escape.cpp 115.4 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26
#include "precompiled.hpp"
#include "ci/bcEscapeAnalyzer.hpp"
27
#include "compiler/compileLog.hpp"
28 29 30 31 32 33 34 35 36
#include "libadt/vectset.hpp"
#include "memory/allocation.hpp"
#include "opto/c2compiler.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/compile.hpp"
#include "opto/escape.hpp"
#include "opto/phaseX.hpp"
#include "opto/rootnode.hpp"
D
duke 已提交
37

38
ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
39
  _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
40
  _collecting(true),
41
  _verify(false),
42
  _compile(C),
43
  _igvn(igvn),
44
  _node_map(C->comp_arena()) {
45 46 47
  // Add unknown java object.
  add_java_object(C->top(), PointsToNode::GlobalEscape);
  phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
48 49
  // Add ConP(#NULL) and ConN(#NULL) nodes.
  Node* oop_null = igvn->zerocon(T_OBJECT);
50 51 52
  assert(oop_null->_idx < nodes_size(), "should be created already");
  add_java_object(oop_null, PointsToNode::NoEscape);
  null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
53 54
  if (UseCompressedOops) {
    Node* noop_null = igvn->zerocon(T_NARROWOOP);
55 56
    assert(noop_null->_idx < nodes_size(), "should be created already");
    map_ideal_node(noop_null, null_obj);
57
  }
58 59
  _pcmp_neq = NULL; // Should be initialized
  _pcmp_eq  = NULL;
D
duke 已提交
60 61
}

62 63 64 65 66 67 68 69 70 71 72 73
bool ConnectionGraph::has_candidates(Compile *C) {
  // EA brings benefits only when the code has allocations and/or locks which
  // are represented by ideal Macro nodes.
  int cnt = C->macro_count();
  for( int i=0; i < cnt; i++ ) {
    Node *n = C->macro_node(i);
    if ( n->is_Allocate() )
      return true;
    if( n->is_Lock() ) {
      Node* obj = n->as_Lock()->obj_node()->uncast();
      if( !(obj->is_Parm() || obj->is_Con()) )
        return true;
74 75
    }
  }
76
  return false;
D
duke 已提交
77 78
}

79 80 81
void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  ResourceMark rm;
D
duke 已提交
82

83 84 85 86 87 88 89 90 91
  // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  // to create space for them in ConnectionGraph::_nodes[].
  Node* oop_null = igvn->zerocon(T_OBJECT);
  Node* noop_null = igvn->zerocon(T_NARROWOOP);
  ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  // Perform escape analysis
  if (congraph->compute_escape()) {
    // There are non escaping objects.
    C->set_congraph(congraph);
92
  }
93 94 95 96 97
  // Cleanup.
  if (oop_null->outcnt() == 0)
    igvn->hash_delete(oop_null);
  if (noop_null->outcnt() == 0)
    igvn->hash_delete(noop_null);
D
duke 已提交
98 99
}

100 101 102
bool ConnectionGraph::compute_escape() {
  Compile* C = _compile;
  PhaseGVN* igvn = _igvn;
D
duke 已提交
103

104 105 106 107 108 109 110 111 112 113
  // Worklists used by EA.
  Unique_Node_List delayed_worklist;
  GrowableArray<Node*> alloc_worklist;
  GrowableArray<Node*> ptr_cmp_worklist;
  GrowableArray<Node*> storestore_worklist;
  GrowableArray<PointsToNode*>   ptnodes_worklist;
  GrowableArray<JavaObjectNode*> java_objects_worklist;
  GrowableArray<JavaObjectNode*> non_escaped_worklist;
  GrowableArray<FieldNode*>      oop_fields_worklist;
  DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
114

115
  { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
D
duke 已提交
116

117 118 119 120 121
  // 1. Populate Connection Graph (CG) with PointsTo nodes.
  ideal_nodes.map(C->unique(), NULL);  // preallocate space
  // Initialize worklist
  if (C->root() != NULL) {
    ideal_nodes.push(C->root());
D
duke 已提交
122
  }
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  for( uint next = 0; next < ideal_nodes.size(); ++next ) {
    Node* n = ideal_nodes.at(next);
    // Create PointsTo nodes and add them to Connection Graph. Called
    // only once per ideal node since ideal_nodes is Unique_Node list.
    add_node_to_connection_graph(n, &delayed_worklist);
    PointsToNode* ptn = ptnode_adr(n->_idx);
    if (ptn != NULL) {
      ptnodes_worklist.append(ptn);
      if (ptn->is_JavaObject()) {
        java_objects_worklist.append(ptn->as_JavaObject());
        if ((n->is_Allocate() || n->is_CallStaticJava()) &&
            (ptn->escape_state() < PointsToNode::GlobalEscape)) {
          // Only allocations and java static calls results are interesting.
          non_escaped_worklist.append(ptn->as_JavaObject());
        }
      } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
        oop_fields_worklist.append(ptn->as_Field());
      }
    }
    if (n->is_MergeMem()) {
      // Collect all MergeMem nodes to add memory slices for
      // scalar replaceable objects in split_unique_types().
      _mergemem_worklist.append(n->as_MergeMem());
    } else if (OptimizePtrCompare && n->is_Cmp() &&
               (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
      // Collect compare pointers nodes.
      ptr_cmp_worklist.append(n);
    } else if (n->is_MemBarStoreStore()) {
      // Collect all MemBarStoreStore nodes so that depending on the
      // escape status of the associated Allocate node some of them
      // may be eliminated.
      storestore_worklist.append(n);
155
#ifdef ASSERT
156 157 158
    } else if(n->is_AddP()) {
      // Collect address nodes for graph verification.
      addp_worklist.append(n);
159
#endif
D
duke 已提交
160
    }
161 162 163
    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
      Node* m = n->fast_out(i);   // Get user
      ideal_nodes.push(m);
164
    }
D
duke 已提交
165
  }
166 167 168 169 170 171 172 173 174 175
  if (non_escaped_worklist.length() == 0) {
    _collecting = false;
    return false; // Nothing to do.
  }
  // Add final simple edges to graph.
  while(delayed_worklist.size() > 0) {
    Node* n = delayed_worklist.pop();
    add_final_edges(n);
  }
  int ptnodes_length = ptnodes_worklist.length();
D
duke 已提交
176

177
#ifdef ASSERT
178 179 180 181 182 183 184 185 186 187 188
  if (VerifyConnectionGraph) {
    // Verify that no new simple edges could be created and all
    // local vars has edges.
    _verify = true;
    for (int next = 0; next < ptnodes_length; ++next) {
      PointsToNode* ptn = ptnodes_worklist.at(next);
      add_final_edges(ptn->ideal_node());
      if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
        ptn->dump();
        assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
      }
189
    }
190
    _verify = false;
191
  }
192
#endif
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  // 2. Finish Graph construction by propagating references to all
  //    java objects through graph.
  if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
                                 java_objects_worklist, oop_fields_worklist)) {
    // All objects escaped or hit time or iterations limits.
    _collecting = false;
    return false;
  }

  // 3. Adjust scalar_replaceable state of nonescaping objects and push
  //    scalar replaceable allocations on alloc_worklist for processing
  //    in split_unique_types().
  int non_escaped_length = non_escaped_worklist.length();
  for (int next = 0; next < non_escaped_length; next++) {
    JavaObjectNode* ptn = non_escaped_worklist.at(next);
    if (ptn->escape_state() == PointsToNode::NoEscape &&
        ptn->scalar_replaceable()) {
      adjust_scalar_replaceable_state(ptn);
      if (ptn->scalar_replaceable()) {
        alloc_worklist.append(ptn->ideal_node());
D
duke 已提交
214 215 216 217
      }
    }
  }

218 219 220 221 222 223 224 225 226 227 228 229
#ifdef ASSERT
  if (VerifyConnectionGraph) {
    // Verify that graph is complete - no new edges could be added or needed.
    verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
                            java_objects_worklist, addp_worklist);
  }
  assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
  assert(null_obj->escape_state() == PointsToNode::NoEscape &&
         null_obj->edge_count() == 0 &&
         !null_obj->arraycopy_src() &&
         !null_obj->arraycopy_dst(), "sanity");
#endif
D
duke 已提交
230

231
  _collecting = false;
D
duke 已提交
232

233
  } // TracePhase t3("connectionGraph")
D
duke 已提交
234

235 236 237 238
  // 4. Optimize ideal graph based on EA information.
  bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
  if (has_non_escaping_obj) {
    optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
239
  }
D
duke 已提交
240

241 242 243 244 245
#ifndef PRODUCT
  if (PrintEscapeAnalysis) {
    dump(ptnodes_worklist); // Dump ConnectionGraph
  }
#endif
246

247 248 249 250 251 252 253 254
  bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
#ifdef ASSERT
  if (VerifyConnectionGraph) {
    int alloc_length = alloc_worklist.length();
    for (int next = 0; next < alloc_length; ++next) {
      Node* n = alloc_worklist.at(next);
      PointsToNode* ptn = ptnode_adr(n->_idx);
      assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
255
    }
D
duke 已提交
256
  }
257
#endif
258

259 260 261 262 263 264 265 266
  // 5. Separate memory graph for scalar replaceable allcations.
  if (has_scalar_replaceable_candidates &&
      C->AliasLevel() >= 3 && EliminateAllocations) {
    // Now use the escape information to create unique types for
    // scalar replaceable objects.
    split_unique_types(alloc_worklist);
    if (C->failing())  return false;
    C->print_method("After Escape Analysis", 2);
267

268 269 270 271 272 273 274 275 276 277 278 279 280
#ifdef ASSERT
  } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
    tty->print("=== No allocations eliminated for ");
    C->method()->print_short_name();
    if(!EliminateAllocations) {
      tty->print(" since EliminateAllocations is off ===");
    } else if(!has_scalar_replaceable_candidates) {
      tty->print(" since there are no scalar replaceable candidates ===");
    } else if(C->AliasLevel() < 3) {
      tty->print(" since AliasLevel < 3 ===");
    }
    tty->cr();
#endif
281
  }
282
  return has_non_escaping_obj;
D
duke 已提交
283 284
}

285 286 287 288 289 290 291 292 293
// Populate Connection Graph with PointsTo nodes and create simple
// connection graph edges.
void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
  assert(!_verify, "this method sould not be called for verification");
  PhaseGVN* igvn = _igvn;
  uint n_idx = n->_idx;
  PointsToNode* n_ptn = ptnode_adr(n_idx);
  if (n_ptn != NULL)
    return; // No need to redefine PointsTo node during first iteration.
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  if (n->is_Call()) {
    // Arguments to allocation and locking don't escape.
    if (n->is_AbstractLock()) {
      // Put Lock and Unlock nodes on IGVN worklist to process them during
      // first IGVN optimization when escape information is still available.
      record_for_optimizer(n);
    } else if (n->is_Allocate()) {
      add_call_node(n->as_Call());
      record_for_optimizer(n);
    } else {
      if (n->is_CallStaticJava()) {
        const char* name = n->as_CallStaticJava()->_name;
        if (name != NULL && strcmp(name, "uncommon_trap") == 0)
          return; // Skip uncommon traps
      }
      // Don't mark as processed since call's arguments have to be processed.
      delayed_worklist->push(n);
      // Check if a call returns an object.
      if (n->as_Call()->returns_pointer() &&
          n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
        add_call_node(n->as_Call());
      }
    }
    return;
319
  }
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  // Put this check here to process call arguments since some call nodes
  // point to phantom_obj.
  if (n_ptn == phantom_obj || n_ptn == null_obj)
    return; // Skip predefined nodes.

  int opcode = n->Opcode();
  switch (opcode) {
    case Op_AddP: {
      Node* base = get_addp_base(n);
      PointsToNode* ptn_base = ptnode_adr(base->_idx);
      // Field nodes are created for all field types. They are used in
      // adjust_scalar_replaceable_state() and split_unique_types().
      // Note, non-oop fields will have only base edges in Connection
      // Graph because such fields are not used for oop loads and stores.
      int offset = address_offset(n, igvn);
      add_field(n, PointsToNode::NoEscape, offset);
      if (ptn_base == NULL) {
        delayed_worklist->push(n); // Process it later.
338
      } else {
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        n_ptn = ptnode_adr(n_idx);
        add_base(n_ptn->as_Field(), ptn_base);
      }
      break;
    }
    case Op_CastX2P: {
      map_ideal_node(n, phantom_obj);
      break;
    }
    case Op_CastPP:
    case Op_CheckCastPP:
    case Op_EncodeP:
    case Op_DecodeN: {
      add_local_var_and_edge(n, PointsToNode::NoEscape,
                             n->in(1), delayed_worklist);
      break;
    }
    case Op_CMoveP: {
      add_local_var(n, PointsToNode::NoEscape);
      // Do not add edges during first iteration because some could be
      // not defined yet.
      delayed_worklist->push(n);
      break;
    }
    case Op_ConP:
    case Op_ConN: {
      // assume all oop constants globally escape except for null
      PointsToNode::EscapeState es;
      if (igvn->type(n) == TypePtr::NULL_PTR ||
          igvn->type(n) == TypeNarrowOop::NULL_PTR) {
        es = PointsToNode::NoEscape;
      } else {
        es = PointsToNode::GlobalEscape;
      }
      add_java_object(n, es);
      break;
    }
    case Op_CreateEx: {
      // assume that all exception objects globally escape
      add_java_object(n, PointsToNode::GlobalEscape);
      break;
    }
    case Op_LoadKlass:
    case Op_LoadNKlass: {
      // Unknown class is loaded
      map_ideal_node(n, phantom_obj);
      break;
    }
    case Op_LoadP:
    case Op_LoadN:
    case Op_LoadPLocked: {
      // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
      // ThreadLocal has RawPrt type.
      const Type* t = igvn->type(n);
      if (t->make_ptr() != NULL) {
        Node* adr = n->in(MemNode::Address);
395
#ifdef ASSERT
396 397 398 399 400 401
        if (!adr->is_AddP()) {
          assert(igvn->type(adr)->isa_rawptr(), "sanity");
        } else {
          assert((ptnode_adr(adr->_idx) == NULL ||
                  ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
        }
402
#endif
403 404
        add_local_var_and_edge(n, PointsToNode::NoEscape,
                               adr, delayed_worklist);
405
      }
406
      break;
407
    }
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    case Op_Parm: {
      map_ideal_node(n, phantom_obj);
      break;
    }
    case Op_PartialSubtypeCheck: {
      // Produces Null or notNull and is used in only in CmpP so
      // phantom_obj could be used.
      map_ideal_node(n, phantom_obj); // Result is unknown
      break;
    }
    case Op_Phi: {
      // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
      // ThreadLocal has RawPrt type.
      const Type* t = n->as_Phi()->type();
      if (t->make_ptr() != NULL) {
        add_local_var(n, PointsToNode::NoEscape);
        // Do not add edges during first iteration because some could be
        // not defined yet.
        delayed_worklist->push(n);
      }
      break;
    }
    case Op_Proj: {
      // we are only interested in the oop result projection from a call
      if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
          n->in(0)->as_Call()->returns_pointer()) {
        add_local_var_and_edge(n, PointsToNode::NoEscape,
                               n->in(0), delayed_worklist);
      }
      break;
    }
    case Op_Rethrow: // Exception object escapes
    case Op_Return: {
      if (n->req() > TypeFunc::Parms &&
          igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
        // Treat Return value as LocalVar with GlobalEscape escape state.
        add_local_var_and_edge(n, PointsToNode::GlobalEscape,
                               n->in(TypeFunc::Parms), delayed_worklist);
      }
      break;
    }
    case Op_StoreP:
    case Op_StoreN:
    case Op_StorePConditional:
    case Op_CompareAndSwapP:
    case Op_CompareAndSwapN: {
      Node* adr = n->in(MemNode::Address);
      const Type *adr_type = igvn->type(adr);
      adr_type = adr_type->make_ptr();
      if (adr_type->isa_oopptr() ||
          (opcode == Op_StoreP || opcode == Op_StoreN) &&
                        (adr_type == TypeRawPtr::NOTNULL &&
                         adr->in(AddPNode::Address)->is_Proj() &&
                         adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
        delayed_worklist->push(n); // Process it later.
#ifdef ASSERT
        assert(adr->is_AddP(), "expecting an AddP");
        if (adr_type == TypeRawPtr::NOTNULL) {
          // Verify a raw address for a store captured by Initialize node.
          int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
          assert(offs != Type::OffsetBot, "offset must be a constant");
        }
      } else {
        // Ignore copy the displaced header to the BoxNode (OSR compilation).
        if (adr->is_BoxLock())
          break;
D
duke 已提交
474

475 476 477 478 479 480 481 482 483 484 485
        if (!adr->is_AddP()) {
          n->dump(1);
          assert(adr->is_AddP(), "expecting an AddP");
        }
        // Ignore G1 barrier's stores.
        if (!UseG1GC || (opcode != Op_StoreP) ||
            (adr_type != TypeRawPtr::BOTTOM)) {
          n->dump(1);
          assert(false, "not G1 barrier raw StoreP");
        }
#endif
486
      }
487
      break;
488
    }
489 490 491 492 493 494 495
    case Op_AryEq:
    case Op_StrComp:
    case Op_StrEquals:
    case Op_StrIndexOf: {
      add_local_var(n, PointsToNode::ArgEscape);
      delayed_worklist->push(n); // Process it later.
      break;
496
    }
497 498 499 500 501 502
    case Op_ThreadLocal: {
      add_java_object(n, PointsToNode::ArgEscape);
      break;
    }
    default:
      ; // Do nothing for nodes not related to EA.
503
  }
504
  return;
D
duke 已提交
505 506
}

507 508 509 510 511 512 513 514 515 516
#ifdef ASSERT
#define ELSE_FAIL(name)                               \
      /* Should not be called for not pointer type. */  \
      n->dump(1);                                       \
      assert(false, name);                              \
      break;
#else
#define ELSE_FAIL(name) \
      break;
#endif
D
duke 已提交
517

518 519 520 521 522 523 524
// Add final simple edges to graph.
void ConnectionGraph::add_final_edges(Node *n) {
  PointsToNode* n_ptn = ptnode_adr(n->_idx);
#ifdef ASSERT
  if (_verify && n_ptn->is_JavaObject())
    return; // This method does not change graph for JavaObject.
#endif
D
duke 已提交
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
  if (n->is_Call()) {
    process_call_arguments(n->as_Call());
    return;
  }
  assert(n->is_Store() || n->is_LoadStore() ||
         (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
         "node should be registered already");
  int opcode = n->Opcode();
  switch (opcode) {
    case Op_AddP: {
      Node* base = get_addp_base(n);
      PointsToNode* ptn_base = ptnode_adr(base->_idx);
      assert(ptn_base != NULL, "field's base should be registered");
      add_base(n_ptn->as_Field(), ptn_base);
      break;
    }
    case Op_CastPP:
    case Op_CheckCastPP:
    case Op_EncodeP:
    case Op_DecodeN: {
      add_local_var_and_edge(n, PointsToNode::NoEscape,
                             n->in(1), NULL);
      break;
    }
    case Op_CMoveP: {
      for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
        Node* in = n->in(i);
        if (in == NULL)
          continue;  // ignore NULL
        Node* uncast_in = in->uncast();
        if (uncast_in->is_top() || uncast_in == n)
          continue;  // ignore top or inputs which go back this node
        PointsToNode* ptn = ptnode_adr(in->_idx);
        assert(ptn != NULL, "node should be registered");
        add_edge(n_ptn, ptn);
561
      }
562
      break;
D
duke 已提交
563
    }
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    case Op_LoadP:
    case Op_LoadN:
    case Op_LoadPLocked: {
      // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
      // ThreadLocal has RawPrt type.
      const Type* t = _igvn->type(n);
      if (t->make_ptr() != NULL) {
        Node* adr = n->in(MemNode::Address);
        add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
        break;
      }
      ELSE_FAIL("Op_LoadP");
    }
    case Op_Phi: {
      // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
      // ThreadLocal has RawPrt type.
      const Type* t = n->as_Phi()->type();
      if (t->make_ptr() != NULL) {
        for (uint i = 1; i < n->req(); i++) {
          Node* in = n->in(i);
          if (in == NULL)
            continue;  // ignore NULL
          Node* uncast_in = in->uncast();
          if (uncast_in->is_top() || uncast_in == n)
            continue;  // ignore top or inputs which go back this node
          PointsToNode* ptn = ptnode_adr(in->_idx);
          assert(ptn != NULL, "node should be registered");
          add_edge(n_ptn, ptn);
        }
        break;
      }
      ELSE_FAIL("Op_Phi");
D
duke 已提交
596
    }
597 598 599 600 601 602 603 604
    case Op_Proj: {
      // we are only interested in the oop result projection from a call
      if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
          n->in(0)->as_Call()->returns_pointer()) {
        add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
        break;
      }
      ELSE_FAIL("Op_Proj");
D
duke 已提交
605
    }
606 607 608 609 610 611 612 613
    case Op_Rethrow: // Exception object escapes
    case Op_Return: {
      if (n->req() > TypeFunc::Parms &&
          _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
        // Treat Return value as LocalVar with GlobalEscape escape state.
        add_local_var_and_edge(n, PointsToNode::GlobalEscape,
                               n->in(TypeFunc::Parms), NULL);
        break;
614
      }
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
      ELSE_FAIL("Op_Return");
    }
    case Op_StoreP:
    case Op_StoreN:
    case Op_StorePConditional:
    case Op_CompareAndSwapP:
    case Op_CompareAndSwapN: {
      Node* adr = n->in(MemNode::Address);
      const Type *adr_type = _igvn->type(adr);
      adr_type = adr_type->make_ptr();
      if (adr_type->isa_oopptr() ||
          (opcode == Op_StoreP || opcode == Op_StoreN) &&
                        (adr_type == TypeRawPtr::NOTNULL &&
                         adr->in(AddPNode::Address)->is_Proj() &&
                         adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
        // Point Address to Value
        PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
        assert(adr_ptn != NULL &&
               adr_ptn->as_Field()->is_oop(), "node should be registered");
        Node *val = n->in(MemNode::ValueIn);
        PointsToNode* ptn = ptnode_adr(val->_idx);
        assert(ptn != NULL, "node should be registered");
        add_edge(adr_ptn, ptn);
        break;
639
      }
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
      ELSE_FAIL("Op_StoreP");
    }
    case Op_AryEq:
    case Op_StrComp:
    case Op_StrEquals:
    case Op_StrIndexOf: {
      // char[] arrays passed to string intrinsic do not escape but
      // they are not scalar replaceable. Adjust escape state for them.
      // Start from in(2) edge since in(1) is memory edge.
      for (uint i = 2; i < n->req(); i++) {
        Node* adr = n->in(i);
        const Type* at = _igvn->type(adr);
        if (!adr->is_top() && at->isa_ptr()) {
          assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
                 at->isa_ptr() != NULL, "expecting a pointer");
          if (adr->is_AddP()) {
            adr = get_addp_base(adr);
          }
          PointsToNode* ptn = ptnode_adr(adr->_idx);
          assert(ptn != NULL, "node should be registered");
          add_edge(n_ptn, ptn);
        }
662
      }
663 664 665 666 667
      break;
    }
    default: {
      // This method should be called only for EA specific nodes which may
      // miss some edges when they were created.
668
#ifdef ASSERT
669
      n->dump(1);
670
#endif
671
      guarantee(false, "unknown node");
672 673
    }
  }
674
  return;
675 676
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
void ConnectionGraph::add_call_node(CallNode* call) {
  assert(call->returns_pointer(), "only for call which returns pointer");
  uint call_idx = call->_idx;
  if (call->is_Allocate()) {
    Node* k = call->in(AllocateNode::KlassNode);
    const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
    assert(kt != NULL, "TypeKlassPtr  required.");
    ciKlass* cik = kt->klass();
    PointsToNode::EscapeState es = PointsToNode::NoEscape;
    bool scalar_replaceable = true;
    if (call->is_AllocateArray()) {
      if (!cik->is_array_klass()) { // StressReflectiveCode
        es = PointsToNode::GlobalEscape;
      } else {
        int length = call->in(AllocateNode::ALength)->find_int_con(-1);
        if (length < 0 || length > EliminateAllocationArraySizeLimit) {
          // Not scalar replaceable if the length is not constant or too big.
          scalar_replaceable = false;
        }
      }
    } else {  // Allocate instance
      if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
         !cik->is_instance_klass() || // StressReflectiveCode
          cik->as_instance_klass()->has_finalizer()) {
        es = PointsToNode::GlobalEscape;
702 703
      }
    }
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    add_java_object(call, es);
    PointsToNode* ptn = ptnode_adr(call_idx);
    if (!scalar_replaceable && ptn->scalar_replaceable()) {
      ptn->set_scalar_replaceable(false);
    }
  } else if (call->is_CallStaticJava()) {
    // Call nodes could be different types:
    //
    // 1. CallDynamicJavaNode (what happened during call is unknown):
    //
    //    - mapped to GlobalEscape JavaObject node if oop is returned;
    //
    //    - all oop arguments are escaping globally;
    //
    // 2. CallStaticJavaNode (execute bytecode analysis if possible):
    //
    //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
    //
    //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
    //    - mapped to NoEscape JavaObject node if non-escaping object allocated
    //      during call is returned;
    //    - mapped to ArgEscape LocalVar node pointed to object arguments
    //      which are returned and does not escape during call;
    //
    //    - oop arguments escaping status is defined by bytecode analysis;
    //
    // For a static call, we know exactly what method is being called.
    // Use bytecode estimator to record whether the call's return value escapes.
    ciMethod* meth = call->as_CallJava()->method();
    if (meth == NULL) {
      const char* name = call->as_CallStaticJava()->_name;
      assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
      // Returns a newly allocated unescaped object.
      add_java_object(call, PointsToNode::NoEscape);
      ptnode_adr(call_idx)->set_scalar_replaceable(false);
    } else {
      BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
      call_analyzer->copy_dependencies(_compile->dependencies());
      if (call_analyzer->is_return_allocated()) {
        // Returns a newly allocated unescaped object, simply
        // update dependency information.
        // Mark it as NoEscape so that objects referenced by
        // it's fields will be marked as NoEscape at least.
        add_java_object(call, PointsToNode::NoEscape);
        ptnode_adr(call_idx)->set_scalar_replaceable(false);
      } else {
        // Determine whether any arguments are returned.
        const TypeTuple* d = call->tf()->domain();
        bool ret_arg = false;
        for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
          if (d->field_at(i)->isa_ptr() != NULL &&
              call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
            ret_arg = true;
            break;
          }
759
        }
760 761 762 763 764
        if (ret_arg) {
          add_local_var(call, PointsToNode::ArgEscape);
        } else {
          // Returns unknown object.
          map_ideal_node(call, phantom_obj);
765 766
        }
      }
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
    }
  } else {
    // An other type of call, assume the worst case:
    // returned value is unknown and globally escapes.
    assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
    map_ideal_node(call, phantom_obj);
  }
}

void ConnectionGraph::process_call_arguments(CallNode *call) {
    bool is_arraycopy = false;
    switch (call->Opcode()) {
#ifdef ASSERT
    case Op_Allocate:
    case Op_AllocateArray:
    case Op_Lock:
    case Op_Unlock:
      assert(false, "should be done already");
      break;
#endif
    case Op_CallLeafNoFP:
      is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
                      strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
      // fall through
    case Op_CallLeaf: {
      // Stub calls, objects do not escape but they are not scale replaceable.
      // Adjust escape state for outgoing arguments.
      const TypeTuple * d = call->tf()->domain();
      bool src_has_oops = false;
      for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
        const Type* at = d->field_at(i);
        Node *arg = call->in(i);
        const Type *aat = _igvn->type(arg);
        if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
          continue;
        if (arg->is_AddP()) {
          //
          // The inline_native_clone() case when the arraycopy stub is called
          // after the allocation before Initialize and CheckCastPP nodes.
          // Or normal arraycopy for object arrays case.
          //
          // Set AddP's base (Allocate) as not scalar replaceable since
          // pointer to the base (with offset) is passed as argument.
          //
          arg = get_addp_base(arg);
        }
        PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
        assert(arg_ptn != NULL, "should be registered");
        PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
        if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
          assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
                 aat->isa_ptr() != NULL, "expecting an Ptr");
          bool arg_has_oops = aat->isa_oopptr() &&
                              (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
                               (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
          if (i == TypeFunc::Parms) {
            src_has_oops = arg_has_oops;
          }
          //
          // src or dst could be j.l.Object when other is basic type array:
          //
          //   arraycopy(char[],0,Object*,0,size);
          //   arraycopy(Object*,0,char[],0,size);
          //
          // Don't add edges in such cases.
          //
          bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
                                       arg_has_oops && (i > TypeFunc::Parms);
#ifdef ASSERT
          if (!(is_arraycopy ||
                call->as_CallLeaf()->_name != NULL &&
                (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
                 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
          ) {
            call->dump();
            assert(false, "EA: unexpected CallLeaf");
          }
#endif
          // Always process arraycopy's destination object since
          // we need to add all possible edges to references in
          // source object.
          if (arg_esc >= PointsToNode::ArgEscape &&
              !arg_is_arraycopy_dest) {
            continue;
          }
          set_escape_state(arg_ptn, PointsToNode::ArgEscape);
          if (arg_is_arraycopy_dest) {
            Node* src = call->in(TypeFunc::Parms);
            if (src->is_AddP()) {
              src = get_addp_base(src);
            }
            PointsToNode* src_ptn = ptnode_adr(src->_idx);
            assert(src_ptn != NULL, "should be registered");
            if (arg_ptn != src_ptn) {
              // Special arraycopy edge:
              // A destination object's field can't have the source object
              // as base since objects escape states are not related.
              // Only escape state of destination object's fields affects
              // escape state of fields in source object.
              add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
            }
          }
869
        }
870
      }
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
      break;
    }
    case Op_CallStaticJava: {
      // For a static call, we know exactly what method is being called.
      // Use bytecode estimator to record the call's escape affects
#ifdef ASSERT
      const char* name = call->as_CallStaticJava()->_name;
      assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
#endif
      ciMethod* meth = call->as_CallJava()->method();
      BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
      // fall-through if not a Java method or no analyzer information
      if (call_analyzer != NULL) {
        PointsToNode* call_ptn = ptnode_adr(call->_idx);
        const TypeTuple* d = call->tf()->domain();
        for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
          const Type* at = d->field_at(i);
          int k = i - TypeFunc::Parms;
          Node* arg = call->in(i);
          PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
          if (at->isa_ptr() != NULL &&
              call_analyzer->is_arg_returned(k)) {
            // The call returns arguments.
            if (call_ptn != NULL) { // Is call's result used?
              assert(call_ptn->is_LocalVar(), "node should be registered");
              assert(arg_ptn != NULL, "node should be registered");
              add_edge(call_ptn, arg_ptn);
            }
          }
          if (at->isa_oopptr() != NULL &&
              arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
            if (!call_analyzer->is_arg_stack(k)) {
              // The argument global escapes
              set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
            } else {
              set_escape_state(arg_ptn, PointsToNode::ArgEscape);
              if (!call_analyzer->is_arg_local(k)) {
                // The argument itself doesn't escape, but any fields might
                set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
              }
            }
          }
        }
        if (call_ptn != NULL && call_ptn->is_LocalVar()) {
          // The call returns arguments.
          assert(call_ptn->edge_count() > 0, "sanity");
          if (!call_analyzer->is_return_local()) {
            // Returns also unknown object.
            add_edge(call_ptn, phantom_obj);
          }
        }
922 923
        break;
      }
924
    }
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    default: {
      // Fall-through here if not a Java method or no analyzer information
      // or some other type of call, assume the worst case: all arguments
      // globally escape.
      const TypeTuple* d = call->tf()->domain();
      for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
        const Type* at = d->field_at(i);
        if (at->isa_oopptr() != NULL) {
          Node* arg = call->in(i);
          if (arg->is_AddP()) {
            arg = get_addp_base(arg);
          }
          assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
          set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
        }
      }
941 942 943 944 945
    }
  }
}


946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
// Finish Graph construction.
bool ConnectionGraph::complete_connection_graph(
                         GrowableArray<PointsToNode*>&   ptnodes_worklist,
                         GrowableArray<JavaObjectNode*>& non_escaped_worklist,
                         GrowableArray<JavaObjectNode*>& java_objects_worklist,
                         GrowableArray<FieldNode*>&      oop_fields_worklist) {
  // Normally only 1-3 passes needed to build Connection Graph depending
  // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
  // Set limit to 20 to catch situation when something did go wrong and
  // bailout Escape Analysis.
  // Also limit build time to 30 sec (60 in debug VM).
#define CG_BUILD_ITER_LIMIT 20
#ifdef ASSERT
#define CG_BUILD_TIME_LIMIT 60.0
#else
#define CG_BUILD_TIME_LIMIT 30.0
#endif
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
  // Propagate GlobalEscape and ArgEscape escape states and check that
  // we still have non-escaping objects. The method pushs on _worklist
  // Field nodes which reference phantom_object.
  if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
    return false; // Nothing to do.
  }
  // Now propagate references to all JavaObject nodes.
  int java_objects_length = java_objects_worklist.length();
  elapsedTimer time;
  int new_edges = 1;
  int iterations = 0;
  do {
    while ((new_edges > 0) &&
          (iterations++   < CG_BUILD_ITER_LIMIT) &&
          (time.seconds() < CG_BUILD_TIME_LIMIT)) {
      time.start();
      new_edges = 0;
      // Propagate references to phantom_object for nodes pushed on _worklist
      // by find_non_escaped_objects() and find_field_value().
      new_edges += add_java_object_edges(phantom_obj, false);
      for (int next = 0; next < java_objects_length; ++next) {
        JavaObjectNode* ptn = java_objects_worklist.at(next);
        new_edges += add_java_object_edges(ptn, true);
      }
      if (new_edges > 0) {
        // Update escape states on each iteration if graph was updated.
        if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
          return false; // Nothing to do.
992 993
        }
      }
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
      time.stop();
    }
    if ((iterations     < CG_BUILD_ITER_LIMIT) &&
        (time.seconds() < CG_BUILD_TIME_LIMIT)) {
      time.start();
      // Find fields which have unknown value.
      int fields_length = oop_fields_worklist.length();
      for (int next = 0; next < fields_length; next++) {
        FieldNode* field = oop_fields_worklist.at(next);
        if (field->edge_count() == 0) {
          new_edges += find_field_value(field);
          // This code may added new edges to phantom_object.
          // Need an other cycle to propagate references to phantom_object.
        }
1008
      }
1009 1010 1011 1012 1013
      time.stop();
    } else {
      new_edges = 0; // Bailout
    }
  } while (new_edges > 0);
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
  // Bailout if passed limits.
  if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
      (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
    Compile* C = _compile;
    if (C->log() != NULL) {
      C->log()->begin_elem("connectionGraph_bailout reason='reached ");
      C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
      C->log()->end_elem(" limit'");
    }
    assert(false, err_msg("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
           time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
    // Possible infinite build_connection_graph loop,
    // bailout (no changes to ideal graph were made).
    return false;
  }
#ifdef ASSERT
  if (Verbose && PrintEscapeAnalysis) {
    tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
                  iterations, nodes_size(), ptnodes_worklist.length());
  }
#endif

#undef CG_BUILD_ITER_LIMIT
#undef CG_BUILD_TIME_LIMIT

  // Find fields initialized by NULL for non-escaping Allocations.
  int non_escaped_length = non_escaped_worklist.length();
  for (int next = 0; next < non_escaped_length; next++) {
    JavaObjectNode* ptn = non_escaped_worklist.at(next);
    PointsToNode::EscapeState es = ptn->escape_state();
    assert(es <= PointsToNode::ArgEscape, "sanity");
    if (es == PointsToNode::NoEscape) {
      if (find_init_values(ptn, null_obj, _igvn) > 0) {
        // Adding references to NULL object does not change escape states
        // since it does not escape. Also no fields are added to NULL object.
        add_java_object_edges(null_obj, false);
      }
    }
    Node* n = ptn->ideal_node();
    if (n->is_Allocate()) {
      // The object allocated by this Allocate node will never be
      // seen by an other thread. Mark it so that when it is
      // expanded no MemBarStoreStore is added.
      InitializeNode* ini = n->as_Allocate()->initialization();
      if (ini != NULL)
        ini->set_does_not_escape();
    }
  }
  return true; // Finished graph construction.
}

// Propagate GlobalEscape and ArgEscape escape states to all nodes
// and check that we still have non-escaping java objects.
bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
                                               GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  GrowableArray<PointsToNode*> escape_worklist;
  // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  int ptnodes_length = ptnodes_worklist.length();
  for (int next = 0; next < ptnodes_length; ++next) {
    PointsToNode* ptn = ptnodes_worklist.at(next);
    if (ptn->escape_state() >= PointsToNode::ArgEscape ||
        ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
      escape_worklist.push(ptn);
    }
  }
  // Set escape states to referenced nodes (edges list).
  while (escape_worklist.length() > 0) {
    PointsToNode* ptn = escape_worklist.pop();
    PointsToNode::EscapeState es  = ptn->escape_state();
    PointsToNode::EscapeState field_es = ptn->fields_escape_state();
    if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
        es >= PointsToNode::ArgEscape) {
      // GlobalEscape or ArgEscape state of field means it has unknown value.
      if (add_edge(ptn, phantom_obj)) {
        // New edge was added
        add_field_uses_to_worklist(ptn->as_Field());
      }
    }
    for (EdgeIterator i(ptn); i.has_next(); i.next()) {
      PointsToNode* e = i.get();
      if (e->is_Arraycopy()) {
        assert(ptn->arraycopy_dst(), "sanity");
        // Propagate only fields escape state through arraycopy edge.
        if (e->fields_escape_state() < field_es) {
          set_fields_escape_state(e, field_es);
          escape_worklist.push(e);
1101
        }
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
      } else if (es >= field_es) {
        // fields_escape_state is also set to 'es' if it is less than 'es'.
        if (e->escape_state() < es) {
          set_escape_state(e, es);
          escape_worklist.push(e);
        }
      } else {
        // Propagate field escape state.
        bool es_changed = false;
        if (e->fields_escape_state() < field_es) {
          set_fields_escape_state(e, field_es);
          es_changed = true;
        }
        if ((e->escape_state() < field_es) &&
            e->is_Field() && ptn->is_JavaObject() &&
            e->as_Field()->is_oop()) {
          // Change escape state of referenced fileds.
          set_escape_state(e, field_es);
          es_changed = true;;
        } else if (e->escape_state() < es) {
          set_escape_state(e, es);
          es_changed = true;;
        }
        if (es_changed) {
          escape_worklist.push(e);
1127 1128
        }
      }
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    }
  }
  // Remove escaped objects from non_escaped list.
  for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
    JavaObjectNode* ptn = non_escaped_worklist.at(next);
    if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
      non_escaped_worklist.delete_at(next);
    }
    if (ptn->escape_state() == PointsToNode::NoEscape) {
      // Find fields in non-escaped allocations which have unknown value.
      find_init_values(ptn, phantom_obj, NULL);
    }
  }
  return (non_escaped_worklist.length() > 0);
}
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
// Add all references to JavaObject node by walking over all uses.
int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  int new_edges = 0;
  if (populate_worklist) {
    // Populate _worklist by uses of jobj's uses.
    for (UseIterator i(jobj); i.has_next(); i.next()) {
      PointsToNode* use = i.get();
      if (use->is_Arraycopy())
        continue;
      add_uses_to_worklist(use);
      if (use->is_Field() && use->as_Field()->is_oop()) {
        // Put on worklist all field's uses (loads) and
        // related field nodes (same base and offset).
        add_field_uses_to_worklist(use->as_Field());
      }
    }
  }
  while(_worklist.length() > 0) {
    PointsToNode* use = _worklist.pop();
    if (PointsToNode::is_base_use(use)) {
      // Add reference from jobj to field and from field to jobj (field's base).
      use = PointsToNode::get_use_node(use)->as_Field();
      if (add_base(use->as_Field(), jobj)) {
        new_edges++;
      }
      continue;
    }
    assert(!use->is_JavaObject(), "sanity");
    if (use->is_Arraycopy()) {
      if (jobj == null_obj) // NULL object does not have field edges
        continue;
      // Added edge from Arraycopy node to arraycopy's source java object
      if (add_edge(use, jobj)) {
        jobj->set_arraycopy_src();
        new_edges++;
      }
      // and stop here.
      continue;
    }
    if (!add_edge(use, jobj))
      continue; // No new edge added, there was such edge already.
    new_edges++;
    if (use->is_LocalVar()) {
      add_uses_to_worklist(use);
      if (use->arraycopy_dst()) {
        for (EdgeIterator i(use); i.has_next(); i.next()) {
          PointsToNode* e = i.get();
          if (e->is_Arraycopy()) {
            if (jobj == null_obj) // NULL object does not have field edges
              continue;
            // Add edge from arraycopy's destination java object to Arraycopy node.
            if (add_edge(jobj, e)) {
              new_edges++;
              jobj->set_arraycopy_dst();
1199 1200 1201
            }
          }
        }
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
      }
    } else {
      // Added new edge to stored in field values.
      // Put on worklist all field's uses (loads) and
      // related field nodes (same base and offset).
      add_field_uses_to_worklist(use->as_Field());
    }
  }
  return new_edges;
}
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
// Put on worklist all related field nodes.
void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  assert(field->is_oop(), "sanity");
  int offset = field->offset();
  add_uses_to_worklist(field);
  // Loop over all bases of this field and push on worklist Field nodes
  // with the same offset and base (since they may reference the same field).
  for (BaseIterator i(field); i.has_next(); i.next()) {
    PointsToNode* base = i.get();
    add_fields_to_worklist(field, base);
    // Check if the base was source object of arraycopy and go over arraycopy's
    // destination objects since values stored to a field of source object are
    // accessable by uses (loads) of fields of destination objects.
    if (base->arraycopy_src()) {
      for (UseIterator j(base); j.has_next(); j.next()) {
        PointsToNode* arycp = j.get();
        if (arycp->is_Arraycopy()) {
          for (UseIterator k(arycp); k.has_next(); k.next()) {
            PointsToNode* abase = k.get();
            if (abase->arraycopy_dst() && abase != base) {
              // Look for the same arracopy reference.
              add_fields_to_worklist(field, abase);
1235 1236 1237 1238
            }
          }
        }
      }
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    }
  }
}

// Put on worklist all related field nodes.
void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  int offset = field->offset();
  if (base->is_LocalVar()) {
    for (UseIterator j(base); j.has_next(); j.next()) {
      PointsToNode* f = j.get();
      if (PointsToNode::is_base_use(f)) { // Field
        f = PointsToNode::get_use_node(f);
        if (f == field || !f->as_Field()->is_oop())
          continue;
        int offs = f->as_Field()->offset();
        if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
          add_to_worklist(f);
        }
D
duke 已提交
1257
      }
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    }
  } else {
    assert(base->is_JavaObject(), "sanity");
    if (// Skip phantom_object since it is only used to indicate that
        // this field's content globally escapes.
        (base != phantom_obj) &&
        // NULL object node does not have fields.
        (base != null_obj)) {
      for (EdgeIterator i(base); i.has_next(); i.next()) {
        PointsToNode* f = i.get();
        // Skip arraycopy edge since store to destination object field
        // does not update value in source object field.
        if (f->is_Arraycopy()) {
          assert(base->arraycopy_dst(), "sanity");
          continue;
1273
        }
1274 1275 1276 1277 1278
        if (f == field || !f->as_Field()->is_oop())
          continue;
        int offs = f->as_Field()->offset();
        if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
          add_to_worklist(f);
1279
        }
1280 1281 1282 1283
      }
    }
  }
}
D
duke 已提交
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
// Find fields which have unknown value.
int ConnectionGraph::find_field_value(FieldNode* field) {
  // Escaped fields should have init value already.
  assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  int new_edges = 0;
  for (BaseIterator i(field); i.has_next(); i.next()) {
    PointsToNode* base = i.get();
    if (base->is_JavaObject()) {
      // Skip Allocate's fields which will be processed later.
      if (base->ideal_node()->is_Allocate())
        return 0;
      assert(base == null_obj, "only NULL ptr base expected here");
    }
  }
  if (add_edge(field, phantom_obj)) {
    // New edge was added
    new_edges++;
    add_field_uses_to_worklist(field);
  }
  return new_edges;
}

// Find fields initializing values for allocations.
int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  int new_edges = 0;
  Node* alloc = pta->ideal_node();
  if (init_val == phantom_obj) {
    // Do nothing for Allocate nodes since its fields values are "known".
    if (alloc->is_Allocate())
      return 0;
    assert(alloc->as_CallStaticJava(), "sanity");
#ifdef ASSERT
    if (alloc->as_CallStaticJava()->method() == NULL) {
      const char* name = alloc->as_CallStaticJava()->_name;
      assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
    }
#endif
    // Non-escaped allocation returned from Java or runtime call have
    // unknown values in fields.
    for (EdgeIterator i(pta); i.has_next(); i.next()) {
      PointsToNode* ptn = i.get();
      if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
        if (add_edge(ptn, phantom_obj)) {
          // New edge was added
          new_edges++;
          add_field_uses_to_worklist(ptn->as_Field());
D
duke 已提交
1332 1333 1334
        }
      }
    }
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    return new_edges;
  }
  assert(init_val == null_obj, "sanity");
  // Do nothing for Call nodes since its fields values are unknown.
  if (!alloc->is_Allocate())
    return 0;

  InitializeNode* ini = alloc->as_Allocate()->initialization();
  Compile* C = _compile;
  bool visited_bottom_offset = false;
  GrowableArray<int> offsets_worklist;

  // Check if an oop field's initializing value is recorded and add
  // a corresponding NULL if field's value if it is not recorded.
  // Connection Graph does not record a default initialization by NULL
  // captured by Initialize node.
  //
  for (EdgeIterator i(pta); i.has_next(); i.next()) {
    PointsToNode* ptn = i.get(); // Field (AddP)
    if (!ptn->is_Field() || !ptn->as_Field()->is_oop())
      continue; // Not oop field
    int offset = ptn->as_Field()->offset();
    if (offset == Type::OffsetBot) {
      if (!visited_bottom_offset) {
        // OffsetBot is used to reference array's element,
        // always add reference to NULL to all Field nodes since we don't
        // known which element is referenced.
        if (add_edge(ptn, null_obj)) {
          // New edge was added
          new_edges++;
          add_field_uses_to_worklist(ptn->as_Field());
          visited_bottom_offset = true;
1367
        }
1368 1369 1370 1371 1372
      }
    } else {
      // Check only oop fields.
      const Type* adr_type = ptn->ideal_node()->as_AddP()->bottom_type();
      if (adr_type->isa_rawptr()) {
1373
#ifdef ASSERT
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        // Raw pointers are used for initializing stores so skip it
        // since it should be recorded already
        Node* base = get_addp_base(ptn->ideal_node());
        assert(adr_type->isa_rawptr() && base->is_Proj() &&
               (base->in(0) == alloc),"unexpected pointer type");
#endif
        continue;
      }
      if (!offsets_worklist.contains(offset)) {
        offsets_worklist.append(offset);
        Node* value = NULL;
        if (ini != NULL) {
          BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
          Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
          if (store != NULL && store->is_Store()) {
            value = store->in(MemNode::ValueIn);
          } else {
            // There could be initializing stores which follow allocation.
            // For example, a volatile field store is not collected
            // by Initialize node.
            //
            // Need to check for dependent loads to separate such stores from
            // stores which follow loads. For now, add initial value NULL so
            // that compare pointers optimization works correctly.
          }
1399
        }
1400 1401 1402 1403 1404 1405 1406
        if (value == NULL) {
          // A field's initializing value was not recorded. Add NULL.
          if (add_edge(ptn, null_obj)) {
            // New edge was added
            new_edges++;
            add_field_uses_to_worklist(ptn->as_Field());
          }
1407
        }
D
duke 已提交
1408 1409 1410
      }
    }
  }
1411 1412
  return new_edges;
}
D
duke 已提交
1413

1414 1415 1416 1417
// Adjust scalar_replaceable state after Connection Graph is built.
void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  // Search for non-escaping objects which are not scalar replaceable
  // and mark them to propagate the state to referenced objects.
D
duke 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
  // 1. An object is not scalar replaceable if the field into which it is
  // stored has unknown offset (stored into unknown element of an array).
  //
  for (UseIterator i(jobj); i.has_next(); i.next()) {
    PointsToNode* use = i.get();
    assert(!use->is_Arraycopy(), "sanity");
    if (use->is_Field()) {
      FieldNode* field = use->as_Field();
      assert(field->is_oop() && field->scalar_replaceable() &&
             field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
      if (field->offset() == Type::OffsetBot) {
        jobj->set_scalar_replaceable(false);
1431 1432
        return;
      }
1433 1434 1435 1436 1437 1438 1439 1440 1441
    }
    assert(use->is_Field() || use->is_LocalVar(), "sanity");
    // 2. An object is not scalar replaceable if it is merged with other objects.
    for (EdgeIterator j(use); j.has_next(); j.next()) {
      PointsToNode* ptn = j.get();
      if (ptn->is_JavaObject() && ptn != jobj) {
        // Mark all objects.
        jobj->set_scalar_replaceable(false);
         ptn->set_scalar_replaceable(false);
D
duke 已提交
1442 1443
      }
    }
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    if (!jobj->scalar_replaceable()) {
      return;
    }
  }

  for (EdgeIterator j(jobj); j.has_next(); j.next()) {
    // Non-escaping object node should point only to field nodes.
    FieldNode* field = j.get()->as_Field();
    int offset = field->as_Field()->offset();

    // 3. An object is not scalar replaceable if it has a field with unknown
    // offset (array's element is accessed in loop).
    if (offset == Type::OffsetBot) {
      jobj->set_scalar_replaceable(false);
      return;
    }
    // 4. Currently an object is not scalar replaceable if a LoadStore node
    // access its field since the field value is unknown after it.
    //
    Node* n = field->ideal_node();
D
duke 已提交
1464
    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
      if (n->fast_out(i)->is_LoadStore()) {
        jobj->set_scalar_replaceable(false);
        return;
      }
    }

    // 5. Or the address may point to more then one object. This may produce
    // the false positive result (set not scalar replaceable)
    // since the flow-insensitive escape analysis can't separate
    // the case when stores overwrite the field's value from the case
    // when stores happened on different control branches.
    //
    // Note: it will disable scalar replacement in some cases:
    //
    //    Point p[] = new Point[1];
    //    p[0] = new Point(); // Will be not scalar replaced
    //
    // but it will save us from incorrect optimizations in next cases:
    //
    //    Point p[] = new Point[1];
    //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
    //
    if (field->base_count() > 1) {
      for (BaseIterator i(field); i.has_next(); i.next()) {
        PointsToNode* base = i.get();
        // Don't take into account LocalVar nodes which
        // may point to only one object which should be also
        // this field's base by now.
        if (base->is_JavaObject() && base != jobj) {
          // Mark all bases.
          jobj->set_scalar_replaceable(false);
          base->set_scalar_replaceable(false);
1497
        }
D
duke 已提交
1498 1499 1500
      }
    }
  }
1501
}
D
duke 已提交
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
#ifdef ASSERT
void ConnectionGraph::verify_connection_graph(
                         GrowableArray<PointsToNode*>&   ptnodes_worklist,
                         GrowableArray<JavaObjectNode*>& non_escaped_worklist,
                         GrowableArray<JavaObjectNode*>& java_objects_worklist,
                         GrowableArray<Node*>& addp_worklist) {
  // Verify that graph is complete - no new edges could be added.
  int java_objects_length = java_objects_worklist.length();
  int non_escaped_length  = non_escaped_worklist.length();
  int new_edges = 0;
  for (int next = 0; next < java_objects_length; ++next) {
    JavaObjectNode* ptn = java_objects_worklist.at(next);
    new_edges += add_java_object_edges(ptn, true);
  }
  assert(new_edges == 0, "graph was not complete");
  // Verify that escape state is final.
  int length = non_escaped_worklist.length();
  find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  assert((non_escaped_length == non_escaped_worklist.length()) &&
         (non_escaped_length == length) &&
         (_worklist.length() == 0), "escape state was not final");

  // Verify fields information.
  int addp_length = addp_worklist.length();
  for (int next = 0; next < addp_length; ++next ) {
    Node* n = addp_worklist.at(next);
    FieldNode* field = ptnode_adr(n->_idx)->as_Field();
    if (field->is_oop()) {
      // Verify that field has all bases
      Node* base = get_addp_base(n);
      PointsToNode* ptn = ptnode_adr(base->_idx);
      if (ptn->is_JavaObject()) {
        assert(field->has_base(ptn->as_JavaObject()), "sanity");
      } else {
        assert(ptn->is_LocalVar(), "sanity");
        for (EdgeIterator i(ptn); i.has_next(); i.next()) {
          PointsToNode* e = i.get();
          if (e->is_JavaObject()) {
            assert(field->has_base(e->as_JavaObject()), "sanity");
D
duke 已提交
1542 1543 1544
          }
        }
      }
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
      // Verify that all fields have initializing values.
      if (field->edge_count() == 0) {
        field->dump();
        assert(field->edge_count() > 0, "sanity");
      }
    }
  }
}
#endif

// Optimize ideal graph.
void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
                                           GrowableArray<Node*>& storestore_worklist) {
  Compile* C = _compile;
  PhaseIterGVN* igvn = _igvn;
  if (EliminateLocks) {
    // Mark locks before changing ideal graph.
    int cnt = C->macro_count();
    for( int i=0; i < cnt; i++ ) {
      Node *n = C->macro_node(i);
      if (n->is_AbstractLock()) { // Lock and Unlock nodes
        AbstractLockNode* alock = n->as_AbstractLock();
        if (!alock->is_non_esc_obj()) {
          if (not_global_escape(alock->obj_node())) {
            assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
            // The lock could be marked eliminated by lock coarsening
            // code during first IGVN before EA. Replace coarsened flag
            // to eliminate all associated locks/unlocks.
            alock->set_non_esc_obj();
D
duke 已提交
1574 1575 1576 1577
          }
        }
      }
    }
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
  }

  if (OptimizePtrCompare) {
    // Add ConI(#CC_GT) and ConI(#CC_EQ).
    _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
    _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
    // Optimize objects compare.
    while (ptr_cmp_worklist.length() != 0) {
      Node *n = ptr_cmp_worklist.pop();
      Node *res = optimize_ptr_compare(n);
      if (res != NULL) {
#ifndef PRODUCT
        if (PrintOptimizePtrCompare) {
          tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
          if (Verbose) {
            n->dump(1);
          }
1595
        }
1596 1597
#endif
        igvn->replace_node(n, res);
1598 1599
      }
    }
1600 1601 1602 1603 1604
    // cleanup
    if (_pcmp_neq->outcnt() == 0)
      igvn->hash_delete(_pcmp_neq);
    if (_pcmp_eq->outcnt()  == 0)
      igvn->hash_delete(_pcmp_eq);
D
duke 已提交
1605 1606
  }

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
  // For MemBarStoreStore nodes added in library_call.cpp, check
  // escape status of associated AllocateNode and optimize out
  // MemBarStoreStore node if the allocated object never escapes.
  while (storestore_worklist.length() != 0) {
    Node *n = storestore_worklist.pop();
    MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
    Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
    assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
    if (not_global_escape(alloc)) {
      MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
      mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
      mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
      igvn->register_new_node_with_optimizer(mb);
      igvn->replace_node(storestore, mb);
    }
  }
}

// Optimize objects compare.
Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  assert(OptimizePtrCompare, "sanity");
  PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");

  // Check simple cases first.
  if (jobj1 != NULL) {
    if (jobj1->escape_state() == PointsToNode::NoEscape) {
      if (jobj1 == jobj2) {
        // Comparing the same not escaping object.
        return _pcmp_eq;
1641
      }
1642 1643 1644 1645 1646
      Node* obj = jobj1->ideal_node();
      // Comparing not escaping allocation.
      if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
          !ptn2->points_to(jobj1)) {
        return _pcmp_neq; // This includes nullness check.
D
duke 已提交
1647 1648
      }
    }
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
  }
  if (jobj2 != NULL) {
    if (jobj2->escape_state() == PointsToNode::NoEscape) {
      Node* obj = jobj2->ideal_node();
      // Comparing not escaping allocation.
      if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
          !ptn1->points_to(jobj2)) {
        return _pcmp_neq; // This includes nullness check.
      }
    }
  }
  if (jobj1 != NULL && jobj1 != phantom_obj &&
      jobj2 != NULL && jobj2 != phantom_obj &&
      jobj1->ideal_node()->is_Con() &&
      jobj2->ideal_node()->is_Con()) {
    // Klass or String constants compare. Need to be careful with
    // compressed pointers - compare types of ConN and ConP instead of nodes.
    const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
    const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
    assert(t1 != NULL && t2 != NULL, "sanity");
    if (t1->make_ptr() == t2->make_ptr()) {
      return _pcmp_eq;
    } else {
      return _pcmp_neq;
    }
  }
  if (ptn1->meet(ptn2)) {
    return NULL; // Sets are not disjoint
D
duke 已提交
1677 1678
  }

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
  // Sets are disjoint.
  bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  if (set1_has_unknown_ptr && set2_has_null_ptr ||
      set2_has_unknown_ptr && set1_has_null_ptr) {
    // Check nullness of unknown object.
    return NULL;
  }
1689

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
  // Disjointness by itself is not sufficient since
  // alias analysis is not complete for escaped objects.
  // Disjoint sets are definitely unrelated only when
  // at least one set has only not escaping allocations.
  if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
    if (ptn1->non_escaping_allocation()) {
      return _pcmp_neq;
    }
  }
  if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
    if (ptn2->non_escaping_allocation()) {
      return _pcmp_neq;
    }
  }
  return NULL;
}

// Connection Graph constuction functions.

void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  PointsToNode* ptadr = _nodes.at(n->_idx);
  if (ptadr != NULL) {
    assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
    return;
  }
  Compile* C = _compile;
  ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
  _nodes.at_put(n->_idx, ptadr);
}

void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  PointsToNode* ptadr = _nodes.at(n->_idx);
  if (ptadr != NULL) {
    assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
    return;
  }
  Compile* C = _compile;
  ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
  _nodes.at_put(n->_idx, ptadr);
}

void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  PointsToNode* ptadr = _nodes.at(n->_idx);
  if (ptadr != NULL) {
    assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
    return;
  }
  Compile* C = _compile;
  bool is_oop = is_oop_field(n, offset);
  FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
  _nodes.at_put(n->_idx, field);
}

void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
                                    PointsToNode* src, PointsToNode* dst) {
  assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  PointsToNode* ptadr = _nodes.at(n->_idx);
  if (ptadr != NULL) {
    assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
    return;
  }
  Compile* C = _compile;
  ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
  _nodes.at_put(n->_idx, ptadr);
  // Add edge from arraycopy node to source object.
  (void)add_edge(ptadr, src);
  src->set_arraycopy_src();
  // Add edge from destination object to arraycopy node.
  (void)add_edge(dst, ptadr);
  dst->set_arraycopy_dst();
}

bool ConnectionGraph::is_oop_field(Node* n, int offset) {
  const Type* adr_type = n->as_AddP()->bottom_type();
  BasicType bt = T_INT;
  if (offset == Type::OffsetBot) {
    // Check only oop fields.
    if (!adr_type->isa_aryptr() ||
        (adr_type->isa_aryptr()->klass() == NULL) ||
         adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
      // OffsetBot is used to reference array's element. Ignore first AddP.
      if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
        bt = T_OBJECT;
      }
    }
  } else if (offset != oopDesc::klass_offset_in_bytes()) {
    if (adr_type->isa_instptr()) {
      ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
      if (field != NULL) {
        bt = field->layout_type();
      } else {
        // Ignore non field load (for example, klass load)
      }
    } else if (adr_type->isa_aryptr()) {
      if (offset == arrayOopDesc::length_offset_in_bytes()) {
        // Ignore array length load.
      } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
        // Ignore first AddP.
1789
      } else {
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
        const Type* elemtype = adr_type->isa_aryptr()->elem();
        bt = elemtype->array_element_basic_type();
      }
    } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
      // Allocation initialization, ThreadLocal field access, unsafe access
      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
        int opcode = n->fast_out(i)->Opcode();
        if (opcode == Op_StoreP || opcode == Op_LoadP ||
            opcode == Op_StoreN || opcode == Op_LoadN) {
          bt = T_OBJECT;
        }
D
duke 已提交
1801 1802 1803
      }
    }
  }
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
  return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
}

// Returns unique pointed java object or NULL.
JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  assert(!_collecting, "should not call when contructed graph");
  // If the node was created after the escape computation we can't answer.
  uint idx = n->_idx;
  if (idx >= nodes_size()) {
    return NULL;
1814
  }
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
  PointsToNode* ptn = ptnode_adr(idx);
  if (ptn->is_JavaObject()) {
    return ptn->as_JavaObject();
  }
  assert(ptn->is_LocalVar(), "sanity");
  // Check all java objects it points to.
  JavaObjectNode* jobj = NULL;
  for (EdgeIterator i(ptn); i.has_next(); i.next()) {
    PointsToNode* e = i.get();
    if (e->is_JavaObject()) {
      if (jobj == NULL) {
        jobj = e->as_JavaObject();
      } else if (jobj != e) {
        return NULL;
      }
    }
  }
  return jobj;
D
duke 已提交
1833 1834
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
// Return true if this node points only to non-escaping allocations.
bool PointsToNode::non_escaping_allocation() {
  if (is_JavaObject()) {
    Node* n = ideal_node();
    if (n->is_Allocate() || n->is_CallStaticJava()) {
      return (escape_state() == PointsToNode::NoEscape);
    } else {
      return false;
    }
  }
  assert(is_LocalVar(), "sanity");
  // Check all java objects it points to.
  for (EdgeIterator i(this); i.has_next(); i.next()) {
    PointsToNode* e = i.get();
    if (e->is_JavaObject()) {
      Node* n = e->ideal_node();
      if ((e->escape_state() != PointsToNode::NoEscape) ||
          !(n->is_Allocate() || n->is_CallStaticJava())) {
        return false;
      }
    }
  }
  return true;
}

// Return true if we know the node does not escape globally.
bool ConnectionGraph::not_global_escape(Node *n) {
  assert(!_collecting, "should not call during graph construction");
  // If the node was created after the escape computation we can't answer.
  uint idx = n->_idx;
  if (idx >= nodes_size()) {
    return false;
  }
  PointsToNode* ptn = ptnode_adr(idx);
  PointsToNode::EscapeState es = ptn->escape_state();
  // If we have already computed a value, return it.
  if (es >= PointsToNode::GlobalEscape)
    return false;
  if (ptn->is_JavaObject()) {
    return true; // (es < PointsToNode::GlobalEscape);
  }
  assert(ptn->is_LocalVar(), "sanity");
  // Check all java objects it points to.
  for (EdgeIterator i(ptn); i.has_next(); i.next()) {
    if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
      return false;
  }
  return true;
}


// Helper functions

// Return true if this node points to specified node or nodes it points to.
bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  if (is_JavaObject()) {
    return (this == ptn);
  }
  assert(is_LocalVar(), "sanity");
  for (EdgeIterator i(this); i.has_next(); i.next()) {
    if (i.get() == ptn)
1896
      return true;
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
  }
  return false;
}

// Return true if one node points to an other.
bool PointsToNode::meet(PointsToNode* ptn) {
  if (this == ptn) {
    return true;
  } else if (ptn->is_JavaObject()) {
    return this->points_to(ptn->as_JavaObject());
  } else if (this->is_JavaObject()) {
    return ptn->points_to(this->as_JavaObject());
  }
  assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  int ptn_count =  ptn->edge_count();
  for (EdgeIterator i(this); i.has_next(); i.next()) {
    PointsToNode* this_e = i.get();
    for (int j = 0; j < ptn_count; j++) {
      if (this_e == ptn->edge(j))
1916 1917 1918 1919 1920 1921
        return true;
    }
  }
  return false;
}

1922 1923 1924 1925 1926 1927
#ifdef ASSERT
// Return true if bases point to this java object.
bool FieldNode::has_base(JavaObjectNode* jobj) const {
  for (BaseIterator i(this); i.has_next(); i.next()) {
    if (i.get() == jobj)
      return true;
1928
  }
1929
  return false;
1930
}
1931
#endif
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  const Type *adr_type = phase->type(adr);
  if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
      adr->in(AddPNode::Address)->is_Proj() &&
      adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
    // We are computing a raw address for a store captured by an Initialize
    // compute an appropriate address type. AddP cases #3 and #5 (see below).
    int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
    assert(offs != Type::OffsetBot ||
           adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
           "offset must be a constant or it is initialization of array");
    return offs;
1945
  }
1946 1947 1948 1949
  const TypePtr *t_ptr = adr_type->isa_ptr();
  assert(t_ptr != NULL, "must be a pointer type");
  return t_ptr->offset();
}
1950

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Node* ConnectionGraph::get_addp_base(Node *addp) {
  assert(addp->is_AddP(), "must be AddP");
  //
  // AddP cases for Base and Address inputs:
  // case #1. Direct object's field reference:
  //     Allocate
  //       |
  //     Proj #5 ( oop result )
  //       |
  //     CheckCastPP (cast to instance type)
  //      | |
  //     AddP  ( base == address )
  //
  // case #2. Indirect object's field reference:
  //      Phi
  //       |
  //     CastPP (cast to instance type)
  //      | |
  //     AddP  ( base == address )
  //
  // case #3. Raw object's field reference for Initialize node:
  //      Allocate
  //        |
  //      Proj #5 ( oop result )
  //  top   |
  //     \  |
  //     AddP  ( base == top )
  //
  // case #4. Array's element reference:
  //   {CheckCastPP | CastPP}
  //     |  | |
  //     |  AddP ( array's element offset )
  //     |  |
  //     AddP ( array's offset )
  //
  // case #5. Raw object's field reference for arraycopy stub call:
  //          The inline_native_clone() case when the arraycopy stub is called
  //          after the allocation before Initialize and CheckCastPP nodes.
  //      Allocate
  //        |
  //      Proj #5 ( oop result )
  //       | |
  //       AddP  ( base == address )
  //
  // case #6. Constant Pool, ThreadLocal, CastX2P or
  //          Raw object's field reference:
  //      {ConP, ThreadLocal, CastX2P, raw Load}
  //  top   |
  //     \  |
  //     AddP  ( base == top )
  //
  // case #7. Klass's field reference.
  //      LoadKlass
  //       | |
  //       AddP  ( base == address )
  //
  // case #8. narrow Klass's field reference.
  //      LoadNKlass
  //       |
  //      DecodeN
  //       | |
  //       AddP  ( base == address )
  //
  Node *base = addp->in(AddPNode::Base);
  if (base->uncast()->is_top()) { // The AddP case #3 and #6.
    base = addp->in(AddPNode::Address);
    while (base->is_AddP()) {
      // Case #6 (unsafe access) may have several chained AddP nodes.
      assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
      base = base->in(AddPNode::Address);
2021
    }
2022 2023 2024 2025 2026 2027
    Node* uncast_base = base->uncast();
    int opcode = uncast_base->Opcode();
    assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
           opcode == Op_CastX2P || uncast_base->is_DecodeN() ||
           (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
           (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2028
  }
2029 2030
  return base;
}
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  Node* addp2 = addp->raw_out(0);
  if (addp->outcnt() == 1 && addp2->is_AddP() &&
      addp2->in(AddPNode::Base) == n &&
      addp2->in(AddPNode::Address) == addp) {
    assert(addp->in(AddPNode::Base) == n, "expecting the same base");
    //
    // Find array's offset to push it on worklist first and
    // as result process an array's element offset first (pushed second)
    // to avoid CastPP for the array's offset.
    // Otherwise the inserted CastPP (LocalVar) will point to what
    // the AddP (Field) points to. Which would be wrong since
    // the algorithm expects the CastPP has the same point as
    // as AddP's base CheckCastPP (LocalVar).
    //
    //    ArrayAllocation
    //     |
    //    CheckCastPP
    //     |
    //    memProj (from ArrayAllocation CheckCastPP)
    //     |  ||
    //     |  ||   Int (element index)
    //     |  ||    |   ConI (log(element size))
    //     |  ||    |   /
    //     |  ||   LShift
    //     |  ||  /
    //     |  AddP (array's element offset)
    //     |  |
    //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
    //     | / /
    //     AddP (array's offset)
    //      |
    //     Load/Store (memory operation on array's element)
    //
    return addp2;
2068
  }
2069 2070
  return NULL;
}
2071

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
//
// Adjust the type and inputs of an AddP which computes the
// address of a field of an instance
//
bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  PhaseGVN* igvn = _igvn;
  const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  if (t == NULL) {
    // We are computing a raw address for a store captured by an Initialize
    // compute an appropriate address type (cases #3 and #5).
    assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
    assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
    intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
    assert(offs != Type::OffsetBot, "offset must be a constant");
    t = base_t->add_offset(offs)->is_oopptr();
2089
  }
2090 2091 2092
  int inst_id =  base_t->instance_id();
  assert(!t->is_known_instance() || t->instance_id() == inst_id,
                             "old type must be non-instance or match new type");
2093

2094 2095 2096 2097
  // The type 't' could be subclass of 'base_t'.
  // As result t->offset() could be large then base_t's size and it will
  // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  // constructor verifies correctness of the offset.
K
kvn 已提交
2098
  //
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
  // It could happened on subclass's branch (from the type profiling
  // inlining) which was not eliminated during parsing since the exactness
  // of the allocation type was not propagated to the subclass type check.
  //
  // Or the type 't' could be not related to 'base_t' at all.
  // It could happened when CHA type is different from MDO type on a dead path
  // (for example, from instanceof check) which is not collapsed during parsing.
  //
  // Do nothing for such AddP node and don't process its users since
  // this code branch will go away.
  //
  if (!t->is_known_instance() &&
      !base_t->klass()->is_subtype_of(t->klass())) {
     return false; // bail out
  }
  const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  // Do NOT remove the next line: ensure a new alias index is allocated
  // for the instance type. Note: C++ will not remove it since the call
  // has side effect.
  int alias_idx = _compile->get_alias_index(tinst);
  igvn->set_type(addp, tinst);
  // record the allocation in the node map
  set_map(addp, get_map(base->_idx));
  // Set addp's Base and Address to 'base'.
  Node *abase = addp->in(AddPNode::Base);
  Node *adr   = addp->in(AddPNode::Address);
  if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
      adr->in(0)->_idx == (uint)inst_id) {
    // Skip AddP cases #3 and #5.
  } else {
    assert(!abase->is_top(), "sanity"); // AddP case #3
    if (abase != base) {
      igvn->hash_delete(addp);
      addp->set_req(AddPNode::Base, base);
      if (abase == adr) {
        addp->set_req(AddPNode::Address, base);
      } else {
        // AddP case #4 (adr is array's element offset AddP node)
2137
#ifdef ASSERT
2138 2139 2140 2141 2142 2143
        const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
        assert(adr->is_AddP() && atype != NULL &&
               atype->instance_id() == inst_id, "array's element offset should be processed first");
#endif
      }
      igvn->hash_insert(addp);
K
kvn 已提交
2144 2145
    }
  }
2146 2147 2148 2149
  // Put on IGVN worklist since at least addp's type was changed above.
  record_for_optimizer(addp);
  return true;
}
2150

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
//
// Create a new version of orig_phi if necessary. Returns either the newly
// created phi or an existing phi.  Sets create_new to indicate whether a new
// phi was created.  Cache the last newly created phi in the node map.
//
PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  Compile *C = _compile;
  PhaseGVN* igvn = _igvn;
  new_created = false;
  int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  // nothing to do if orig_phi is bottom memory or matches alias_idx
  if (phi_alias_idx == alias_idx) {
    return orig_phi;
2164
  }
2165 2166 2167 2168
  // Have we recently created a Phi for this alias index?
  PhiNode *result = get_map_phi(orig_phi->_idx);
  if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
    return result;
2169
  }
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
  // Previous check may fail when the same wide memory Phi was split into Phis
  // for different memory slices. Search all Phis for this region.
  if (result != NULL) {
    Node* region = orig_phi->in(0);
    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
      Node* phi = region->fast_out(i);
      if (phi->is_Phi() &&
          C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
        assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
        return phi->as_Phi();
2180 2181 2182
      }
    }
  }
2183 2184 2185 2186 2187 2188
  if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
    if (C->do_escape_analysis() == true && !C->failing()) {
      // Retry compilation without escape analysis.
      // If this is the first failure, the sentinel string will "stick"
      // to the Compile object, and the C2Compiler will see it and retry.
      C->record_failure(C2Compiler::retry_no_escape_analysis());
2189
    }
2190
    return NULL;
2191
  }
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
  orig_phi_worklist.append_if_missing(orig_phi);
  const TypePtr *atype = C->get_adr_type(alias_idx);
  result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  C->copy_node_notes_to(result, orig_phi);
  igvn->set_type(result, result->bottom_type());
  record_for_optimizer(result);
  set_map(orig_phi, result);
  new_created = true;
  return result;
}
2202

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
//
// Return a new version of Memory Phi "orig_phi" with the inputs having the
// specified alias index.
//
PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  Compile *C = _compile;
  PhaseGVN* igvn = _igvn;
  bool new_phi_created;
  PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  if (!new_phi_created) {
    return result;
2215
  }
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
  GrowableArray<PhiNode *>  phi_list;
  GrowableArray<uint>  cur_input;
  PhiNode *phi = orig_phi;
  uint idx = 1;
  bool finished = false;
  while(!finished) {
    while (idx < phi->req()) {
      Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
      if (mem != NULL && mem->is_Phi()) {
        PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
        if (new_phi_created) {
          // found an phi for which we created a new split, push current one on worklist and begin
          // processing new one
          phi_list.push(phi);
          cur_input.push(idx);
          phi = mem->as_Phi();
          result = newphi;
          idx = 1;
          continue;
        } else {
          mem = newphi;
2237 2238
        }
      }
2239 2240 2241 2242
      if (C->failing()) {
        return NULL;
      }
      result->set_req(idx++, mem);
2243
    }
2244 2245 2246 2247
#ifdef ASSERT
    // verify that the new Phi has an input for each input of the original
    assert( phi->req() == result->req(), "must have same number of inputs.");
    assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2248
#endif
2249 2250 2251 2252 2253
    // Check if all new phi's inputs have specified alias index.
    // Otherwise use old phi.
    for (uint i = 1; i < phi->req(); i++) {
      Node* in = result->in(i);
      assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2254
    }
2255 2256 2257 2258 2259 2260 2261 2262
    // we have finished processing a Phi, see if there are any more to do
    finished = (phi_list.length() == 0 );
    if (!finished) {
      phi = phi_list.pop();
      idx = cur_input.pop();
      PhiNode *prev_result = get_map_phi(phi->_idx);
      prev_result->set_req(idx++, result);
      result = prev_result;
2263 2264
    }
  }
2265 2266
  return result;
}
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
//
// The next methods are derived from methods in MemNode.
//
Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  Node *mem = mmem;
  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  // means an array I have not precisely typed yet.  Do not do any
  // alias stuff with it any time soon.
  if (toop->base() != Type::AnyPtr &&
      !(toop->klass() != NULL &&
        toop->klass()->is_java_lang_Object() &&
        toop->offset() == Type::OffsetBot)) {
    mem = mmem->memory_at(alias_idx);
    // Update input if it is progress over what we have now
2282
  }
2283 2284
  return mem;
}
2285

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
//
// Move memory users to their memory slices.
//
void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  Compile* C = _compile;
  PhaseGVN* igvn = _igvn;
  const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  assert(tp != NULL, "ptr type");
  int alias_idx = C->get_alias_index(tp);
  int general_idx = C->get_general_index(alias_idx);
D
duke 已提交
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
  // Move users first
  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
    Node* use = n->fast_out(i);
    if (use->is_MergeMem()) {
      MergeMemNode* mmem = use->as_MergeMem();
      assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
      if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
        continue; // Nothing to do
      }
      // Replace previous general reference to mem node.
      uint orig_uniq = C->unique();
      Node* m = find_inst_mem(n, general_idx, orig_phis);
      assert(orig_uniq == C->unique(), "no new nodes");
      mmem->set_memory_at(general_idx, m);
      --imax;
      --i;
    } else if (use->is_MemBar()) {
      assert(!use->is_Initialize(), "initializing stores should not be moved");
      if (use->req() > MemBarNode::Precedent &&
          use->in(MemBarNode::Precedent) == n) {
        // Don't move related membars.
        record_for_optimizer(use);
        continue;
      }
      tp = use->as_MemBar()->adr_type()->isa_ptr();
      if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
          alias_idx == general_idx) {
        continue; // Nothing to do
      }
      // Move to general memory slice.
      uint orig_uniq = C->unique();
      Node* m = find_inst_mem(n, general_idx, orig_phis);
      assert(orig_uniq == C->unique(), "no new nodes");
      igvn->hash_delete(use);
      imax -= use->replace_edge(n, m);
      igvn->hash_insert(use);
      record_for_optimizer(use);
      --i;
2335
#ifdef ASSERT
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
    } else if (use->is_Mem()) {
      if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
        // Don't move related cardmark.
        continue;
      }
      // Memory nodes should have new memory input.
      tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
      assert(tp != NULL, "ptr type");
      int idx = C->get_alias_index(tp);
      assert(get_map(use->_idx) != NULL || idx == alias_idx,
             "Following memory nodes should have new memory input or be on the same memory slice");
    } else if (use->is_Phi()) {
      // Phi nodes should be split and moved already.
      tp = use->as_Phi()->adr_type()->isa_ptr();
      assert(tp != NULL, "ptr type");
      int idx = C->get_alias_index(tp);
      assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
    } else {
      use->dump();
      assert(false, "should not be here");
2356
#endif
2357
    }
D
duke 已提交
2358 2359 2360
  }
}

2361 2362 2363 2364 2365 2366 2367
//
// Search memory chain of "mem" to find a MemNode whose address
// is the specified alias index.
//
Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  if (orig_mem == NULL)
    return orig_mem;
2368
  Compile* C = _compile;
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
  PhaseGVN* igvn = _igvn;
  const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  bool is_instance = (toop != NULL) && toop->is_known_instance();
  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  Node *prev = NULL;
  Node *result = orig_mem;
  while (prev != result) {
    prev = result;
    if (result == start_mem)
      break;  // hit one of our sentinels
    if (result->is_Mem()) {
      const Type *at = igvn->type(result->in(MemNode::Address));
      if (at == Type::TOP)
        break; // Dead
      assert (at->isa_ptr() != NULL, "pointer type required.");
      int idx = C->get_alias_index(at->is_ptr());
      if (idx == alias_idx)
        break; // Found
      if (!is_instance && (at->isa_oopptr() == NULL ||
                           !at->is_oopptr()->is_known_instance())) {
        break; // Do not skip store to general memory slice.
2390
      }
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
      result = result->in(MemNode::Memory);
    }
    if (!is_instance)
      continue;  // don't search further for non-instance types
    // skip over a call which does not affect this memory slice
    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
      Node *proj_in = result->in(0);
      if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
        break;  // hit one of our sentinels
      } else if (proj_in->is_Call()) {
        CallNode *call = proj_in->as_Call();
        if (!call->may_modify(toop, igvn)) {
          result = call->in(TypeFunc::Memory);
2404
        }
2405 2406 2407 2408 2409 2410
      } else if (proj_in->is_Initialize()) {
        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
        // Stop if this is the initialization for the object instance which
        // which contains this memory slice, otherwise skip over it.
        if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
          result = proj_in->in(TypeFunc::Memory);
2411
        }
2412 2413
      } else if (proj_in->is_MemBar()) {
        result = proj_in->in(TypeFunc::Memory);
2414
      }
2415 2416 2417 2418 2419 2420 2421 2422 2423
    } else if (result->is_MergeMem()) {
      MergeMemNode *mmem = result->as_MergeMem();
      result = step_through_mergemem(mmem, alias_idx, toop);
      if (result == mmem->base_memory()) {
        // Didn't find instance memory, search through general slice recursively.
        result = mmem->memory_at(C->get_general_index(alias_idx));
        result = find_inst_mem(result, alias_idx, orig_phis);
        if (C->failing()) {
          return NULL;
2424
        }
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
        mmem->set_memory_at(alias_idx, result);
      }
    } else if (result->is_Phi() &&
               C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
      Node *un = result->as_Phi()->unique_input(igvn);
      if (un != NULL) {
        orig_phis.append_if_missing(result->as_Phi());
        result = un;
      } else {
        break;
      }
    } else if (result->is_ClearArray()) {
      if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
        // Can not bypass initialization of the instance
        // we are looking for.
        break;
      }
      // Otherwise skip it (the call updated 'result' value).
    } else if (result->Opcode() == Op_SCMemProj) {
      assert(result->in(0)->is_LoadStore(), "sanity");
      const Type *at = igvn->type(result->in(0)->in(MemNode::Address));
      if (at != Type::TOP) {
        assert (at->isa_ptr() != NULL, "pointer type required.");
        int idx = C->get_alias_index(at->is_ptr());
        assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
        break;
2451
      }
2452
      result = result->in(0)->in(MemNode::Memory);
2453 2454
    }
  }
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
  if (result->is_Phi()) {
    PhiNode *mphi = result->as_Phi();
    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
    const TypePtr *t = mphi->adr_type();
    if (!is_instance) {
      // Push all non-instance Phis on the orig_phis worklist to update inputs
      // during Phase 4 if needed.
      orig_phis.append_if_missing(mphi);
    } else if (C->get_alias_index(t) != alias_idx) {
      // Create a new Phi with the specified alias index type.
      result = split_memory_phi(mphi, alias_idx, orig_phis);
2466 2467
    }
  }
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
  // the result is either MemNode, PhiNode, InitializeNode.
  return result;
}

//
//  Convert the types of unescaped object to instance types where possible,
//  propagate the new type information through the graph, and update memory
//  edges and MergeMem inputs to reflect the new type.
//
//  We start with allocations (and calls which may be allocations)  on alloc_worklist.
//  The processing is done in 4 phases:
//
//  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
//            types for the CheckCastPP for allocations where possible.
//            Propagate the the new types through users as follows:
//               casts and Phi:  push users on alloc_worklist
//               AddP:  cast Base and Address inputs to the instance type
//                      push any AddP users on alloc_worklist and push any memnode
//                      users onto memnode_worklist.
//  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
//            search the Memory chain for a store with the appropriate type
//            address type.  If a Phi is found, create a new version with
//            the appropriate memory slices from each of the Phi inputs.
//            For stores, process the users as follows:
//               MemNode:  push on memnode_worklist
//               MergeMem: push on mergemem_worklist
//  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
//            moving the first node encountered of each  instance type to the
//            the input corresponding to its alias index.
//            appropriate memory slice.
//  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
//
// In the following example, the CheckCastPP nodes are the cast of allocation
// results and the allocation of node 29 is unescaped and eligible to be an
// instance type.
//
// We start with:
//
//     7 Parm #memory
//    10  ConI  "12"
//    19  CheckCastPP   "Foo"
//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
//    29  CheckCastPP   "Foo"
//    30  AddP  _ 29 29 10  Foo+12  alias_index=4
//
//    40  StoreP  25   7  20   ... alias_index=4
//    50  StoreP  35  40  30   ... alias_index=4
//    60  StoreP  45  50  20   ... alias_index=4
//    70  LoadP    _  60  30   ... alias_index=4
//    80  Phi     75  50  60   Memory alias_index=4
//    90  LoadP    _  80  30   ... alias_index=4
//   100  LoadP    _  80  20   ... alias_index=4
//
//
// Phase 1 creates an instance type for node 29 assigning it an instance id of 24
// and creating a new alias index for node 30.  This gives:
//
//     7 Parm #memory
//    10  ConI  "12"
//    19  CheckCastPP   "Foo"
//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
//    29  CheckCastPP   "Foo"  iid=24
//    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
//
//    40  StoreP  25   7  20   ... alias_index=4
//    50  StoreP  35  40  30   ... alias_index=6
//    60  StoreP  45  50  20   ... alias_index=4
//    70  LoadP    _  60  30   ... alias_index=6
//    80  Phi     75  50  60   Memory alias_index=4
//    90  LoadP    _  80  30   ... alias_index=6
//   100  LoadP    _  80  20   ... alias_index=4
//
// In phase 2, new memory inputs are computed for the loads and stores,
// And a new version of the phi is created.  In phase 4, the inputs to
// node 80 are updated and then the memory nodes are updated with the
// values computed in phase 2.  This results in:
//
//     7 Parm #memory
//    10  ConI  "12"
//    19  CheckCastPP   "Foo"
//    20  AddP  _ 19 19 10  Foo+12  alias_index=4
//    29  CheckCastPP   "Foo"  iid=24
//    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
//
//    40  StoreP  25  7   20   ... alias_index=4
//    50  StoreP  35  7   30   ... alias_index=6
//    60  StoreP  45  40  20   ... alias_index=4
//    70  LoadP    _  50  30   ... alias_index=6
//    80  Phi     75  40  60   Memory alias_index=4
//   120  Phi     75  50  50   Memory alias_index=6
//    90  LoadP    _ 120  30   ... alias_index=6
//   100  LoadP    _  80  20   ... alias_index=4
//
void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  GrowableArray<Node *>  memnode_worklist;
  GrowableArray<PhiNode *>  orig_phis;
  PhaseIterGVN  *igvn = _igvn;
  uint new_index_start = (uint) _compile->num_alias_types();
  Arena* arena = Thread::current()->resource_area();
  VectorSet visited(arena);
  ideal_nodes.clear(); // Reset for use with set_map/get_map.
  uint unique_old = _compile->unique();
2570

2571 2572
  //  Phase 1:  Process possible allocations from alloc_worklist.
  //  Create instance types for the CheckCastPP for allocations where possible.
2573
  //
2574 2575 2576
  // (Note: don't forget to change the order of the second AddP node on
  //  the alloc_worklist if the order of the worklist processing is changed,
  //  see the comment in find_second_addp().)
2577
  //
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
  while (alloc_worklist.length() != 0) {
    Node *n = alloc_worklist.pop();
    uint ni = n->_idx;
    if (n->is_Call()) {
      CallNode *alloc = n->as_Call();
      // copy escape information to call node
      PointsToNode* ptn = ptnode_adr(alloc->_idx);
      PointsToNode::EscapeState es = ptn->escape_state();
      // We have an allocation or call which returns a Java object,
      // see if it is unescaped.
      if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
        continue;
      // Find CheckCastPP for the allocate or for the return value of a call
      n = alloc->result_cast();
      if (n == NULL) {            // No uses except Initialize node
        if (alloc->is_Allocate()) {
          // Set the scalar_replaceable flag for allocation
          // so it could be eliminated if it has no uses.
          alloc->as_Allocate()->_is_scalar_replaceable = true;
        }
2598
        continue;
2599
      }
2600 2601 2602
      if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
        assert(!alloc->is_Allocate(), "allocation should have unique type");
        continue;
2603
      }
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
      // The inline code for Object.clone() casts the allocation result to
      // java.lang.Object and then to the actual type of the allocated
      // object. Detect this case and use the second cast.
      // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
      // the allocation result is cast to java.lang.Object and then
      // to the actual Array type.
      if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
          && (alloc->is_AllocateArray() ||
              igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
        Node *cast2 = NULL;
        for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
          Node *use = n->fast_out(i);
          if (use->is_CheckCastPP()) {
            cast2 = use;
            break;
2620 2621
          }
        }
2622 2623 2624 2625 2626 2627 2628 2629
        if (cast2 != NULL) {
          n = cast2;
        } else {
          // Non-scalar replaceable if the allocation type is unknown statically
          // (reflection allocation), the object can't be restored during
          // deoptimization without precise type.
          continue;
        }
2630
      }
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
      if (alloc->is_Allocate()) {
        // Set the scalar_replaceable flag for allocation
        // so it could be eliminated.
        alloc->as_Allocate()->_is_scalar_replaceable = true;
      }
      set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
      // in order for an object to be scalar-replaceable, it must be:
      //   - a direct allocation (not a call returning an object)
      //   - non-escaping
      //   - eligible to be a unique type
      //   - not determined to be ineligible by escape analysis
      set_map(alloc, n);
      set_map(n, alloc);
      const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
      if (t == NULL)
        continue;  // not a TypeOopPtr
      const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
      igvn->hash_delete(n);
      igvn->set_type(n,  tinst);
      n->raise_bottom_type(tinst);
      igvn->hash_insert(n);
      record_for_optimizer(n);
      if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
D
duke 已提交
2654

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
        // First, put on the worklist all Field edges from Connection Graph
        // which is more accurate then putting immediate users from Ideal Graph.
        for (EdgeIterator e(ptn); e.has_next(); e.next()) {
          PointsToNode* tgt = e.get();
          Node* use = tgt->ideal_node();
          assert(tgt->is_Field() && use->is_AddP(),
                 "only AddP nodes are Field edges in CG");
          if (use->outcnt() > 0) { // Don't process dead nodes
            Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
            if (addp2 != NULL) {
              assert(alloc->is_AllocateArray(),"array allocation was expected");
              alloc_worklist.append_if_missing(addp2);
D
duke 已提交
2667
            }
2668
            alloc_worklist.append_if_missing(use);
D
duke 已提交
2669 2670 2671
          }
        }

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
        // An allocation may have an Initialize which has raw stores. Scan
        // the users of the raw allocation result and push AddP users
        // on alloc_worklist.
        Node *raw_result = alloc->proj_out(TypeFunc::Parms);
        assert (raw_result != NULL, "must have an allocation result");
        for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
          Node *use = raw_result->fast_out(i);
          if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
            Node* addp2 = find_second_addp(use, raw_result);
            if (addp2 != NULL) {
              assert(alloc->is_AllocateArray(),"array allocation was expected");
              alloc_worklist.append_if_missing(addp2);
            }
            alloc_worklist.append_if_missing(use);
          } else if (use->is_MemBar()) {
            memnode_worklist.append_if_missing(use);
D
duke 已提交
2688 2689 2690
          }
        }
      }
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    } else if (n->is_AddP()) {
      JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
      if (jobj == NULL || jobj == phantom_obj) {
#ifdef ASSERT
        ptnode_adr(get_addp_base(n)->_idx)->dump();
        ptnode_adr(n->_idx)->dump();
        assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
#endif
        _compile->record_failure(C2Compiler::retry_no_escape_analysis());
        return;
D
duke 已提交
2701
      }
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
      Node *base = get_map(jobj->idx());  // CheckCastPP node
      if (!split_AddP(n, base)) continue; // wrong type from dead path
    } else if (n->is_Phi() ||
               n->is_CheckCastPP() ||
               n->is_EncodeP() ||
               n->is_DecodeN() ||
               (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
      if (visited.test_set(n->_idx)) {
        assert(n->is_Phi(), "loops only through Phi's");
        continue;  // already processed
2712
      }
2713 2714 2715 2716 2717 2718 2719 2720
      JavaObjectNode* jobj = unique_java_object(n);
      if (jobj == NULL || jobj == phantom_obj) {
#ifdef ASSERT
        ptnode_adr(n->_idx)->dump();
        assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
#endif
        _compile->record_failure(C2Compiler::retry_no_escape_analysis());
        return;
D
duke 已提交
2721
      } else {
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
        Node *val = get_map(jobj->idx());   // CheckCastPP node
        TypeNode *tn = n->as_Type();
        const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
        assert(tinst != NULL && tinst->is_known_instance() &&
               tinst->instance_id() == jobj->idx() , "instance type expected.");

        const Type *tn_type = igvn->type(tn);
        const TypeOopPtr *tn_t;
        if (tn_type->isa_narrowoop()) {
          tn_t = tn_type->make_ptr()->isa_oopptr();
2732
        } else {
2733 2734 2735 2736 2737 2738 2739
          tn_t = tn_type->isa_oopptr();
        }
        if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
          if (tn_type->isa_narrowoop()) {
            tn_type = tinst->make_narrowoop();
          } else {
            tn_type = tinst;
2740
          }
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
          igvn->hash_delete(tn);
          igvn->set_type(tn, tn_type);
          tn->set_type(tn_type);
          igvn->hash_insert(tn);
          record_for_optimizer(n);
        } else {
          assert(tn_type == TypePtr::NULL_PTR ||
                 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
                 "unexpected type");
          continue; // Skip dead path with different type
D
duke 已提交
2751 2752
        }
      }
2753 2754 2755 2756
    } else {
      debug_only(n->dump();)
      assert(false, "EA: unexpected node");
      continue;
D
duke 已提交
2757
    }
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
    // push allocation's users on appropriate worklist
    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
      Node *use = n->fast_out(i);
      if(use->is_Mem() && use->in(MemNode::Address) == n) {
        // Load/store to instance's field
        memnode_worklist.append_if_missing(use);
      } else if (use->is_MemBar()) {
        memnode_worklist.append_if_missing(use);
      } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
        Node* addp2 = find_second_addp(use, n);
        if (addp2 != NULL) {
          alloc_worklist.append_if_missing(addp2);
D
duke 已提交
2770
        }
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
        alloc_worklist.append_if_missing(use);
      } else if (use->is_Phi() ||
                 use->is_CheckCastPP() ||
                 use->is_EncodeP() ||
                 use->is_DecodeN() ||
                 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
        alloc_worklist.append_if_missing(use);
#ifdef ASSERT
      } else if (use->is_Mem()) {
        assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
      } else if (use->is_MergeMem()) {
        assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
      } else if (use->is_SafePoint()) {
        // Look for MergeMem nodes for calls which reference unique allocation
        // (through CheckCastPP nodes) even for debug info.
        Node* m = use->in(TypeFunc::Memory);
        if (m->is_MergeMem()) {
          assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2789 2790
        }
      } else {
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
        uint op = use->Opcode();
        if (!(op == Op_CmpP || op == Op_Conv2B ||
              op == Op_CastP2X || op == Op_StoreCM ||
              op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
              op == Op_StrEquals || op == Op_StrIndexOf)) {
          n->dump();
          use->dump();
          assert(false, "EA: missing allocation reference path");
        }
#endif
2801 2802
      }
    }
D
duke 已提交
2803

2804 2805 2806 2807
  }
  // New alias types were created in split_AddP().
  uint new_index_end = (uint) _compile->num_alias_types();
  assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
  //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  //            compute new values for Memory inputs  (the Memory inputs are not
  //            actually updated until phase 4.)
  if (memnode_worklist.length() == 0)
    return;  // nothing to do
  while (memnode_worklist.length() != 0) {
    Node *n = memnode_worklist.pop();
    if (visited.test_set(n->_idx))
      continue;
    if (n->is_Phi() || n->is_ClearArray()) {
      // we don't need to do anything, but the users must be pushed
    } else if (n->is_MemBar()) { // Initialize, MemBar nodes
      // we don't need to do anything, but the users must be pushed
      n = n->as_MemBar()->proj_out(TypeFunc::Memory);
      if (n == NULL)
        continue;
    } else {
      assert(n->is_Mem(), "memory node required.");
      Node *addr = n->in(MemNode::Address);
      const Type *addr_t = igvn->type(addr);
      if (addr_t == Type::TOP)
        continue;
      assert (addr_t->isa_ptr() != NULL, "pointer type required.");
      int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
      assert ((uint)alias_idx < new_index_end, "wrong alias index");
      Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
      if (_compile->failing()) {
2836 2837
        return;
      }
2838 2839 2840 2841
      if (mem != n->in(MemNode::Memory)) {
        // We delay the memory edge update since we need old one in
        // MergeMem code below when instances memory slices are separated.
        set_map(n, mem);
2842
      }
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
      if (n->is_Load()) {
        continue;  // don't push users
      } else if (n->is_LoadStore()) {
        // get the memory projection
        for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
          Node *use = n->fast_out(i);
          if (use->Opcode() == Op_SCMemProj) {
            n = use;
            break;
          }
        }
        assert(n->Opcode() == Op_SCMemProj, "memory projection required");
      }
    }
    // push user on appropriate worklist
    for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
      Node *use = n->fast_out(i);
      if (use->is_Phi() || use->is_ClearArray()) {
        memnode_worklist.append_if_missing(use);
      } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
        if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
          continue;
        memnode_worklist.append_if_missing(use);
      } else if (use->is_MemBar()) {
        memnode_worklist.append_if_missing(use);
#ifdef ASSERT
      } else if(use->is_Mem()) {
        assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
      } else if (use->is_MergeMem()) {
        assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
      } else {
        uint op = use->Opcode();
        if (!(op == Op_StoreCM ||
              (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
               strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
              op == Op_AryEq || op == Op_StrComp ||
              op == Op_StrEquals || op == Op_StrIndexOf)) {
          n->dump();
          use->dump();
          assert(false, "EA: missing memory path");
2883
        }
2884
#endif
2885 2886
      }
    }
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
  }

  //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  //            Walk each memory slice moving the first node encountered of each
  //            instance type to the the input corresponding to its alias index.
  uint length = _mergemem_worklist.length();
  for( uint next = 0; next < length; ++next ) {
    MergeMemNode* nmm = _mergemem_worklist.at(next);
    assert(!visited.test_set(nmm->_idx), "should not be visited before");
    // Note: we don't want to use MergeMemStream here because we only want to
    // scan inputs which exist at the start, not ones we add during processing.
    // Note 2: MergeMem may already contains instance memory slices added
    // during find_inst_mem() call when memory nodes were processed above.
    igvn->hash_delete(nmm);
    uint nslices = nmm->req();
    for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
      Node* mem = nmm->in(i);
      Node* cur = NULL;
      if (mem == NULL || mem->is_top())
        continue;
      // First, update mergemem by moving memory nodes to corresponding slices
      // if their type became more precise since this mergemem was created.
      while (mem->is_Mem()) {
        const Type *at = igvn->type(mem->in(MemNode::Address));
        if (at != Type::TOP) {
          assert (at->isa_ptr() != NULL, "pointer type required.");
          uint idx = (uint)_compile->get_alias_index(at->is_ptr());
          if (idx == i) {
            if (cur == NULL)
              cur = mem;
          } else {
            if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
              nmm->set_memory_at(idx, mem);
            }
2921
          }
2922
        }
2923
        mem = mem->in(MemNode::Memory);
2924
      }
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
      nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
      // Find any instance of the current type if we haven't encountered
      // already a memory slice of the instance along the memory chain.
      for (uint ni = new_index_start; ni < new_index_end; ni++) {
        if((uint)_compile->get_general_index(ni) == i) {
          Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
          if (nmm->is_empty_memory(m)) {
            Node* result = find_inst_mem(mem, ni, orig_phis);
            if (_compile->failing()) {
              return;
            }
            nmm->set_memory_at(ni, result);
          }
2938 2939 2940
        }
      }
    }
2941 2942 2943 2944 2945 2946 2947 2948 2949
    // Find the rest of instances values
    for (uint ni = new_index_start; ni < new_index_end; ni++) {
      const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
      Node* result = step_through_mergemem(nmm, ni, tinst);
      if (result == nmm->base_memory()) {
        // Didn't find instance memory, search through general slice recursively.
        result = nmm->memory_at(_compile->get_general_index(ni));
        result = find_inst_mem(result, ni, orig_phis);
        if (_compile->failing()) {
2950 2951
          return;
        }
2952
        nmm->set_memory_at(ni, result);
2953
      }
2954
    }
2955 2956
    igvn->hash_insert(nmm);
    record_for_optimizer(nmm);
D
duke 已提交
2957 2958
  }

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
  //  Phase 4:  Update the inputs of non-instance memory Phis and
  //            the Memory input of memnodes
  // First update the inputs of any non-instance Phi's from
  // which we split out an instance Phi.  Note we don't have
  // to recursively process Phi's encounted on the input memory
  // chains as is done in split_memory_phi() since they  will
  // also be processed here.
  for (int j = 0; j < orig_phis.length(); j++) {
    PhiNode *phi = orig_phis.at(j);
    int alias_idx = _compile->get_alias_index(phi->adr_type());
    igvn->hash_delete(phi);
    for (uint i = 1; i < phi->req(); i++) {
      Node *mem = phi->in(i);
      Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
      if (_compile->failing()) {
        return;
D
duke 已提交
2975
      }
2976 2977
      if (mem != new_mem) {
        phi->set_req(i, new_mem);
D
duke 已提交
2978 2979
      }
    }
2980 2981 2982
    igvn->hash_insert(phi);
    record_for_optimizer(phi);
  }
D
duke 已提交
2983

2984 2985 2986 2987 2988 2989 2990
  // Update the memory inputs of MemNodes with the value we computed
  // in Phase 2 and move stores memory users to corresponding memory slices.
  // Disable memory split verification code until the fix for 6984348.
  // Currently it produces false negative results since it does not cover all cases.
#if 0 // ifdef ASSERT
  visited.Reset();
  Node_Stack old_mems(arena, _compile->unique() >> 2);
2991
#endif
2992 2993 2994 2995 2996 2997 2998 2999 3000
  for (uint i = 0; i < ideal_nodes.size(); i++) {
    Node*    n = ideal_nodes.at(i);
    Node* nmem = get_map(n->_idx);
    assert(nmem != NULL, "sanity");
    if (n->is_Mem()) {
#if 0 // ifdef ASSERT
      Node* old_mem = n->in(MemNode::Memory);
      if (!visited.test_set(old_mem->_idx)) {
        old_mems.push(old_mem, old_mem->outcnt());
3001 3002
      }
#endif
3003 3004 3005 3006
      assert(n->in(MemNode::Memory) != nmem, "sanity");
      if (!n->is_Load()) {
        // Move memory users of a store first.
        move_inst_mem(n, orig_phis);
3007
      }
3008 3009 3010 3011 3012 3013 3014 3015
      // Now update memory input
      igvn->hash_delete(n);
      n->set_req(MemNode::Memory, nmem);
      igvn->hash_insert(n);
      record_for_optimizer(n);
    } else {
      assert(n->is_Allocate() || n->is_CheckCastPP() ||
             n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
D
duke 已提交
3016 3017
    }
  }
3018 3019 3020 3021 3022 3023 3024 3025 3026
#if 0 // ifdef ASSERT
  // Verify that memory was split correctly
  while (old_mems.is_nonempty()) {
    Node* old_mem = old_mems.node();
    uint  old_cnt = old_mems.index();
    old_mems.pop();
    assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  }
#endif
D
duke 已提交
3027 3028 3029
}

#ifndef PRODUCT
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
static const char *node_type_names[] = {
  "UnknownType",
  "JavaObject",
  "LocalVar",
  "Field",
  "Arraycopy"
};

static const char *esc_names[] = {
  "UnknownEscape",
  "NoEscape",
  "ArgEscape",
  "GlobalEscape"
};
D
duke 已提交
3044

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
void PointsToNode::dump(bool print_state) const {
  NodeType nt = node_type();
  tty->print("%s ", node_type_names[(int) nt]);
  if (print_state) {
    EscapeState es = escape_state();
    EscapeState fields_es = fields_escape_state();
    tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
    if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
      tty->print("NSR");
  }
  if (is_Field()) {
    FieldNode* f = (FieldNode*)this;
    tty->print("(");
    for (BaseIterator i(f); i.has_next(); i.next()) {
      PointsToNode* b = i.get();
      tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
    }
    tty->print(" )");
  }
  tty->print("[");
  for (EdgeIterator i(this); i.has_next(); i.next()) {
    PointsToNode* e = i.get();
    tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  }
  tty->print(" [");
  for (UseIterator i(this); i.has_next(); i.next()) {
    PointsToNode* u = i.get();
    bool is_base = false;
    if (PointsToNode::is_base_use(u)) {
      is_base = true;
      u = PointsToNode::get_use_node(u)->as_Field();
    }
    tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  }
  tty->print(" ]]  ");
  if (_node == NULL)
    tty->print_cr("<null>");
  else
    _node->dump();
}
3085

3086 3087 3088 3089 3090 3091
void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  bool first = true;
  int ptnodes_length = ptnodes_worklist.length();
  for (int i = 0; i < ptnodes_length; i++) {
    PointsToNode *ptn = ptnodes_worklist.at(i);
    if (ptn == NULL || !ptn->is_JavaObject())
D
duke 已提交
3092
      continue;
3093 3094
    PointsToNode::EscapeState es = ptn->escape_state();
    if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
3095 3096 3097
      if (first) {
        tty->cr();
        tty->print("======== Connection graph for ");
3098
        _compile->method()->print_short_name();
3099 3100 3101 3102
        tty->cr();
        first = false;
      }
      ptn->dump();
3103 3104 3105 3106 3107 3108 3109
      // Print all locals and fields which reference this allocation
      for (UseIterator j(ptn); j.has_next(); j.next()) {
        PointsToNode* use = j.get();
        if (use->is_LocalVar()) {
          use->dump(Verbose);
        } else if (Verbose) {
          use->dump();
D
duke 已提交
3110 3111
        }
      }
3112
      tty->cr();
D
duke 已提交
3113 3114 3115 3116
    }
  }
}
#endif