g1BlockOffsetTable.cpp 24.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_g1BlockOffsetTable.cpp.incl"

//////////////////////////////////////////////////////////////////////
// G1BlockOffsetSharedArray
//////////////////////////////////////////////////////////////////////

G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion reserved,
                                                   size_t init_word_size) :
  _reserved(reserved), _end(NULL)
{
  size_t size = compute_size(reserved.word_size());
  ReservedSpace rs(ReservedSpace::allocation_align_size_up(size));
  if (!rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for heap offset array");
  }
  if (!_vs.initialize(rs, 0)) {
    vm_exit_during_initialization("Could not reserve enough space for heap offset array");
  }
  _offset_array = (u_char*)_vs.low_boundary();
  resize(init_word_size);
  if (TraceBlockOffsetTable) {
    gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
    gclog_or_tty->print_cr("  "
                  "  rs.base(): " INTPTR_FORMAT
                  "  rs.size(): " INTPTR_FORMAT
                  "  rs end(): " INTPTR_FORMAT,
                  rs.base(), rs.size(), rs.base() + rs.size());
    gclog_or_tty->print_cr("  "
                  "  _vs.low_boundary(): " INTPTR_FORMAT
                  "  _vs.high_boundary(): " INTPTR_FORMAT,
                  _vs.low_boundary(),
                  _vs.high_boundary());
  }
}

void G1BlockOffsetSharedArray::resize(size_t new_word_size) {
  assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
  size_t new_size = compute_size(new_word_size);
  size_t old_size = _vs.committed_size();
  size_t delta;
  char* high = _vs.high();
  _end = _reserved.start() + new_word_size;
  if (new_size > old_size) {
    delta = ReservedSpace::page_align_size_up(new_size - old_size);
    assert(delta > 0, "just checking");
    if (!_vs.expand_by(delta)) {
      // Do better than this for Merlin
      vm_exit_out_of_memory(delta, "offset table expansion");
    }
    assert(_vs.high() == high + delta, "invalid expansion");
    // Initialization of the contents is left to the
    // G1BlockOffsetArray that uses it.
  } else {
    delta = ReservedSpace::page_align_size_down(old_size - new_size);
    if (delta == 0) return;
    _vs.shrink_by(delta);
    assert(_vs.high() == high - delta, "invalid expansion");
  }
}

bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
  assert(p >= _reserved.start(), "just checking");
  size_t delta = pointer_delta(p, _reserved.start());
  return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
}


//////////////////////////////////////////////////////////////////////
// G1BlockOffsetArray
//////////////////////////////////////////////////////////////////////

G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
                                       MemRegion mr, bool init_to_zero) :
  G1BlockOffsetTable(mr.start(), mr.end()),
  _unallocated_block(_bottom),
  _array(array), _csp(NULL),
  _init_to_zero(init_to_zero) {
  assert(_bottom <= _end, "arguments out of order");
  if (!_init_to_zero) {
    // initialize cards to point back to mr.start()
    set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
    _array->set_offset_array(0, 0);  // set first card to 0
  }
}

void G1BlockOffsetArray::set_space(Space* sp) {
  _sp = sp;
  _csp = sp->toContiguousSpace();
}

// The arguments follow the normal convention of denoting
// a right-open interval: [start, end)
void
G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {

  if (start >= end) {
    // The start address is equal to the end address (or to
    // the right of the end address) so there are not cards
    // that need to be updated..
    return;
  }

  // Write the backskip value for each region.
  //
  //    offset
  //    card             2nd                       3rd
  //     | +- 1st        |                         |
  //     v v             v                         v
  //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
  //    |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
  //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
  //    11              19                        75
  //      12
  //
  //    offset card is the card that points to the start of an object
  //      x - offset value of offset card
  //    1st - start of first logarithmic region
  //      0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
  //    2nd - start of second logarithmic region
  //      1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
  //    3rd - start of third logarithmic region
  //      2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
  //
  //    integer below the block offset entry is an example of
  //    the index of the entry
  //
  //    Given an address,
  //      Find the index for the address
  //      Find the block offset table entry
  //      Convert the entry to a back slide
  //        (e.g., with today's, offset = 0x81 =>
  //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
  //      Move back N (e.g., 8) entries and repeat with the
  //        value of the new entry
  //
  size_t start_card = _array->index_for(start);
  size_t end_card = _array->index_for(end-1);
  assert(start ==_array->address_for_index(start_card), "Precondition");
  assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
  set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
}

// Unlike the normal convention in this code, the argument here denotes
// a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
// above.
void
G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
  if (start_card > end_card) {
    return;
  }
  assert(start_card > _array->index_for(_bottom), "Cannot be first card");
  assert(_array->offset_array(start_card-1) <= N_words,
    "Offset card has an unexpected value");
  size_t start_card_for_region = start_card;
  u_char offset = max_jubyte;
  for (int i = 0; i < BlockOffsetArray::N_powers; i++) {
    // -1 so that the the card with the actual offset is counted.  Another -1
    // so that the reach ends in this region and not at the start
    // of the next.
    size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1);
    offset = N_words + i;
    if (reach >= end_card) {
      _array->set_offset_array(start_card_for_region, end_card, offset);
      start_card_for_region = reach + 1;
      break;
    }
    _array->set_offset_array(start_card_for_region, reach, offset);
    start_card_for_region = reach + 1;
  }
  assert(start_card_for_region > end_card, "Sanity check");
  DEBUG_ONLY(check_all_cards(start_card, end_card);)
}

// The block [blk_start, blk_end) has been allocated;
// adjust the block offset table to represent this information;
// right-open interval: [blk_start, blk_end)
void
G1BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
  mark_block(blk_start, blk_end);
  allocated(blk_start, blk_end);
}

// Adjust BOT to show that a previously whole block has been split
// into two.
void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size,
                                     size_t left_blk_size) {
  // Verify that the BOT shows [blk, blk + blk_size) to be one block.
  verify_single_block(blk, blk_size);
  // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
  // is one single block.
  mark_block(blk + left_blk_size, blk + blk_size);
}


// Action_mark - update the BOT for the block [blk_start, blk_end).
//               Current typical use is for splitting a block.
// Action_single - udpate the BOT for an allocation.
// Action_verify - BOT verification.
void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start,
                                           HeapWord* blk_end,
                                           Action action) {
  assert(Universe::heap()->is_in_reserved(blk_start),
         "reference must be into the heap");
  assert(Universe::heap()->is_in_reserved(blk_end-1),
         "limit must be within the heap");
  // This is optimized to make the test fast, assuming we only rarely
  // cross boundaries.
  uintptr_t end_ui = (uintptr_t)(blk_end - 1);
  uintptr_t start_ui = (uintptr_t)blk_start;
  // Calculate the last card boundary preceding end of blk
  intptr_t boundary_before_end = (intptr_t)end_ui;
  clear_bits(boundary_before_end, right_n_bits(LogN));
  if (start_ui <= (uintptr_t)boundary_before_end) {
    // blk starts at or crosses a boundary
    // Calculate index of card on which blk begins
    size_t    start_index = _array->index_for(blk_start);
    // Index of card on which blk ends
    size_t    end_index   = _array->index_for(blk_end - 1);
    // Start address of card on which blk begins
    HeapWord* boundary    = _array->address_for_index(start_index);
    assert(boundary <= blk_start, "blk should start at or after boundary");
    if (blk_start != boundary) {
      // blk starts strictly after boundary
      // adjust card boundary and start_index forward to next card
      boundary += N_words;
      start_index++;
    }
    assert(start_index <= end_index, "monotonicity of index_for()");
    assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
    switch (action) {
      case Action_mark: {
        if (init_to_zero()) {
          _array->set_offset_array(start_index, boundary, blk_start);
          break;
        } // Else fall through to the next case
      }
      case Action_single: {
        _array->set_offset_array(start_index, boundary, blk_start);
        // We have finished marking the "offset card". We need to now
        // mark the subsequent cards that this blk spans.
        if (start_index < end_index) {
          HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
          HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
          set_remainder_to_point_to_start(rem_st, rem_end);
        }
        break;
      }
      case Action_check: {
        _array->check_offset_array(start_index, boundary, blk_start);
        // We have finished checking the "offset card". We need to now
        // check the subsequent cards that this blk spans.
        check_all_cards(start_index + 1, end_index);
        break;
      }
      default:
        ShouldNotReachHere();
    }
  }
}

// The card-interval [start_card, end_card] is a closed interval; this
// is an expensive check -- use with care and only under protection of
// suitable flag.
void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {

  if (end_card < start_card) {
    return;
  }
  guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
  for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
    u_char entry = _array->offset_array(c);
    if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
      guarantee(entry > N_words, "Should be in logarithmic region");
    }
    size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
    size_t landing_card = c - backskip;
    guarantee(landing_card >= (start_card - 1), "Inv");
    if (landing_card >= start_card) {
      guarantee(_array->offset_array(landing_card) <= entry, "monotonicity");
    } else {
      guarantee(landing_card == start_card - 1, "Tautology");
      guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
    }
  }
}

// The range [blk_start, blk_end) represents a single contiguous block
// of storage; modify the block offset table to represent this
// information; Right-open interval: [blk_start, blk_end)
// NOTE: this method does _not_ adjust _unallocated_block.
void
G1BlockOffsetArray::single_block(HeapWord* blk_start, HeapWord* blk_end) {
  do_block_internal(blk_start, blk_end, Action_single);
}

// Mark the BOT such that if [blk_start, blk_end) straddles a card
// boundary, the card following the first such boundary is marked
// with the appropriate offset.
// NOTE: this method does _not_ adjust _unallocated_block or
// any cards subsequent to the first one.
void
G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) {
  do_block_internal(blk_start, blk_end, Action_mark);
}

void G1BlockOffsetArray::join_blocks(HeapWord* blk1, HeapWord* blk2) {
  HeapWord* blk1_start = Universe::heap()->block_start(blk1);
  HeapWord* blk2_start = Universe::heap()->block_start(blk2);
  assert(blk1 == blk1_start && blk2 == blk2_start,
         "Must be block starts.");
  assert(blk1 + _sp->block_size(blk1) == blk2, "Must be contiguous.");
  size_t blk1_start_index = _array->index_for(blk1);
  size_t blk2_start_index = _array->index_for(blk2);
  assert(blk1_start_index <= blk2_start_index, "sanity");
  HeapWord* blk2_card_start = _array->address_for_index(blk2_start_index);
  if (blk2 == blk2_card_start) {
    // blk2 starts a card.  Does blk1 start on the prevous card, or futher
    // back?
    assert(blk1_start_index < blk2_start_index, "must be lower card.");
    if (blk1_start_index + 1 == blk2_start_index) {
      // previous card; new value for blk2 card is size of blk1.
      _array->set_offset_array(blk2_start_index, (u_char) _sp->block_size(blk1));
    } else {
      // Earlier card; go back a card.
      _array->set_offset_array(blk2_start_index, N_words);
    }
  } else {
    // blk2 does not start a card.  Does it cross a card?  If not, nothing
    // to do.
    size_t blk2_end_index =
      _array->index_for(blk2 + _sp->block_size(blk2) - 1);
    assert(blk2_end_index >= blk2_start_index, "sanity");
    if (blk2_end_index > blk2_start_index) {
      // Yes, it crosses a card.  The value for the next card must change.
      if (blk1_start_index + 1 == blk2_start_index) {
        // previous card; new value for second blk2 card is size of blk1.
        _array->set_offset_array(blk2_start_index + 1,
                                 (u_char) _sp->block_size(blk1));
      } else {
        // Earlier card; go back a card.
        _array->set_offset_array(blk2_start_index + 1, N_words);
      }
    }
  }
}

HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
  assert(_bottom <= addr && addr < _end,
         "addr must be covered by this Array");
  // Must read this exactly once because it can be modified by parallel
  // allocation.
  HeapWord* ub = _unallocated_block;
  if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
    assert(ub < _end, "tautology (see above)");
    return ub;
  }
  // Otherwise, find the block start using the table.
  HeapWord* q = block_at_or_preceding(addr, false, 0);
  return forward_to_block_containing_addr(q, addr);
}

// This duplicates a little code from the above: unavoidable.
HeapWord*
G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const {
  assert(_bottom <= addr && addr < _end,
         "addr must be covered by this Array");
  // Must read this exactly once because it can be modified by parallel
  // allocation.
  HeapWord* ub = _unallocated_block;
  if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
    assert(ub < _end, "tautology (see above)");
    return ub;
  }
  // Otherwise, find the block start using the table.
  HeapWord* q = block_at_or_preceding(addr, false, 0);
  HeapWord* n = q + _sp->block_size(q);
  return forward_to_block_containing_addr_const(q, n, addr);
}


HeapWord*
G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
                                                          HeapWord* n,
                                                          const void* addr) {
  // We're not in the normal case.  We need to handle an important subcase
  // here: LAB allocation.  An allocation previously recorded in the
  // offset table was actually a lab allocation, and was divided into
  // several objects subsequently.  Fix this situation as we answer the
  // query, by updating entries as we cross them.
415 416 417 418 419

  // If the fist object's end q is at the card boundary. Start refining
  // with the corresponding card (the value of the entry will be basically
  // set to 0). If the object crosses the boundary -- start from the next card.
  size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
420 421 422 423 424 425 426
  HeapWord* next_boundary = _array->address_for_index(next_index);
  if (csp() != NULL) {
    if (addr >= csp()->top()) return csp()->top();
    while (next_boundary < addr) {
      while (n <= next_boundary) {
        q = n;
        oop obj = oop(q);
427
        if (obj->klass_or_null() == NULL) return q;
428 429 430 431 432 433 434 435 436 437 438
        n += obj->size();
      }
      assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
      // [q, n) is the block that crosses the boundary.
      alloc_block_work2(&next_boundary, &next_index, q, n);
    }
  } else {
    while (next_boundary < addr) {
      while (n <= next_boundary) {
        q = n;
        oop obj = oop(q);
439
        if (obj->klass_or_null() == NULL) return q;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        n += _sp->block_size(q);
      }
      assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
      // [q, n) is the block that crosses the boundary.
      alloc_block_work2(&next_boundary, &next_index, q, n);
    }
  }
  return forward_to_block_containing_addr_const(q, n, addr);
}

HeapWord* G1BlockOffsetArray::block_start_careful(const void* addr) const {
  assert(_array->offset_array(0) == 0, "objects can't cross covered areas");

  assert(_bottom <= addr && addr < _end,
         "addr must be covered by this Array");
  // Must read this exactly once because it can be modified by parallel
  // allocation.
  HeapWord* ub = _unallocated_block;
  if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
    assert(ub < _end, "tautology (see above)");
    return ub;
  }

  // Otherwise, find the block start using the table, but taking
  // care (cf block_start_unsafe() above) not to parse any objects/blocks
  // on the cards themsleves.
  size_t index = _array->index_for(addr);
  assert(_array->address_for_index(index) == addr,
         "arg should be start of card");

  HeapWord* q = (HeapWord*)addr;
  uint offset;
  do {
    offset = _array->offset_array(index--);
    q -= offset;
  } while (offset == N_words);
  assert(q <= addr, "block start should be to left of arg");
  return q;
}

// Note that the committed size of the covered space may have changed,
// so the table size might also wish to change.
void G1BlockOffsetArray::resize(size_t new_word_size) {
  HeapWord* new_end = _bottom + new_word_size;
  if (_end < new_end && !init_to_zero()) {
    // verify that the old and new boundaries are also card boundaries
    assert(_array->is_card_boundary(_end),
           "_end not a card boundary");
    assert(_array->is_card_boundary(new_end),
           "new _end would not be a card boundary");
    // set all the newly added cards
    _array->set_offset_array(_end, new_end, N_words);
  }
  _end = new_end;  // update _end
}

void G1BlockOffsetArray::set_region(MemRegion mr) {
  _bottom = mr.start();
  _end = mr.end();
}

//
//              threshold_
//              |   _index_
//              v   v
//      +-------+-------+-------+-------+-------+
//      | i-1   |   i   | i+1   | i+2   | i+3   |
//      +-------+-------+-------+-------+-------+
//       ( ^    ]
//         block-start
//
void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_,
                                           HeapWord* blk_start, HeapWord* blk_end) {
  // For efficiency, do copy-in/copy-out.
  HeapWord* threshold = *threshold_;
  size_t    index = *index_;

  assert(blk_start != NULL && blk_end > blk_start,
         "phantom block");
  assert(blk_end > threshold, "should be past threshold");
520
  assert(blk_start <= threshold, "blk_start should be at or before threshold");
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
  assert(pointer_delta(threshold, blk_start) <= N_words,
         "offset should be <= BlockOffsetSharedArray::N");
  assert(Universe::heap()->is_in_reserved(blk_start),
         "reference must be into the heap");
  assert(Universe::heap()->is_in_reserved(blk_end-1),
         "limit must be within the heap");
  assert(threshold == _array->_reserved.start() + index*N_words,
         "index must agree with threshold");

  DEBUG_ONLY(size_t orig_index = index;)

  // Mark the card that holds the offset into the block.  Note
  // that _next_offset_index and _next_offset_threshold are not
  // updated until the end of this method.
  _array->set_offset_array(index, threshold, blk_start);

  // We need to now mark the subsequent cards that this blk spans.

  // Index of card on which blk ends.
  size_t end_index   = _array->index_for(blk_end - 1);

  // Are there more cards left to be updated?
  if (index + 1 <= end_index) {
    HeapWord* rem_st  = _array->address_for_index(index + 1);
    // Calculate rem_end this way because end_index
    // may be the last valid index in the covered region.
    HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
    set_remainder_to_point_to_start(rem_st, rem_end);
  }

  index = end_index + 1;
  // Calculate threshold_ this way because end_index
  // may be the last valid index in the covered region.
  threshold = _array->address_for_index(end_index) + N_words;
  assert(threshold >= blk_end, "Incorrect offset threshold");

  // index_ and threshold_ updated here.
  *threshold_ = threshold;
  *index_ = index;

#ifdef ASSERT
  // The offset can be 0 if the block starts on a boundary.  That
  // is checked by an assertion above.
  size_t start_index = _array->index_for(blk_start);
  HeapWord* boundary    = _array->address_for_index(start_index);
  assert((_array->offset_array(orig_index) == 0 &&
          blk_start == boundary) ||
          (_array->offset_array(orig_index) > 0 &&
         _array->offset_array(orig_index) <= N_words),
         "offset array should have been set");
  for (size_t j = orig_index + 1; j <= end_index; j++) {
    assert(_array->offset_array(j) > 0 &&
           _array->offset_array(j) <=
             (u_char) (N_words+BlockOffsetArray::N_powers-1),
           "offset array should have been set");
  }
#endif
}

//////////////////////////////////////////////////////////////////////
// G1BlockOffsetArrayContigSpace
//////////////////////////////////////////////////////////////////////

HeapWord*
G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) {
  assert(_bottom <= addr && addr < _end,
         "addr must be covered by this Array");
  HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
  return forward_to_block_containing_addr(q, addr);
}

HeapWord*
G1BlockOffsetArrayContigSpace::
block_start_unsafe_const(const void* addr) const {
  assert(_bottom <= addr && addr < _end,
         "addr must be covered by this Array");
  HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
  HeapWord* n = q + _sp->block_size(q);
  return forward_to_block_containing_addr_const(q, n, addr);
}

G1BlockOffsetArrayContigSpace::
G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array,
                              MemRegion mr) :
  G1BlockOffsetArray(array, mr, true)
{
  _next_offset_threshold = NULL;
  _next_offset_index = 0;
}

HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() {
  assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
         "just checking");
  _next_offset_index = _array->index_for(_bottom);
  _next_offset_index++;
  _next_offset_threshold =
    _array->address_for_index(_next_offset_index);
  return _next_offset_threshold;
}

void G1BlockOffsetArrayContigSpace::zero_bottom_entry() {
  assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
         "just checking");
  size_t bottom_index = _array->index_for(_bottom);
  assert(_array->address_for_index(bottom_index) == _bottom,
         "Precondition of call");
  _array->set_offset_array(bottom_index, 0);
}