binaryTreeDictionary.cpp 41.8 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/*
 * Copyright 2001-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_binaryTreeDictionary.cpp.incl"

////////////////////////////////////////////////////////////////////////////////
// A binary tree based search structure for free blocks.
// This is currently used in the Concurrent Mark&Sweep implementation.
////////////////////////////////////////////////////////////////////////////////

TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
  // Do some assertion checking here.
  return (TreeChunk*) fc;
}

void TreeChunk::verifyTreeChunkList() const {
  TreeChunk* nextTC = (TreeChunk*)next();
  if (prev() != NULL) { // interior list node shouldn'r have tree fields
    guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
              embedded_list()->right()  == NULL, "should be clear");
  }
  if (nextTC != NULL) {
    guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    guarantee(nextTC->size() == size(), "wrong size");
    nextTC->verifyTreeChunkList();
  }
}


TreeList* TreeList::as_TreeList(TreeChunk* tc) {
  // This first free chunk in the list will be the tree list.
  assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
  TreeList* tl = tc->embedded_list();
  tc->set_list(tl);
#ifdef ASSERT
  tl->set_protecting_lock(NULL);
#endif
  tl->set_hint(0);
  tl->set_size(tc->size());
  tl->link_head(tc);
  tl->link_tail(tc);
  tl->set_count(1);
  tl->init_statistics();
  tl->setParent(NULL);
  tl->setLeft(NULL);
  tl->setRight(NULL);
  return tl;
}
TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
  TreeChunk* tc = (TreeChunk*) addr;
  assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
  assert(tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL,
    "Space should be clear");
  tc->setSize(size);
  tc->linkPrev(NULL);
  tc->linkNext(NULL);
  TreeList* tl = TreeList::as_TreeList(tc);
  return tl;
}

TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {

  TreeList* retTL = this;
  FreeChunk* list = head();
  assert(!list || list != list->next(), "Chunk on list twice");
  assert(tc != NULL, "Chunk being removed is NULL");
  assert(parent() == NULL || this == parent()->left() ||
    this == parent()->right(), "list is inconsistent");
  assert(tc->isFree(), "Header is not marked correctly");
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");

  FreeChunk* prevFC = tc->prev();
  TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
  assert(list != NULL, "should have at least the target chunk");

  // Is this the first item on the list?
  if (tc == list) {
    // The "getChunk..." functions for a TreeList will not return the
    // first chunk in the list unless it is the last chunk in the list
    // because the first chunk is also acting as the tree node.
    // When coalescing happens, however, the first chunk in the a tree
    // list can be the start of a free range.  Free ranges are removed
    // from the free lists so that they are not available to be
    // allocated when the sweeper yields (giving up the free list lock)
    // to allow mutator activity.  If this chunk is the first in the
    // list and is not the last in the list, do the work to copy the
    // TreeList from the first chunk to the next chunk and update all
    // the TreeList pointers in the chunks in the list.
    if (nextTC == NULL) {
      assert(prevFC == NULL, "Not last chunk in the list")
      set_tail(NULL);
      set_head(NULL);
    } else {
      // copy embedded list.
      nextTC->set_embedded_list(tc->embedded_list());
      retTL = nextTC->embedded_list();
      // Fix the pointer to the list in each chunk in the list.
      // This can be slow for a long list.  Consider having
      // an option that does not allow the first chunk on the
      // list to be coalesced.
      for (TreeChunk* curTC = nextTC; curTC != NULL;
          curTC = TreeChunk::as_TreeChunk(curTC->next())) {
        curTC->set_list(retTL);
      }
      // Fix the parent to point to the new TreeList.
      if (retTL->parent() != NULL) {
        if (this == retTL->parent()->left()) {
          retTL->parent()->setLeft(retTL);
        } else {
          assert(this == retTL->parent()->right(), "Parent is incorrect");
          retTL->parent()->setRight(retTL);
        }
      }
      // Fix the children's parent pointers to point to the
      // new list.
      assert(right() == retTL->right(), "Should have been copied");
      if (retTL->right() != NULL) {
        retTL->right()->setParent(retTL);
      }
      assert(left() == retTL->left(), "Should have been copied");
      if (retTL->left() != NULL) {
        retTL->left()->setParent(retTL);
      }
      retTL->link_head(nextTC);
      assert(nextTC->isFree(), "Should be a free chunk");
    }
  } else {
    if (nextTC == NULL) {
      // Removing chunk at tail of list
      link_tail(prevFC);
    }
    // Chunk is interior to the list
    prevFC->linkAfter(nextTC);
  }

  // Below this point the embeded TreeList being used for the
  // tree node may have changed. Don't use "this"
  // TreeList*.
  // chunk should still be a free chunk (bit set in _prev)
  assert(!retTL->head() || retTL->size() == retTL->head()->size(),
    "Wrong sized chunk in list");
  debug_only(
    tc->linkPrev(NULL);
    tc->linkNext(NULL);
    tc->set_list(NULL);
    bool prev_found = false;
    bool next_found = false;
    for (FreeChunk* curFC = retTL->head();
         curFC != NULL; curFC = curFC->next()) {
      assert(curFC != tc, "Chunk is still in list");
      if (curFC == prevFC) {
        prev_found = true;
      }
      if (curFC == nextTC) {
        next_found = true;
      }
    }
    assert(prevFC == NULL || prev_found, "Chunk was lost from list");
    assert(nextTC == NULL || next_found, "Chunk was lost from list");
    assert(retTL->parent() == NULL ||
           retTL == retTL->parent()->left() ||
           retTL == retTL->parent()->right(),
           "list is inconsistent");
  )
  retTL->decrement_count();

  assert(tc->isFree(), "Should still be a free chunk");
  assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
    "list invariant");
  assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
    "list invariant");
  return retTL;
}
void TreeList::returnChunkAtTail(TreeChunk* chunk) {
  assert(chunk != NULL, "returning NULL chunk");
  assert(chunk->list() == this, "list should be set for chunk");
  assert(tail() != NULL, "The tree list is embedded in the first chunk");
  // which means that the list can never be empty.
  assert(!verifyChunkInFreeLists(chunk), "Double entry");
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");

  FreeChunk* fc = tail();
  fc->linkAfter(chunk);
  link_tail(chunk);

  assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
  increment_count();
  debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}

// Add this chunk at the head of the list.  "At the head of the list"
// is defined to be after the chunk pointer to by head().  This is
// because the TreeList is embedded in the first TreeChunk in the
// list.  See the definition of TreeChunk.
void TreeList::returnChunkAtHead(TreeChunk* chunk) {
  assert(chunk->list() == this, "list should be set for chunk");
  assert(head() != NULL, "The tree list is embedded in the first chunk");
  assert(chunk != NULL, "returning NULL chunk");
  assert(!verifyChunkInFreeLists(chunk), "Double entry");
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");

  FreeChunk* fc = head()->next();
  if (fc != NULL) {
    chunk->linkAfter(fc);
  } else {
    assert(tail() == NULL, "List is inconsistent");
    link_tail(chunk);
  }
  head()->linkAfter(chunk);
  assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
  increment_count();
  debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}

TreeChunk* TreeList::head_as_TreeChunk() {
  assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
    "Wrong type of chunk?");
  return TreeChunk::as_TreeChunk(head());
}

TreeChunk* TreeList::first_available() {
  guarantee(head() != NULL, "The head of the list cannot be NULL");
  FreeChunk* fc = head()->next();
  TreeChunk* retTC;
  if (fc == NULL) {
    retTC = head_as_TreeChunk();
  } else {
    retTC = TreeChunk::as_TreeChunk(fc);
  }
  assert(retTC->list() == this, "Wrong type of chunk.");
  return retTC;
}

BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
  _splay(splay)
{
  assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");

  reset(mr);
  assert(root()->left() == NULL, "reset check failed");
  assert(root()->right() == NULL, "reset check failed");
  assert(root()->head()->next() == NULL, "reset check failed");
  assert(root()->head()->prev() == NULL, "reset check failed");
  assert(totalSize() == root()->size(), "reset check failed");
  assert(totalFreeBlocks() == 1, "reset check failed");
}

void BinaryTreeDictionary::inc_totalSize(size_t inc) {
  _totalSize = _totalSize + inc;
}

void BinaryTreeDictionary::dec_totalSize(size_t dec) {
  _totalSize = _totalSize - dec;
}

void BinaryTreeDictionary::reset(MemRegion mr) {
  assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
  set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
  set_totalSize(mr.word_size());
  set_totalFreeBlocks(1);
}

void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
  MemRegion mr(addr, heap_word_size(byte_size));
  reset(mr);
}

void BinaryTreeDictionary::reset() {
  set_root(NULL);
  set_totalSize(0);
  set_totalFreeBlocks(0);
}

// Get a free block of size at least size from tree, or NULL.
// If a splay step is requested, the removal algorithm (only) incorporates
// a splay step as follows:
// . the search proceeds down the tree looking for a possible
//   match. At the (closest) matching location, an appropriate splay step is applied
//   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
//   if available, and if it's the last chunk, the node is deleted. A deteleted
//   node is replaced in place by its tree successor.
TreeChunk*
BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
{
  TreeList *curTL, *prevTL;
  TreeChunk* retTC = NULL;
  assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
  if (FLSVerifyDictionary) {
    verifyTree();
  }
  // starting at the root, work downwards trying to find match.
  // Remember the last node of size too great or too small.
  for (prevTL = curTL = root(); curTL != NULL;) {
    if (curTL->size() == size) {        // exact match
      break;
    }
    prevTL = curTL;
    if (curTL->size() < size) {        // proceed to right sub-tree
      curTL = curTL->right();
    } else {                           // proceed to left sub-tree
      assert(curTL->size() > size, "size inconsistency");
      curTL = curTL->left();
    }
  }
  if (curTL == NULL) { // couldn't find exact match
    // try and find the next larger size by walking back up the search path
    for (curTL = prevTL; curTL != NULL;) {
      if (curTL->size() >= size) break;
      else curTL = curTL->parent();
    }
    assert(curTL == NULL || curTL->count() > 0,
      "An empty list should not be in the tree");
  }
  if (curTL != NULL) {
    assert(curTL->size() >= size, "size inconsistency");
    if (UseCMSAdaptiveFreeLists) {

      // A candidate chunk has been found.  If it is already under
      // populated, get a chunk associated with the hint for this
      // chunk.
      if (curTL->surplus() <= 0) {
        /* Use the hint to find a size with a surplus, and reset the hint. */
        TreeList* hintTL = curTL;
        while (hintTL->hint() != 0) {
          assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
            "hint points in the wrong direction");
          hintTL = findList(hintTL->hint());
          assert(curTL != hintTL, "Infinite loop");
          if (hintTL == NULL ||
              hintTL == curTL /* Should not happen but protect against it */ ) {
            // No useful hint.  Set the hint to NULL and go on.
            curTL->set_hint(0);
            break;
          }
          assert(hintTL->size() > size, "hint is inconsistent");
          if (hintTL->surplus() > 0) {
            // The hint led to a list that has a surplus.  Use it.
            // Set the hint for the candidate to an overpopulated
            // size.
            curTL->set_hint(hintTL->size());
            // Change the candidate.
            curTL = hintTL;
            break;
          }
          // The evm code reset the hint of the candidate as
          // at an interrim point.  Why?  Seems like this leaves
          // the hint pointing to a list that didn't work.
          // curTL->set_hint(hintTL->size());
        }
      }
    }
    // don't waste time splaying if chunk's singleton
    if (splay && curTL->head()->next() != NULL) {
      semiSplayStep(curTL);
    }
    retTC = curTL->first_available();
    assert((retTC != NULL) && (curTL->count() > 0),
      "A list in the binary tree should not be NULL");
    assert(retTC->size() >= size,
      "A chunk of the wrong size was found");
    removeChunkFromTree(retTC);
    assert(retTC->isFree(), "Header is not marked correctly");
  }

  if (FLSVerifyDictionary) {
    verify();
  }
  return retTC;
}

TreeList* BinaryTreeDictionary::findList(size_t size) const {
  TreeList* curTL;
  for (curTL = root(); curTL != NULL;) {
    if (curTL->size() == size) {        // exact match
      break;
    }

    if (curTL->size() < size) {        // proceed to right sub-tree
      curTL = curTL->right();
    } else {                           // proceed to left sub-tree
      assert(curTL->size() > size, "size inconsistency");
      curTL = curTL->left();
    }
  }
  return curTL;
}


bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
  size_t size = tc->size();
  TreeList* tl = findList(size);
  if (tl == NULL) {
    return false;
  } else {
    return tl->verifyChunkInFreeLists(tc);
  }
}

FreeChunk* BinaryTreeDictionary::findLargestDict() const {
  TreeList *curTL = root();
  if (curTL != NULL) {
    while(curTL->right() != NULL) curTL = curTL->right();
    return curTL->first_available();
  } else {
    return NULL;
  }
}

// Remove the current chunk from the tree.  If it is not the last
// chunk in a list on a tree node, just unlink it.
// If it is the last chunk in the list (the next link is NULL),
// remove the node and repair the tree.
TreeChunk*
BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
  assert(tc != NULL, "Should not call with a NULL chunk");
  assert(tc->isFree(), "Header is not marked correctly");

  TreeList *newTL, *parentTL;
  TreeChunk* retTC;
  TreeList* tl = tc->list();
  debug_only(
    bool removing_only_chunk = false;
    if (tl == _root) {
      if ((_root->left() == NULL) && (_root->right() == NULL)) {
        if (_root->count() == 1) {
          assert(_root->head() == tc, "Should only be this one chunk");
          removing_only_chunk = true;
        }
      }
    }
  )
  assert(tl != NULL, "List should be set");
  assert(tl->parent() == NULL || tl == tl->parent()->left() ||
         tl == tl->parent()->right(), "list is inconsistent");

  bool complicatedSplice = false;

  retTC = tc;
  // Removing this chunk can have the side effect of changing the node
  // (TreeList*) in the tree.  If the node is the root, update it.
  TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
  assert(tc->isFree(), "Chunk should still be free");
  assert(replacementTL->parent() == NULL ||
         replacementTL == replacementTL->parent()->left() ||
         replacementTL == replacementTL->parent()->right(),
         "list is inconsistent");
  if (tl == root()) {
    assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
    set_root(replacementTL);
  }
  debug_only(
    if (tl != replacementTL) {
      assert(replacementTL->head() != NULL,
        "If the tree list was replaced, it should not be a NULL list");
      TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
      TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
      assert(rhl == replacementTL, "Broken head");
      assert(rtl == replacementTL, "Broken tail");
      assert(replacementTL->size() == tc->size(),  "Broken size");
    }
  )

  // Does the tree need to be repaired?
  if (replacementTL->count() == 0) {
    assert(replacementTL->head() == NULL &&
           replacementTL->tail() == NULL, "list count is incorrect");
    // Find the replacement node for the (soon to be empty) node being removed.
    // if we have a single (or no) child, splice child in our stead
    if (replacementTL->left() == NULL) {
      // left is NULL so pick right.  right may also be NULL.
      newTL = replacementTL->right();
      debug_only(replacementTL->clearRight();)
    } else if (replacementTL->right() == NULL) {
      // right is NULL
      newTL = replacementTL->left();
      debug_only(replacementTL->clearLeft();)
    } else {  // we have both children, so, by patriarchal convention,
              // my replacement is least node in right sub-tree
      complicatedSplice = true;
      newTL = removeTreeMinimum(replacementTL->right());
      assert(newTL != NULL && newTL->left() == NULL &&
             newTL->right() == NULL, "sub-tree minimum exists");
    }
    // newTL is the replacement for the (soon to be empty) node.
    // newTL may be NULL.
    // should verify; we just cleanly excised our replacement
    if (FLSVerifyDictionary) {
      verifyTree();
    }
    // first make newTL my parent's child
    if ((parentTL = replacementTL->parent()) == NULL) {
      // newTL should be root
      assert(tl == root(), "Incorrectly replacing root");
      set_root(newTL);
      if (newTL != NULL) {
        newTL->clearParent();
      }
    } else if (parentTL->right() == replacementTL) {
      // replacementTL is a right child
      parentTL->setRight(newTL);
    } else {                                // replacementTL is a left child
      assert(parentTL->left() == replacementTL, "should be left child");
      parentTL->setLeft(newTL);
    }
    debug_only(replacementTL->clearParent();)
    if (complicatedSplice) {  // we need newTL to get replacementTL's
                              // two children
      assert(newTL != NULL &&
             newTL->left() == NULL && newTL->right() == NULL,
            "newTL should not have encumbrances from the past");
      // we'd like to assert as below:
      // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
      //       "else !complicatedSplice");
      // ... however, the above assertion is too strong because we aren't
      // guaranteed that replacementTL->right() is still NULL.
      // Recall that we removed
      // the right sub-tree minimum from replacementTL.
      // That may well have been its right
      // child! So we'll just assert half of the above:
      assert(replacementTL->left() != NULL, "else !complicatedSplice");
      newTL->setLeft(replacementTL->left());
      newTL->setRight(replacementTL->right());
      debug_only(
        replacementTL->clearRight();
        replacementTL->clearLeft();
      )
    }
    assert(replacementTL->right() == NULL &&
           replacementTL->left() == NULL &&
           replacementTL->parent() == NULL,
        "delete without encumbrances");
  }

  assert(totalSize() >= retTC->size(), "Incorrect total size");
  dec_totalSize(retTC->size());     // size book-keeping
  assert(totalFreeBlocks() > 0, "Incorrect total count");
  set_totalFreeBlocks(totalFreeBlocks() - 1);

  assert(retTC != NULL, "null chunk?");
  assert(retTC->prev() == NULL && retTC->next() == NULL,
         "should return without encumbrances");
  if (FLSVerifyDictionary) {
    verifyTree();
  }
  assert(!removing_only_chunk || _root == NULL, "root should be NULL");
  return TreeChunk::as_TreeChunk(retTC);
}

// Remove the leftmost node (lm) in the tree and return it.
// If lm has a right child, link it to the left node of
// the parent of lm.
TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
  assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
  // locate the subtree minimum by walking down left branches
  TreeList* curTL = tl;
  for (; curTL->left() != NULL; curTL = curTL->left());
  // obviously curTL now has at most one child, a right child
  if (curTL != root()) {  // Should this test just be removed?
    TreeList* parentTL = curTL->parent();
    if (parentTL->left() == curTL) { // curTL is a left child
      parentTL->setLeft(curTL->right());
    } else {
      // If the list tl has no left child, then curTL may be
      // the right child of parentTL.
      assert(parentTL->right() == curTL, "should be a right child");
      parentTL->setRight(curTL->right());
    }
  } else {
    // The only use of this method would not pass the root of the
    // tree (as indicated by the assertion above that the tree list
    // has a parent) but the specification does not explicitly exclude the
    // passing of the root so accomodate it.
    set_root(NULL);
  }
  debug_only(
    curTL->clearParent();  // Test if this needs to be cleared
    curTL->clearRight();    // recall, above, left child is already null
  )
  // we just excised a (non-root) node, we should still verify all tree invariants
  if (FLSVerifyDictionary) {
    verifyTree();
  }
  return curTL;
}

// Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
// The simplifications are the following:
// . we splay only when we delete (not when we insert)
// . we apply a single spay step per deletion/access
// By doing such partial splaying, we reduce the amount of restructuring,
// while getting a reasonably efficient search tree (we think).
// [Measurements will be needed to (in)validate this expectation.]

void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
  // apply a semi-splay step at the given node:
  // . if root, norting needs to be done
  // . if child of root, splay once
  // . else zig-zig or sig-zag depending on path from grandparent
  if (root() == tc) return;
  warning("*** Splaying not yet implemented; "
          "tree operations may be inefficient ***");
}

void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
  TreeList *curTL, *prevTL;
  size_t size = fc->size();

  assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
  if (FLSVerifyDictionary) {
    verifyTree();
  }
  // XXX: do i need to clear the FreeChunk fields, let me do it just in case
  // Revisit this later

  fc->clearNext();
  fc->linkPrev(NULL);

  // work down from the _root, looking for insertion point
  for (prevTL = curTL = root(); curTL != NULL;) {
    if (curTL->size() == size)  // exact match
      break;
    prevTL = curTL;
    if (curTL->size() > size) { // follow left branch
      curTL = curTL->left();
    } else {                    // follow right branch
      assert(curTL->size() < size, "size inconsistency");
      curTL = curTL->right();
    }
  }
  TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
  // This chunk is being returned to the binary try.  It's embedded
  // TreeList should be unused at this point.
  tc->initialize();
  if (curTL != NULL) {          // exact match
    tc->set_list(curTL);
    curTL->returnChunkAtTail(tc);
  } else {                     // need a new node in tree
    tc->clearNext();
    tc->linkPrev(NULL);
    TreeList* newTL = TreeList::as_TreeList(tc);
    assert(((TreeChunk*)tc)->list() == newTL,
      "List was not initialized correctly");
    if (prevTL == NULL) {      // we are the only tree node
      assert(root() == NULL, "control point invariant");
      set_root(newTL);
    } else {                   // insert under prevTL ...
      if (prevTL->size() < size) {   // am right child
        assert(prevTL->right() == NULL, "control point invariant");
        prevTL->setRight(newTL);
      } else {                       // am left child
        assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
        prevTL->setLeft(newTL);
      }
    }
  }
  assert(tc->list() != NULL, "Tree list should be set");

  inc_totalSize(size);
  // Method 'totalSizeInTree' walks through the every block in the
  // tree, so it can cause significant performance loss if there are
  // many blocks in the tree
  assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
  set_totalFreeBlocks(totalFreeBlocks() + 1);
  if (FLSVerifyDictionary) {
    verifyTree();
  }
}

size_t BinaryTreeDictionary::maxChunkSize() const {
  verify_par_locked();
  TreeList* tc = root();
  if (tc == NULL) return 0;
  for (; tc->right() != NULL; tc = tc->right());
  return tc->size();
}

size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
  size_t res;
  res = tl->count();
#ifdef ASSERT
  size_t cnt;
  FreeChunk* tc = tl->head();
  for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
  assert(res == cnt, "The count is not being maintained correctly");
#endif
  return res;
}

size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
  if (tl == NULL)
    return 0;
  return (tl->size() * totalListLength(tl)) +
         totalSizeInTree(tl->left())    +
         totalSizeInTree(tl->right());
}

double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
  if (tl == NULL) {
    return 0.0;
  }
  double size = (double)(tl->size());
  double curr = size * size * totalListLength(tl);
  curr += sum_of_squared_block_sizes(tl->left());
  curr += sum_of_squared_block_sizes(tl->right());
  return curr;
}

size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
  if (tl == NULL)
    return 0;
  return totalListLength(tl) +
         totalFreeBlocksInTree(tl->left()) +
         totalFreeBlocksInTree(tl->right());
}

size_t BinaryTreeDictionary::numFreeBlocks() const {
  assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
         "_totalFreeBlocks inconsistency");
  return totalFreeBlocks();
}

size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
  if (tl == NULL)
    return 0;
  return 1 + MAX2(treeHeightHelper(tl->left()),
                  treeHeightHelper(tl->right()));
}

size_t BinaryTreeDictionary::treeHeight() const {
  return treeHeightHelper(root());
}

size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
  if (tl == NULL) {
    return 0;
  }
  return 1 + totalNodesHelper(tl->left()) +
    totalNodesHelper(tl->right());
}

size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
  return totalNodesHelper(root());
}

void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
  TreeList* nd = findList(size);
  if (nd) {
    if (split) {
      if (birth) {
        nd->increment_splitBirths();
        nd->increment_surplus();
      }  else {
        nd->increment_splitDeaths();
        nd->decrement_surplus();
      }
    } else {
      if (birth) {
        nd->increment_coalBirths();
        nd->increment_surplus();
      } else {
        nd->increment_coalDeaths();
        nd->decrement_surplus();
      }
    }
  }
  // A list for this size may not be found (nd == 0) if
  //   This is a death where the appropriate list is now
  //     empty and has been removed from the list.
  //   This is a birth associated with a LinAB.  The chunk
  //     for the LinAB is not in the dictionary.
}

bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
  TreeList* list_of_size = findList(size);
  // None of requested size implies overpopulated.
  return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
         list_of_size->count() > list_of_size->coalDesired();
}

// Closures for walking the binary tree.
//   do_list() walks the free list in a node applying the closure
//     to each free chunk in the list
//   do_tree() walks the nodes in the binary tree applying do_list()
//     to each list at each node.

class TreeCensusClosure : public StackObj {
 protected:
  virtual void do_list(FreeList* fl) = 0;
 public:
  virtual void do_tree(TreeList* tl) = 0;
};

class AscendTreeCensusClosure : public TreeCensusClosure {
 public:
  void do_tree(TreeList* tl) {
    if (tl != NULL) {
      do_tree(tl->left());
      do_list(tl);
      do_tree(tl->right());
    }
  }
};

class DescendTreeCensusClosure : public TreeCensusClosure {
 public:
  void do_tree(TreeList* tl) {
    if (tl != NULL) {
      do_tree(tl->right());
      do_list(tl);
      do_tree(tl->left());
    }
  }
};

// For each list in the tree, calculate the desired, desired
// coalesce, count before sweep, and surplus before sweep.
class BeginSweepClosure : public AscendTreeCensusClosure {
  double _percentage;
  float _inter_sweep_current;
  float _inter_sweep_estimate;

 public:
  BeginSweepClosure(double p, float inter_sweep_current,
                              float inter_sweep_estimate) :
   _percentage(p),
   _inter_sweep_current(inter_sweep_current),
   _inter_sweep_estimate(inter_sweep_estimate) { }

  void do_list(FreeList* fl) {
    double coalSurplusPercent = _percentage;
    fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate);
    fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
    fl->set_beforeSweep(fl->count());
    fl->set_bfrSurp(fl->surplus());
  }
};

// Used to search the tree until a condition is met.
// Similar to TreeCensusClosure but searches the
// tree and returns promptly when found.

class TreeSearchClosure : public StackObj {
 protected:
  virtual bool do_list(FreeList* fl) = 0;
 public:
  virtual bool do_tree(TreeList* tl) = 0;
};

#if 0 //  Don't need this yet but here for symmetry.
class AscendTreeSearchClosure : public TreeSearchClosure {
 public:
  bool do_tree(TreeList* tl) {
    if (tl != NULL) {
      if (do_tree(tl->left())) return true;
      if (do_list(tl)) return true;
      if (do_tree(tl->right())) return true;
    }
    return false;
  }
};
#endif

class DescendTreeSearchClosure : public TreeSearchClosure {
 public:
  bool do_tree(TreeList* tl) {
    if (tl != NULL) {
      if (do_tree(tl->right())) return true;
      if (do_list(tl)) return true;
      if (do_tree(tl->left())) return true;
    }
    return false;
  }
};

// Searches the tree for a chunk that ends at the
// specified address.
class EndTreeSearchClosure : public DescendTreeSearchClosure {
  HeapWord* _target;
  FreeChunk* _found;

 public:
  EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
  bool do_list(FreeList* fl) {
    FreeChunk* item = fl->head();
    while (item != NULL) {
      if (item->end() == _target) {
        _found = item;
        return true;
      }
      item = item->next();
    }
    return false;
  }
  FreeChunk* found() { return _found; }
};

FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
  EndTreeSearchClosure etsc(target);
  bool found_target = etsc.do_tree(root());
  assert(found_target || etsc.found() == NULL, "Consistency check");
  assert(!found_target || etsc.found() != NULL, "Consistency check");
  return etsc.found();
}

void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
  float inter_sweep_current, float inter_sweep_estimate) {
  BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
                                            inter_sweep_estimate);
  bsc.do_tree(root());
}

// Closures and methods for calculating total bytes returned to the
// free lists in the tree.
NOT_PRODUCT(
  class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
   public:
    void do_list(FreeList* fl) {
      fl->set_returnedBytes(0);
    }
  };

  void BinaryTreeDictionary::initializeDictReturnedBytes() {
    InitializeDictReturnedBytesClosure idrb;
    idrb.do_tree(root());
  }

  class ReturnedBytesClosure : public AscendTreeCensusClosure {
    size_t _dictReturnedBytes;
   public:
    ReturnedBytesClosure() { _dictReturnedBytes = 0; }
    void do_list(FreeList* fl) {
      _dictReturnedBytes += fl->returnedBytes();
    }
    size_t dictReturnedBytes() { return _dictReturnedBytes; }
  };

  size_t BinaryTreeDictionary::sumDictReturnedBytes() {
    ReturnedBytesClosure rbc;
    rbc.do_tree(root());

    return rbc.dictReturnedBytes();
  }

  // Count the number of entries in the tree.
  class treeCountClosure : public DescendTreeCensusClosure {
   public:
    uint count;
    treeCountClosure(uint c) { count = c; }
    void do_list(FreeList* fl) {
      count++;
    }
  };

  size_t BinaryTreeDictionary::totalCount() {
    treeCountClosure ctc(0);
    ctc.do_tree(root());
    return ctc.count;
  }
)

// Calculate surpluses for the lists in the tree.
class setTreeSurplusClosure : public AscendTreeCensusClosure {
  double percentage;
 public:
  setTreeSurplusClosure(double v) { percentage = v; }
  void do_list(FreeList* fl) {
    double splitSurplusPercent = percentage;
    fl->set_surplus(fl->count() -
                   (ssize_t)((double)fl->desired() * splitSurplusPercent));
  }
};

void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
  setTreeSurplusClosure sts(splitSurplusPercent);
  sts.do_tree(root());
}

// Set hints for the lists in the tree.
class setTreeHintsClosure : public DescendTreeCensusClosure {
  size_t hint;
 public:
  setTreeHintsClosure(size_t v) { hint = v; }
  void do_list(FreeList* fl) {
    fl->set_hint(hint);
    assert(fl->hint() == 0 || fl->hint() > fl->size(),
      "Current hint is inconsistent");
    if (fl->surplus() > 0) {
      hint = fl->size();
    }
  }
};

void BinaryTreeDictionary::setTreeHints(void) {
  setTreeHintsClosure sth(0);
  sth.do_tree(root());
}

// Save count before previous sweep and splits and coalesces.
class clearTreeCensusClosure : public AscendTreeCensusClosure {
  void do_list(FreeList* fl) {
    fl->set_prevSweep(fl->count());
    fl->set_coalBirths(0);
    fl->set_coalDeaths(0);
    fl->set_splitBirths(0);
    fl->set_splitDeaths(0);
  }
};

void BinaryTreeDictionary::clearTreeCensus(void) {
  clearTreeCensusClosure ctc;
  ctc.do_tree(root());
}

// Do reporting and post sweep clean up.
void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
  // Does walking the tree 3 times hurt?
  setTreeSurplus(splitSurplusPercent);
  setTreeHints();
  if (PrintGC && Verbose) {
    reportStatistics();
  }
  clearTreeCensus();
}

// Print summary statistics
void BinaryTreeDictionary::reportStatistics() const {
  verify_par_locked();
  gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
         "------------------------------------\n");
  size_t totalSize = totalChunkSize(debug_only(NULL));
  size_t    freeBlocks = numFreeBlocks();
  gclog_or_tty->print("Total Free Space: %d\n", totalSize);
  gclog_or_tty->print("Max   Chunk Size: %d\n", maxChunkSize());
  gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
  if (freeBlocks > 0) {
    gclog_or_tty->print("Av.  Block  Size: %d\n", totalSize/freeBlocks);
  }
  gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
}

// Print census information - counts, births, deaths, etc.
// for each list in the tree.  Also print some summary
// information.
class printTreeCensusClosure : public AscendTreeCensusClosure {
  size_t _totalFree;
  AllocationStats _totals;
  size_t _count;

 public:
  printTreeCensusClosure() {
    _totalFree = 0;
    _count = 0;
    _totals.initialize();
  }
  AllocationStats* totals() { return &_totals; }
  size_t count() { return _count; }
  void increment_count_by(size_t v) { _count += v; }
  size_t totalFree() { return _totalFree; }
  void increment_totalFree_by(size_t v) { _totalFree += v; }
  void do_list(FreeList* fl) {
    bool nl = false; // "maybe this is not needed" isNearLargestChunk(fl->head());

    gclog_or_tty->print("%c %4d\t\t" "%7d\t" "%7d\t"
               "%7d\t"      "%7d\t" "%7d\t" "%7d\t"
               "%7d\t"      "%7d\t" "%7d\t"
               "%7d\t" "\n",
               " n"[nl], fl->size(), fl->bfrSurp(), fl->surplus(),
               fl->desired(), fl->prevSweep(), fl->beforeSweep(), fl->count(),
               fl->coalBirths(), fl->coalDeaths(), fl->splitBirths(),
               fl->splitDeaths());

    increment_totalFree_by(fl->count() * fl->size());
    increment_count_by(fl->count());
    totals()->set_bfrSurp(totals()->bfrSurp() + fl->bfrSurp());
    totals()->set_surplus(totals()->splitDeaths()     + fl->surplus());
    totals()->set_prevSweep(totals()->prevSweep()   + fl->prevSweep());
    totals()->set_beforeSweep(totals()->beforeSweep() + fl->beforeSweep());
    totals()->set_coalBirths(totals()->coalBirths()  + fl->coalBirths());
    totals()->set_coalDeaths(totals()->coalDeaths()  + fl->coalDeaths());
    totals()->set_splitBirths(totals()->splitBirths() + fl->splitBirths());
    totals()->set_splitDeaths(totals()->splitDeaths() + fl->splitDeaths());
  }
};

void BinaryTreeDictionary::printDictCensus(void) const {

  gclog_or_tty->print("\nBinaryTree\n");
  gclog_or_tty->print(
             "%4s\t\t" "%7s\t"   "%7s\t"    "%7s\t"    "%7s\t"    "%7s\t"
             "%7s\t"   "%7s\t"   "%7s\t"    "%7s\t"    "%7s\t"     "\n",
             "size",  "bfrsurp", "surplus", "desired", "prvSwep", "bfrSwep",
             "count", "cBirths", "cDeaths", "sBirths", "sDeaths");

  printTreeCensusClosure ptc;
  ptc.do_tree(root());

  gclog_or_tty->print(
             "\t\t"    "%7s\t"    "%7s\t"    "%7s\t"    "%7s\t"
             "%7s\t"   "%7s\t"    "%7s\t"    "%7s\t"    "%7s\t"     "\n",
                       "bfrsurp", "surplus", "prvSwep", "bfrSwep",
             "count",  "cBirths", "cDeaths", "sBirths", "sDeaths");
  gclog_or_tty->print(
             "%s\t\t"  "%7d\t"    "%7d\t"     "%7d\t"    "%7d\t"
             "%7d\t"   "%7d\t"    "%7d\t"     "%7d\t"    "%7d\t"    "\n",
             "totl",
             ptc.totals()->bfrSurp(),
             ptc.totals()->surplus(),
             ptc.totals()->prevSweep(),
             ptc.totals()->beforeSweep(),
             ptc.count(),
             ptc.totals()->coalBirths(),
             ptc.totals()->coalDeaths(),
             ptc.totals()->splitBirths(),
             ptc.totals()->splitDeaths());
  gclog_or_tty->print("totalFree(words): %7d growth: %8.5f  deficit: %8.5f\n",
              ptc.totalFree(),
              (double)(ptc.totals()->splitBirths()+ptc.totals()->coalBirths()
                       -ptc.totals()->splitDeaths()-ptc.totals()->coalDeaths())
              /(ptc.totals()->prevSweep() != 0 ?
                (double)ptc.totals()->prevSweep() : 1.0),
             (double)(ptc.totals()->desired() - ptc.count())
             /(ptc.totals()->desired() != 0 ?
               (double)ptc.totals()->desired() : 1.0));
}

// Verify the following tree invariants:
// . _root has no parent
// . parent and child point to each other
// . each node's key correctly related to that of its child(ren)
void BinaryTreeDictionary::verifyTree() const {
  guarantee(root() == NULL || totalFreeBlocks() == 0 ||
    totalSize() != 0, "_totalSize should't be 0?");
  guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  verifyTreeHelper(root());
}

size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
  size_t ct = 0;
  for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
    ct++;
    assert(curFC->prev() == NULL || curFC->prev()->isFree(),
      "Chunk should be free");
  }
  return ct;
}

// Note: this helper is recursive rather than iterative, so use with
// caution on very deep trees; and watch out for stack overflow errors;
// In general, to be used only for debugging.
void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
  if (tl == NULL)
    return;
  guarantee(tl->size() != 0, "A list must has a size");
  guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
         "parent<-/->left");
  guarantee(tl->right() == NULL || tl->right()->parent() == tl,
         "parent<-/->right");;
  guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
         "parent !> left");
  guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
         "parent !< left");
  guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
  guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
    "list inconsistency");
  guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
    "list count is inconsistent");
  guarantee(tl->count() > 1 || tl->head() == tl->tail(),
    "list is incorrectly constructed");
  size_t count = verifyPrevFreePtrs(tl);
  guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  if (tl->head() != NULL) {
    tl->head_as_TreeChunk()->verifyTreeChunkList();
  }
  verifyTreeHelper(tl->left());
  verifyTreeHelper(tl->right());
}

void BinaryTreeDictionary::verify() const {
  verifyTree();
  guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
}