  // Also it is possible that we lost a race in that from_compiled_entry
  // is now back to the i2c in that case we don't need to patch and if
  // we did we'd leap into space because the callsite needs to use
  // "to interpreter" stub in order to load up the methodOop. Don't
  // ask me how I know this...
  //

  CodeBlob* cb = CodeCache::find_blob(caller_pc);
  if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
    return;
  }

  // There is a benign race here. We could be attempting to patch to a compiled
  // entry point at the same time the callee is being deoptimized. If that is
  // the case then entry_point may in fact point to a c2i and we'd patch the
  // call site with the same old data. clear_code will set code() to NULL
  // at the end of it. If we happen to see that NULL then we can skip trying
  // to patch. If we hit the window where the callee has a c2i in the
  // from_compiled_entry and the NULL isn't present yet then we lose the race
  // and patch the code with the same old data. Asi es la vida.

  if (moop->code() == NULL) return;

  if (((nmethod*)cb)->is_in_use()) {

    // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
    MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
    if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
      NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
      //
      // bug 6281185. We might get here after resolving a call site to a vanilla
      // virtual call. Because the resolvee uses the verified entry it may then
      // see compiled code and attempt to patch the site by calling us. This would
      // then incorrectly convert the call site to optimized and its downhill from
      // there. If you're lucky you'll get the assert in the bugid, if not you've
      // just made a call site that could be megamorphic into a monomorphic site
      // for the rest of its life! Just another racing bug in the life of
      // fixup_callers_callsite ...
      //
      RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
      iter.next();
      assert(iter.has_current(), "must have a reloc at java call site");
      relocInfo::relocType typ = iter.reloc()->type();
      if ( typ != relocInfo::static_call_type &&
           typ != relocInfo::opt_virtual_call_type &&
           typ != relocInfo::static_stub_type) {
        return;
      }
      address destination = call->destination();
      if (destination != entry_point) {
        CodeBlob* callee = CodeCache::find_blob(destination);
        // callee == cb seems weird. It means calling interpreter thru stub.
        if (callee == cb || callee->is_adapter_blob()) {
          // static call or optimized virtual
          if (TraceCallFixup) {
1430
            tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
D
duke 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
            moop->print_short_name(tty);
            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
          }
          call->set_destination_mt_safe(entry_point);
        } else {
          if (TraceCallFixup) {
            tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
            moop->print_short_name(tty);
            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
          }
          // assert is too strong could also be resolve destinations.
          // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
        }
      } else {
          if (TraceCallFixup) {
1446
            tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
D
duke 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
            moop->print_short_name(tty);
            tty->print_cr(" to " INTPTR_FORMAT, entry_point);
          }
      }
    }
  }

IRT_END


// same as JVM_Arraycopy, but called directly from compiled code
JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
                                                oopDesc* dest, jint dest_pos,
                                                jint length,
                                                JavaThread* thread)) {
#ifndef PRODUCT
  _slow_array_copy_ctr++;
#endif
  // Check if we have null pointers
  if (src == NULL || dest == NULL) {
    THROW(vmSymbols::java_lang_NullPointerException());
  }
  // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  // even though the copy_array API also performs dynamic checks to ensure
  // that src and dest are truly arrays (and are conformable).
  // The copy_array mechanism is awkward and could be removed, but
  // the compilers don't call this function except as a last resort,
  // so it probably doesn't matter.
  Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
                                        (arrayOopDesc*)dest, dest_pos,
                                        length, thread);
}
JRT_END

char* SharedRuntime::generate_class_cast_message(
    JavaThread* thread, const char* objName) {

  // Get target class name from the checkcast instruction
  vframeStream vfst(thread, true);
  assert(!vfst.at_end(), "Java frame must exist");
  Bytecode_checkcast* cc = Bytecode_checkcast_at(
    vfst.method()->bcp_from(vfst.bci()));
  Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
    cc->index(), thread));
  return generate_class_cast_message(objName, targetKlass->external_name());
}

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
                                                        oopDesc* required,
                                                        oopDesc* actual) {
  assert(EnableMethodHandles, "");
  oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
  if (singleKlass != NULL) {
    const char* objName = "argument or return value";
    if (actual != NULL) {
      // be flexible about the junk passed in:
      klassOop ak = (actual->is_klass()
                     ? (klassOop)actual
                     : actual->klass());
      objName = Klass::cast(ak)->external_name();
    }
    Klass* targetKlass = Klass::cast(required->is_klass()
                                     ? (klassOop)required
                                     : java_lang_Class::as_klassOop(required));
    return generate_class_cast_message(objName, targetKlass->external_name());
  } else {
    // %%% need to get the MethodType string, without messing around too much
    // Get a signature from the invoke instruction
    const char* mhName = "method handle";
    const char* targetType = "the required signature";
    vframeStream vfst(thread, true);
    if (!vfst.at_end()) {
      Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
      methodHandle target;
      {
        EXCEPTION_MARK;
        target = call->static_target(THREAD);
        if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
      }
      if (target.not_null()
          && target->is_method_handle_invoke()
          && required == target->method_handle_type()) {
        targetType = target->signature()->as_C_string();
      }
    }
    klassOop kignore; int fignore;
    methodOop actual_method = MethodHandles::decode_method(actual,
                                                          kignore, fignore);
    if (actual_method != NULL) {
      if (actual_method->name() == vmSymbols::invoke_name())
        mhName = "$";
      else
        mhName = actual_method->signature()->as_C_string();
      if (mhName[0] == '$')
        mhName = actual_method->signature()->as_C_string();
    }
    return generate_class_cast_message(mhName, targetType,
                                       " cannot be called as ");
  }
}

oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
                                                            oopDesc* required) {
  if (required == NULL)  return NULL;
1551
  if (required->klass() == SystemDictionary::Class_klass())
1552 1553 1554 1555 1556 1557 1558
    return required;
  if (required->is_klass())
    return Klass::cast(klassOop(required))->java_mirror();
  return NULL;
}


D
duke 已提交
1559
char* SharedRuntime::generate_class_cast_message(
1560
    const char* objName, const char* targetKlassName, const char* desc) {
D
duke 已提交
1561 1562
  size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;

1563
  char* message = NEW_RESOURCE_ARRAY(char, msglen);
D
duke 已提交
1564
  if (NULL == message) {
1565
    // Shouldn't happen, but don't cause even more problems if it does
D
duke 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    message = const_cast<char*>(objName);
  } else {
    jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  }
  return message;
}

JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  (void) JavaThread::current()->reguard_stack();
JRT_END


// Handles the uncommon case in locking, i.e., contention or an inflated lock.
#ifndef PRODUCT
int SharedRuntime::_monitor_enter_ctr=0;
#endif
JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  oop obj(_obj);
#ifndef PRODUCT
  _monitor_enter_ctr++;             // monitor enter slow
#endif
  if (PrintBiasedLockingStatistics) {
    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  }
  Handle h_obj(THREAD, obj);
  if (UseBiasedLocking) {
    // Retry fast entry if bias is revoked to avoid unnecessary inflation
    ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  } else {
    ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  }
  assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
JRT_END

#ifndef PRODUCT
int SharedRuntime::_monitor_exit_ctr=0;
#endif
// Handles the uncommon cases of monitor unlocking in compiled code
JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
   oop obj(_obj);
#ifndef PRODUCT
  _monitor_exit_ctr++;              // monitor exit slow
#endif
  Thread* THREAD = JavaThread::current();
  // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  // testing was unable to ever fire the assert that guarded it so I have removed it.
  assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
#undef MIGHT_HAVE_PENDING
#ifdef MIGHT_HAVE_PENDING
  // Save and restore any pending_exception around the exception mark.
  // While the slow_exit must not throw an exception, we could come into
  // this routine with one set.
  oop pending_excep = NULL;
  const char* pending_file;
  int pending_line;
  if (HAS_PENDING_EXCEPTION) {
    pending_excep = PENDING_EXCEPTION;
    pending_file  = THREAD->exception_file();
    pending_line  = THREAD->exception_line();
    CLEAR_PENDING_EXCEPTION;
  }
#endif /* MIGHT_HAVE_PENDING */

  {
    // Exit must be non-blocking, and therefore no exceptions can be thrown.
    EXCEPTION_MARK;
    ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  }

#ifdef MIGHT_HAVE_PENDING
  if (pending_excep != NULL) {
    THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  }
#endif /* MIGHT_HAVE_PENDING */
JRT_END

#ifndef PRODUCT

void SharedRuntime::print_statistics() {
  ttyLocker ttyl;
  if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");

  if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);

  SharedRuntime::print_ic_miss_histogram();

  if (CountRemovableExceptions) {
    if (_nof_removable_exceptions > 0) {
      Unimplemented(); // this counter is not yet incremented
      tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
    }
  }

  // Dump the JRT_ENTRY counters
  if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);

  tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  tty->print_cr("%5d wrong method", _wrong_method_ctr );
  tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );

  if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );

1693 1694
  AdapterHandlerLibrary::print_statistics();

D
duke 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
  if (xtty != NULL)  xtty->tail("statistics");
}

inline double percent(int x, int y) {
  return 100.0 * x / MAX2(y, 1);
}

class MethodArityHistogram {
 public:
  enum { MAX_ARITY = 256 };
 private:
  static int _arity_histogram[MAX_ARITY];     // histogram of #args
  static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  static int _max_arity;                      // max. arity seen
  static int _max_size;                       // max. arg size seen

  static void add_method_to_histogram(nmethod* nm) {
    methodOop m = nm->method();
    ArgumentCount args(m->signature());
    int arity   = args.size() + (m->is_static() ? 0 : 1);
    int argsize = m->size_of_parameters();
    arity   = MIN2(arity, MAX_ARITY-1);
    argsize = MIN2(argsize, MAX_ARITY-1);
    int count = nm->method()->compiled_invocation_count();
    _arity_histogram[arity]  += count;
    _size_histogram[argsize] += count;
    _max_arity = MAX2(_max_arity, arity);
    _max_size  = MAX2(_max_size, argsize);
  }

  void print_histogram_helper(int n, int* histo, const char* name) {
    const int N = MIN2(5, n);
    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
    double sum = 0;
    double weighted_sum = 0;
    int i;
    for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
    double rest = sum;
    double percent = sum / 100;
    for (i = 0; i <= N; i++) {
      rest -= histo[i];
      tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
    }
    tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
    tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  }

  void print_histogram() {
    tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
    print_histogram_helper(_max_arity, _arity_histogram, "arity");
    tty->print_cr("\nSame for parameter size (in words):");
    print_histogram_helper(_max_size, _size_histogram, "size");
    tty->cr();
  }

 public:
  MethodArityHistogram() {
    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
    _max_arity = _max_size = 0;
    for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
    CodeCache::nmethods_do(add_method_to_histogram);
    print_histogram();
  }
};

int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
int MethodArityHistogram::_max_arity;
int MethodArityHistogram::_max_size;

void SharedRuntime::print_call_statistics(int comp_total) {
  tty->print_cr("Calls from compiled code:");
  int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  tty->cr();
  tty->print_cr("Note 1: counter updates are not MT-safe.");
  tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  tty->print_cr("        %% in nested categories are relative to their category");
  tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  tty->cr();

  MethodArityHistogram h;
}
#endif


1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
// A simple wrapper class around the calling convention information
// that allows sharing of adapters for the same calling convention.
class AdapterFingerPrint : public CHeapObj {
 private:
  union {
    signed char  _compact[12];
    int          _compact_int[3];
    intptr_t*    _fingerprint;
  } _value;
  int _length; // A negative length indicates that _value._fingerprint is the array.
               // Otherwise it's in the compact form.

 public:
  AdapterFingerPrint(int total_args_passed, VMRegPair* regs) {
    assert(sizeof(_value._compact) == sizeof(_value._compact_int), "must match");
    _length = total_args_passed * 2;
    if (_length < (int)sizeof(_value._compact)) {
      _value._compact_int[0] = _value._compact_int[1] = _value._compact_int[2] = 0;
      // Storing the signature encoded as signed chars hits about 98%
      // of the time.
      signed char* ptr = _value._compact;
      int o = 0;
      for (int i = 0; i < total_args_passed; i++) {
        VMRegPair pair = regs[i];
        intptr_t v1 = pair.first()->value();
        intptr_t v2 = pair.second()->value();
        if (v1 == (signed char) v1 &&
            v2 == (signed char) v2) {
          _value._compact[o++] = v1;
          _value._compact[o++] = v2;
        } else {
          goto big;
        }
      }
      _length = -_length;
      return;
    }
  big:
    _value._fingerprint = NEW_C_HEAP_ARRAY(intptr_t, _length);
    int o = 0;
    for (int i = 0; i < total_args_passed; i++) {
      VMRegPair pair = regs[i];
      intptr_t v1 = pair.first()->value();
      intptr_t v2 = pair.second()->value();
      _value._fingerprint[o++] = v1;
      _value._fingerprint[o++] = v2;
    }
  }

  AdapterFingerPrint(AdapterFingerPrint* orig) {
    _length = orig->_length;
    _value = orig->_value;
    // take ownership of any storage by destroying the length
    orig->_length = 0;
  }

  ~AdapterFingerPrint() {
    if (_length > 0) {
      FREE_C_HEAP_ARRAY(int, _value._fingerprint);
    }
  }

  AdapterFingerPrint* allocate() {
    return new AdapterFingerPrint(this);
  }

  intptr_t value(int index) {
    if (_length < 0) {
      return _value._compact[index];
    }
    return _value._fingerprint[index];
  }
  int length() {
    if (_length < 0) return -_length;
    return _length;
  }

  bool is_compact() {
    return _length <= 0;
  }

  unsigned int compute_hash() {
    intptr_t hash = 0;
    for (int i = 0; i < length(); i++) {
      intptr_t v = value(i);
      hash = (hash << 8) ^ v ^ (hash >> 5);
    }
    return (unsigned int)hash;
  }

  const char* as_string() {
    stringStream st;
    for (int i = 0; i < length(); i++) {
      st.print(PTR_FORMAT, value(i));
    }
    return st.as_string();
  }

  bool equals(AdapterFingerPrint* other) {
    if (other->_length != _length) {
      return false;
    }
    if (_length < 0) {
      return _value._compact_int[0] == other->_value._compact_int[0] &&
             _value._compact_int[1] == other->_value._compact_int[1] &&
             _value._compact_int[2] == other->_value._compact_int[2];
    } else {
      for (int i = 0; i < _length; i++) {
        if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
          return false;
        }
      }
    }
    return true;
  }
};


// A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
class AdapterHandlerTable : public BasicHashtable {
  friend class AdapterHandlerTableIterator;

 private:

#ifdef ASSERT
  static int _lookups; // number of calls to lookup
  static int _buckets; // number of buckets checked
  static int _equals;  // number of buckets checked with matching hash
  static int _hits;    // number of successful lookups
  static int _compact; // number of equals calls with compact signature
#endif

  AdapterHandlerEntry* bucket(int i) {
    return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
  }

 public:
  AdapterHandlerTable()
    : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }

  // Create a new entry suitable for insertion in the table
  AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
    AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
    entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
    return entry;
  }

  // Insert an entry into the table
  void add(AdapterHandlerEntry* entry) {
    int index = hash_to_index(entry->hash());
    add_entry(index, entry);
  }

  // Find a entry with the same fingerprint if it exists
  AdapterHandlerEntry* lookup(int total_args_passed, VMRegPair* regs) {
    debug_only(_lookups++);
    AdapterFingerPrint fp(total_args_passed, regs);
    unsigned int hash = fp.compute_hash();
    int index = hash_to_index(hash);
    for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
      debug_only(_buckets++);
      if (e->hash() == hash) {
        debug_only(_equals++);
        if (fp.equals(e->fingerprint())) {
#ifdef ASSERT
          if (fp.is_compact()) _compact++;
          _hits++;
#endif
          return e;
        }
      }
    }
    return NULL;
  }

  void print_statistics() {
    ResourceMark rm;
    int longest = 0;
    int empty = 0;
    int total = 0;
    int nonempty = 0;
    for (int index = 0; index < table_size(); index++) {
      int count = 0;
      for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
        count++;
      }
      if (count != 0) nonempty++;
      if (count == 0) empty++;
      if (count > longest) longest = count;
      total += count;
    }
    tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
                  empty, longest, total, total / (double)nonempty);
#ifdef ASSERT
    tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
                  _lookups, _buckets, _equals, _hits, _compact);
#endif
  }
};


#ifdef ASSERT

int AdapterHandlerTable::_lookups;
int AdapterHandlerTable::_buckets;
int AdapterHandlerTable::_equals;
int AdapterHandlerTable::_hits;
int AdapterHandlerTable::_compact;

class AdapterHandlerTableIterator : public StackObj {
 private:
  AdapterHandlerTable* _table;
  int _index;
  AdapterHandlerEntry* _current;

  void scan() {
    while (_index < _table->table_size()) {
      AdapterHandlerEntry* a = _table->bucket(_index);
      if (a != NULL) {
        _current = a;
        return;
      }
      _index++;
    }
  }

 public:
  AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
    scan();
  }
  bool has_next() {
    return _current != NULL;
  }
  AdapterHandlerEntry* next() {
    if (_current != NULL) {
      AdapterHandlerEntry* result = _current;
      _current = _current->next();
      if (_current == NULL) scan();
      return result;
    } else {
      return NULL;
    }
  }
};
#endif


D
duke 已提交
2042 2043 2044
// ---------------------------------------------------------------------------
// Implementation of AdapterHandlerLibrary
const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
2045 2046
AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
D
duke 已提交
2047
const int AdapterHandlerLibrary_size = 16*K;
2048 2049 2050 2051 2052 2053 2054 2055
BufferBlob* AdapterHandlerLibrary::_buffer = NULL;

BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  // Should be called only when AdapterHandlerLibrary_lock is active.
  if (_buffer == NULL) // Initialize lazily
      _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  return _buffer;
}
D
duke 已提交
2056 2057

void AdapterHandlerLibrary::initialize() {
2058 2059
  if (_adapters != NULL) return;
  _adapters = new AdapterHandlerTable();
D
duke 已提交
2060 2061 2062 2063 2064 2065

  // Create a special handler for abstract methods.  Abstract methods
  // are never compiled so an i2c entry is somewhat meaningless, but
  // fill it in with something appropriate just in case.  Pass handle
  // wrong method for the c2i transitions.
  address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
  _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
                                                              StubRoutines::throw_AbstractMethodError_entry(),
                                                              wrong_method, wrong_method);
}

AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
                                                      address i2c_entry,
                                                      address c2i_entry,
                                                      address c2i_unverified_entry) {
  return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
D
duke 已提交
2076 2077
}

2078 2079 2080 2081 2082
AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  // Use customized signature handler.  Need to lock around updates to
  // the AdapterHandlerTable (it is not safe for concurrent readers
  // and a single writer: this could be fixed if it becomes a
  // problem).
D
duke 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

  // Get the address of the ic_miss handlers before we grab the
  // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  // was caused by the initialization of the stubs happening
  // while we held the lock and then notifying jvmti while
  // holding it. This just forces the initialization to be a little
  // earlier.
  address ic_miss = SharedRuntime::get_ic_miss_stub();
  assert(ic_miss != NULL, "must have handler");

2093 2094
  ResourceMark rm;

2095
  NOT_PRODUCT(int code_size);
D
duke 已提交
2096
  BufferBlob *B = NULL;
2097
  AdapterHandlerEntry* entry = NULL;
2098
  AdapterFingerPrint* fingerprint = NULL;
D
duke 已提交
2099 2100 2101 2102 2103 2104
  {
    MutexLocker mu(AdapterHandlerLibrary_lock);
    // make sure data structure is initialized
    initialize();

    if (method->is_abstract()) {
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
      return _abstract_method_handler;
    }

    // Fill in the signature array, for the calling-convention call.
    int total_args_passed = method->size_of_parameters(); // All args on stack

    BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
    VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
    int i = 0;
    if (!method->is_static())  // Pass in receiver first
      sig_bt[i++] = T_OBJECT;
    for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
      sig_bt[i++] = ss.type();  // Collect remaining bits of signature
      if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
        sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
D
duke 已提交
2120
    }
2121 2122 2123 2124
    assert(i == total_args_passed, "");

    // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
    int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
D
duke 已提交
2125 2126

    // Lookup method signature's fingerprint
2127 2128 2129
    entry = _adapters->lookup(total_args_passed, regs);
    if (entry != NULL) {
      return entry;
D
duke 已提交
2130 2131
    }

2132 2133 2134
    // Make a C heap allocated version of the fingerprint to store in the adapter
    fingerprint = new AdapterFingerPrint(total_args_passed, regs);

D
duke 已提交
2135 2136
    // Create I2C & C2I handlers

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
    if (buf != NULL) {
      CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
      short buffer_locs[20];
      buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
                                             sizeof(buffer_locs)/sizeof(relocInfo));
      MacroAssembler _masm(&buffer);

      entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
                                                     total_args_passed,
                                                     comp_args_on_stack,
                                                     sig_bt,
2149 2150
                                                     regs,
                                                     fingerprint);
D
duke 已提交
2151

2152 2153 2154
      B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
      NOT_PRODUCT(code_size = buffer.code_size());
    }
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
    if (B == NULL) {
      // CodeCache is full, disable compilation
      // Ought to log this but compile log is only per compile thread
      // and we're some non descript Java thread.
      UseInterpreter = true;
      if (UseCompiler || AlwaysCompileLoopMethods ) {
#ifndef PRODUCT
        warning("CodeCache is full. Compiler has been disabled");
        if (CompileTheWorld || ExitOnFullCodeCache) {
          before_exit(JavaThread::current());
          exit_globals(); // will delete tty
          vm_direct_exit(CompileTheWorld ? 0 : 1);
        }
#endif
        UseCompiler               = false;
        AlwaysCompileLoopMethods  = false;
      }
2172
      return NULL; // Out of CodeCache space
2173
    }
D
duke 已提交
2174 2175 2176 2177 2178
    entry->relocate(B->instructions_begin());
#ifndef PRODUCT
    // debugging suppport
    if (PrintAdapterHandlers) {
      tty->cr();
2179 2180 2181
      tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
                    _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
                    method->signature()->as_C_string(), fingerprint->as_string(), code_size );
D
duke 已提交
2182
      tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2183
      Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + code_size);
D
duke 已提交
2184 2185 2186
    }
#endif

2187
    _adapters->add(entry);
D
duke 已提交
2188 2189 2190 2191 2192 2193
  }
  // Outside of the lock
  if (B != NULL) {
    char blob_id[256];
    jio_snprintf(blob_id,
                 sizeof(blob_id),
2194
                 "%s(%s)@" PTR_FORMAT,
D
duke 已提交
2195
                 AdapterHandlerEntry::name,
2196
                 fingerprint->as_string(),
D
duke 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
                 B->instructions_begin());
    VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
    Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());

    if (JvmtiExport::should_post_dynamic_code_generated()) {
      JvmtiExport::post_dynamic_code_generated(blob_id,
                                               B->instructions_begin(),
                                               B->instructions_end());
    }
  }
2207
  return entry;
D
duke 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
}

void AdapterHandlerEntry::relocate(address new_base) {
    ptrdiff_t delta = new_base - _i2c_entry;
    _i2c_entry += delta;
    _c2i_entry += delta;
    _c2i_unverified_entry += delta;
}

// Create a native wrapper for this native method.  The wrapper converts the
// java compiled calling convention to the native convention, handlizes
// arguments, and transitions to native.  On return from the native we transition
// back to java blocking if a safepoint is in progress.
nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  ResourceMark rm;
  nmethod* nm = NULL;

  if (PrintCompilation) {
    ttyLocker ttyl;
    tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
    method->print_short_name(tty);
    if (method->is_static()) {
      tty->print(" (static)");
    }
    tty->cr();
  }

  assert(method->has_native_function(), "must have something valid to call!");

  {
    // perform the work while holding the lock, but perform any printing outside the lock
    MutexLocker mu(AdapterHandlerLibrary_lock);
    // See if somebody beat us to it
    nm = method->code();
    if (nm) {
      return nm;
    }

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
    ResourceMark rm;

    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
    if (buf != NULL) {
      CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
      double locs_buf[20];
      buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
      MacroAssembler _masm(&buffer);

      // Fill in the signature array, for the calling-convention call.
      int total_args_passed = method->size_of_parameters();

      BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
      VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
      int i=0;
      if( !method->is_static() )  // Pass in receiver first
        sig_bt[i++] = T_OBJECT;
      SignatureStream ss(method->signature());
      for( ; !ss.at_return_type(); ss.next()) {
        sig_bt[i++] = ss.type();  // Collect remaining bits of signature
        if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
          sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
      }
      assert( i==total_args_passed, "" );
      BasicType ret_type = ss.type();

      // Now get the compiled-Java layout as input arguments
      int comp_args_on_stack;
      comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);

      // Generate the compiled-to-native wrapper code
      nm = SharedRuntime::generate_native_wrapper(&_masm,
                                                  method,
                                                  total_args_passed,
                                                  comp_args_on_stack,
                                                  sig_bt,regs,
                                                  ret_type);
D
duke 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
    }
  }

  // Must unlock before calling set_code
  // Install the generated code.
  if (nm != NULL) {
    method->set_code(method, nm);
    nm->post_compiled_method_load_event();
  } else {
    // CodeCache is full, disable compilation
    // Ought to log this but compile log is only per compile thread
    // and we're some non descript Java thread.
    UseInterpreter = true;
    if (UseCompiler || AlwaysCompileLoopMethods ) {
#ifndef PRODUCT
      warning("CodeCache is full. Compiler has been disabled");
      if (CompileTheWorld || ExitOnFullCodeCache) {
        before_exit(JavaThread::current());
        exit_globals(); // will delete tty
        vm_direct_exit(CompileTheWorld ? 0 : 1);
      }
#endif
      UseCompiler               = false;
      AlwaysCompileLoopMethods  = false;
    }
  }
  return nm;
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
#ifdef HAVE_DTRACE_H
// Create a dtrace nmethod for this method.  The wrapper converts the
// java compiled calling convention to the native convention, makes a dummy call
// (actually nops for the size of the call instruction, which become a trap if
// probe is enabled). The returns to the caller. Since this all looks like a
// leaf no thread transition is needed.

nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  ResourceMark rm;
  nmethod* nm = NULL;

  if (PrintCompilation) {
    ttyLocker ttyl;
    tty->print("---   n%s  ");
    method->print_short_name(tty);
    if (method->is_static()) {
      tty->print(" (static)");
    }
    tty->cr();
  }

  {
    // perform the work while holding the lock, but perform any printing
    // outside the lock
    MutexLocker mu(AdapterHandlerLibrary_lock);
    // See if somebody beat us to it
    nm = method->code();
    if (nm) {
      return nm;
    }

2343 2344 2345 2346 2347 2348 2349 2350
    ResourceMark rm;

    BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
    if (buf != NULL) {
      CodeBuffer buffer(buf->instructions_begin(), buf->instructions_size());
      // Need a few relocation entries
      double locs_buf[20];
      buffer.insts()->initialize_shared_locs(
2351
        (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2352
      MacroAssembler _masm(&buffer);
2353

2354 2355 2356
      // Generate the compiled-to-native wrapper code
      nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
    }
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
  }
  return nm;
}

// the dtrace method needs to convert java lang string to utf8 string.
void SharedRuntime::get_utf(oopDesc* src, address dst) {
  typeArrayOop jlsValue  = java_lang_String::value(src);
  int          jlsOffset = java_lang_String::offset(src);
  int          jlsLen    = java_lang_String::length(src);
  jchar*       jlsPos    = (jlsLen == 0) ? NULL :
                                           jlsValue->char_at_addr(jlsOffset);
  (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
}
#endif // ndef HAVE_DTRACE_H

D
duke 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
// -------------------------------------------------------------------------
// Java-Java calling convention
// (what you use when Java calls Java)

//------------------------------name_for_receiver----------------------------------
// For a given signature, return the VMReg for parameter 0.
VMReg SharedRuntime::name_for_receiver() {
  VMRegPair regs;
  BasicType sig_bt = T_OBJECT;
  (void) java_calling_convention(&sig_bt, &regs, 1, true);
  // Return argument 0 register.  In the LP64 build pointers
  // take 2 registers, but the VM wants only the 'main' name.
  return regs.first();
}

2387
VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
D
duke 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
  // This method is returning a data structure allocating as a
  // ResourceObject, so do not put any ResourceMarks in here.
  char *s = sig->as_C_string();
  int len = (int)strlen(s);
  *s++; len--;                  // Skip opening paren
  char *t = s+len;
  while( *(--t) != ')' ) ;      // Find close paren

  BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  int cnt = 0;
2399
  if (has_receiver) {
D
duke 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
    sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  }

  while( s < t ) {
    switch( *s++ ) {            // Switch on signature character
    case 'B': sig_bt[cnt++] = T_BYTE;    break;
    case 'C': sig_bt[cnt++] = T_CHAR;    break;
    case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
    case 'F': sig_bt[cnt++] = T_FLOAT;   break;
    case 'I': sig_bt[cnt++] = T_INT;     break;
    case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
    case 'S': sig_bt[cnt++] = T_SHORT;   break;
    case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
    case 'V': sig_bt[cnt++] = T_VOID;    break;
    case 'L':                   // Oop
      while( *s++ != ';'  ) ;   // Skip signature
      sig_bt[cnt++] = T_OBJECT;
      break;
    case '[': {                 // Array
      do {                      // Skip optional size
        while( *s >= '0' && *s <= '9' ) s++;
      } while( *s++ == '[' );   // Nested arrays?
      // Skip element type
      if( s[-1] == 'L' )
        while( *s++ != ';'  ) ; // Skip signature
      sig_bt[cnt++] = T_ARRAY;
      break;
    }
    default : ShouldNotReachHere();
    }
  }
  assert( cnt < 256, "grow table size" );

  int comp_args_on_stack;
  comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);

  // the calling convention doesn't count out_preserve_stack_slots so
  // we must add that in to get "true" stack offsets.

  if (comp_args_on_stack) {
    for (int i = 0; i < cnt; i++) {
      VMReg reg1 = regs[i].first();
      if( reg1->is_stack()) {
        // Yuck
        reg1 = reg1->bias(out_preserve_stack_slots());
      }
      VMReg reg2 = regs[i].second();
      if( reg2->is_stack()) {
        // Yuck
        reg2 = reg2->bias(out_preserve_stack_slots());
      }
      regs[i].set_pair(reg2, reg1);
    }
  }

  // results
  *arg_size = cnt;
  return regs;
}

// OSR Migration Code
//
// This code is used convert interpreter frames into compiled frames.  It is
// called from very start of a compiled OSR nmethod.  A temp array is
// allocated to hold the interesting bits of the interpreter frame.  All
// active locks are inflated to allow them to move.  The displaced headers and
// active interpeter locals are copied into the temp buffer.  Then we return
// back to the compiled code.  The compiled code then pops the current
// interpreter frame off the stack and pushes a new compiled frame.  Then it
// copies the interpreter locals and displaced headers where it wants.
// Finally it calls back to free the temp buffer.
//
// All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.

JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )

#ifdef IA64
  ShouldNotReachHere(); // NYI
#endif /* IA64 */

  //
  // This code is dependent on the memory layout of the interpreter local
  // array and the monitors. On all of our platforms the layout is identical
  // so this code is shared. If some platform lays the their arrays out
  // differently then this code could move to platform specific code or
  // the code here could be modified to copy items one at a time using
  // frame accessor methods and be platform independent.

  frame fr = thread->last_frame();
  assert( fr.is_interpreted_frame(), "" );
  assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );

  // Figure out how many monitors are active.
  int active_monitor_count = 0;
  for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
       kptr < fr.interpreter_frame_monitor_begin();
       kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
    if( kptr->obj() != NULL ) active_monitor_count++;
  }

  // QQQ we could place number of active monitors in the array so that compiled code
  // could double check it.

  methodOop moop = fr.interpreter_frame_method();
  int max_locals = moop->max_locals();
  // Allocate temp buffer, 1 word per local & 2 per active monitor
  int buf_size_words = max_locals + active_monitor_count*2;
  intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);

  // Copy the locals.  Order is preserved so that loading of longs works.
  // Since there's no GC I can copy the oops blindly.
  assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  if (TaggedStackInterpreter) {
    for (int i = 0; i < max_locals; i++) {
      // copy only each local separately to the buffer avoiding the tag
      buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
    }
  } else {
    Copy::disjoint_words(
                       (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
                       (HeapWord*)&buf[0],
                       max_locals);
  }

  // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  int i = max_locals;
  for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
       kptr2 < fr.interpreter_frame_monitor_begin();
       kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
    if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
      BasicLock *lock = kptr2->lock();
      // Inflate so the displaced header becomes position-independent
      if (lock->displaced_header()->is_unlocked())
        ObjectSynchronizer::inflate_helper(kptr2->obj());
      // Now the displaced header is free to move
      buf[i++] = (intptr_t)lock->displaced_header();
      buf[i++] = (intptr_t)kptr2->obj();
    }
  }
  assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );

  return buf;
JRT_END

JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  FREE_C_HEAP_ARRAY(intptr_t,buf);
JRT_END

#ifndef PRODUCT
bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2550 2551 2552 2553
  AdapterHandlerTableIterator iter(_adapters);
  while (iter.has_next()) {
    AdapterHandlerEntry* a = iter.next();
    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
D
duke 已提交
2554 2555 2556 2557 2558
  }
  return false;
}

void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
2559 2560 2561 2562
  AdapterHandlerTableIterator iter(_adapters);
  while (iter.has_next()) {
    AdapterHandlerEntry* a = iter.next();
    if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
D
duke 已提交
2563
      tty->print("Adapter for signature: ");
2564 2565
      tty->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
                    a->fingerprint()->as_string(),
D
duke 已提交
2566 2567 2568 2569 2570 2571
                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
      return;
    }
  }
  assert(false, "Should have found handler");
}
2572 2573 2574 2575 2576

void AdapterHandlerLibrary::print_statistics() {
  _adapters->print_statistics();
}

D
duke 已提交
2577
#endif /* PRODUCT */