c1_MacroAssembler_x86.cpp 14.5 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_c1_MacroAssembler_x86.cpp.incl"

int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register scratch, Label& slow_case) {
  const int aligned_mask = 3;
  const int hdr_offset = oopDesc::mark_offset_in_bytes();
  assert(hdr == rax, "hdr must be rax, for the cmpxchg instruction");
  assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
  assert(BytesPerWord == 4, "adjust aligned_mask and code");
  Label done;
  int null_check_offset = -1;

  verify_oop(obj);

  // save object being locked into the BasicObjectLock
  movl(Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()), obj);

  if (UseBiasedLocking) {
    assert(scratch != noreg, "should have scratch register at this point");
    null_check_offset = biased_locking_enter(disp_hdr, obj, hdr, scratch, false, done, &slow_case);
  } else {
    null_check_offset = offset();
  }

  // Load object header
  movl(hdr, Address(obj, hdr_offset));
  // and mark it as unlocked
  orl(hdr, markOopDesc::unlocked_value);
  // save unlocked object header into the displaced header location on the stack
  movl(Address(disp_hdr, 0), hdr);
  // test if object header is still the same (i.e. unlocked), and if so, store the
  // displaced header address in the object header - if it is not the same, get the
  // object header instead
  if (os::is_MP()) MacroAssembler::lock(); // must be immediately before cmpxchg!
  cmpxchg(disp_hdr, Address(obj, hdr_offset));
  // if the object header was the same, we're done
  if (PrintBiasedLockingStatistics) {
    cond_inc32(Assembler::equal,
               ExternalAddress((address)BiasedLocking::fast_path_entry_count_addr()));
  }
  jcc(Assembler::equal, done);
  // if the object header was not the same, it is now in the hdr register
  // => test if it is a stack pointer into the same stack (recursive locking), i.e.:
  //
  // 1) (hdr & aligned_mask) == 0
  // 2) rsp <= hdr
  // 3) hdr <= rsp + page_size
  //
  // these 3 tests can be done by evaluating the following expression:
  //
  // (hdr - rsp) & (aligned_mask - page_size)
  //
  // assuming both the stack pointer and page_size have their least
  // significant 2 bits cleared and page_size is a power of 2
  subl(hdr, rsp);
  andl(hdr, aligned_mask - os::vm_page_size());
  // for recursive locking, the result is zero => save it in the displaced header
  // location (NULL in the displaced hdr location indicates recursive locking)
  movl(Address(disp_hdr, 0), hdr);
  // otherwise we don't care about the result and handle locking via runtime call
  jcc(Assembler::notZero, slow_case);
  // done
  bind(done);
  return null_check_offset;
}


void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) {
  const int aligned_mask = 3;
  const int hdr_offset = oopDesc::mark_offset_in_bytes();
  assert(disp_hdr == rax, "disp_hdr must be rax, for the cmpxchg instruction");
  assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
  assert(BytesPerWord == 4, "adjust aligned_mask and code");
  Label done;

  if (UseBiasedLocking) {
    // load object
    movl(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
    biased_locking_exit(obj, hdr, done);
  }

  // load displaced header
  movl(hdr, Address(disp_hdr, 0));
  // if the loaded hdr is NULL we had recursive locking
  testl(hdr, hdr);
  // if we had recursive locking, we are done
  jcc(Assembler::zero, done);
  if (!UseBiasedLocking) {
    // load object
    movl(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
  }
  verify_oop(obj);
  // test if object header is pointing to the displaced header, and if so, restore
  // the displaced header in the object - if the object header is not pointing to
  // the displaced header, get the object header instead
  if (os::is_MP()) MacroAssembler::lock(); // must be immediately before cmpxchg!
  cmpxchg(hdr, Address(obj, hdr_offset));
  // if the object header was not pointing to the displaced header,
  // we do unlocking via runtime call
  jcc(Assembler::notEqual, slow_case);
  // done
  bind(done);
}


// Defines obj, preserves var_size_in_bytes
void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) {
  if (UseTLAB) {
    tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
  } else {
    eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
  }
}


void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
  assert_different_registers(obj, klass, len);
  if (UseBiasedLocking && !len->is_valid()) {
    assert_different_registers(obj, klass, len, t1, t2);
    movl(t1, Address(klass, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
    movl(Address(obj, oopDesc::mark_offset_in_bytes()), t1);
  } else {
    movl(Address(obj, oopDesc::mark_offset_in_bytes ()), (int)markOopDesc::prototype());
  }

  movl(Address(obj, oopDesc::klass_offset_in_bytes()), klass);
  if (len->is_valid()) {
    movl(Address(obj, arrayOopDesc::length_offset_in_bytes()), len);
  }
}


// preserves obj, destroys len_in_bytes
void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1) {
  Label done;
  assert(obj != len_in_bytes && obj != t1 && t1 != len_in_bytes, "registers must be different");
  assert((hdr_size_in_bytes & (BytesPerWord - 1)) == 0, "header size is not a multiple of BytesPerWord");
  Register index = len_in_bytes;
  subl(index, hdr_size_in_bytes);
  jcc(Assembler::zero, done);
  // initialize topmost word, divide index by 2, check if odd and test if zero
  // note: for the remaining code to work, index must be a multiple of BytesPerWord
#ifdef ASSERT
  { Label L;
    testl(index, BytesPerWord - 1);
    jcc(Assembler::zero, L);
    stop("index is not a multiple of BytesPerWord");
    bind(L);
  }
#endif
  xorl(t1, t1);      // use _zero reg to clear memory (shorter code)
  if (UseIncDec) {
    shrl(index, 3);  // divide by 8 and set carry flag if bit 2 was set
  } else {
    shrl(index, 2);  // use 2 instructions to avoid partial flag stall
    shrl(index, 1);
  }
  // index could have been not a multiple of 8 (i.e., bit 2 was set)
  { Label even;
    // note: if index was a multiple of 8, than it cannot
    //       be 0 now otherwise it must have been 0 before
    //       => if it is even, we don't need to check for 0 again
    jcc(Assembler::carryClear, even);
    // clear topmost word (no jump needed if conditional assignment would work here)
    movl(Address(obj, index, Address::times_8, hdr_size_in_bytes - 0*BytesPerWord), t1);
    // index could be 0 now, need to check again
    jcc(Assembler::zero, done);
    bind(even);
  }
  // initialize remaining object fields: rdx is a multiple of 2 now
  { Label loop;
    bind(loop);
    movl(Address(obj, index, Address::times_8, hdr_size_in_bytes - 1*BytesPerWord), t1);
    movl(Address(obj, index, Address::times_8, hdr_size_in_bytes - 2*BytesPerWord), t1);
    decrement(index);
    jcc(Assembler::notZero, loop);
  }

  // done
  bind(done);
}


void C1_MacroAssembler::allocate_object(Register obj, Register t1, Register t2, int header_size, int object_size, Register klass, Label& slow_case) {
  assert(obj == rax, "obj must be in rax, for cmpxchg");
  assert(obj != t1 && obj != t2 && t1 != t2, "registers must be different"); // XXX really?
  assert(header_size >= 0 && object_size >= header_size, "illegal sizes");

  try_allocate(obj, noreg, object_size * BytesPerWord, t1, t2, slow_case);

  initialize_object(obj, klass, noreg, object_size * HeapWordSize, t1, t2);
}

void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2) {
  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0,
         "con_size_in_bytes is not multiple of alignment");
221
  const int hdr_size_in_bytes = instanceOopDesc::base_offset_in_bytes();
D
duke 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

  initialize_header(obj, klass, noreg, t1, t2);

  // clear rest of allocated space
  const Register t1_zero = t1;
  const Register index = t2;
  const int threshold = 6 * BytesPerWord;   // approximate break even point for code size (see comments below)
  if (var_size_in_bytes != noreg) {
    movl(index, var_size_in_bytes);
    initialize_body(obj, index, hdr_size_in_bytes, t1_zero);
  } else if (con_size_in_bytes <= threshold) {
    // use explicit null stores
    // code size = 2 + 3*n bytes (n = number of fields to clear)
    xorl(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code)
    for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += BytesPerWord)
      movl(Address(obj, i), t1_zero);
  } else if (con_size_in_bytes > hdr_size_in_bytes) {
    // use loop to null out the fields
    // code size = 16 bytes for even n (n = number of fields to clear)
    // initialize last object field first if odd number of fields
    xorl(t1_zero, t1_zero); // use t1_zero reg to clear memory (shorter code)
    movl(index, (con_size_in_bytes - hdr_size_in_bytes) >> 3);
    // initialize last object field if constant size is odd
    if (((con_size_in_bytes - hdr_size_in_bytes) & 4) != 0)
      movl(Address(obj, con_size_in_bytes - (1*BytesPerWord)), t1_zero);
    // initialize remaining object fields: rdx is a multiple of 2
    { Label loop;
      bind(loop);
      movl(Address(obj, index, Address::times_8,
        hdr_size_in_bytes - (1*BytesPerWord)), t1_zero);
      movl(Address(obj, index, Address::times_8,
        hdr_size_in_bytes - (2*BytesPerWord)), t1_zero);
      decrement(index);
      jcc(Assembler::notZero, loop);
    }
  }

  if (DTraceAllocProbes) {
    assert(obj == rax, "must be");
    call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
  }

  verify_oop(obj);
}

void C1_MacroAssembler::allocate_array(Register obj, Register len, Register t1, Register t2, int header_size, Address::ScaleFactor f, Register klass, Label& slow_case) {
  assert(obj == rax, "obj must be in rax, for cmpxchg");
  assert_different_registers(obj, len, t1, t2, klass);

  // determine alignment mask
  assert(BytesPerWord == 4, "must be a multiple of 2 for masking code to work");

  // check for negative or excessive length
  cmpl(len, max_array_allocation_length);
  jcc(Assembler::above, slow_case);

  const Register arr_size = t2; // okay to be the same
  // align object end
  movl(arr_size, header_size * BytesPerWord + MinObjAlignmentInBytesMask);
  leal(arr_size, Address(arr_size, len, f));
  andl(arr_size, ~MinObjAlignmentInBytesMask);

  try_allocate(obj, arr_size, 0, t1, t2, slow_case);

  initialize_header(obj, klass, len, t1, t2);

  // clear rest of allocated space
  const Register len_zero = len;
  initialize_body(obj, arr_size, header_size * BytesPerWord, len_zero);

  if (DTraceAllocProbes) {
    assert(obj == rax, "must be");
    call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
  }

  verify_oop(obj);
}



void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
  verify_oop(receiver);
  // explicit NULL check not needed since load from [klass_offset] causes a trap
  // check against inline cache
  assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check");
  int start_offset = offset();
  cmpl(iCache, Address(receiver, oopDesc::klass_offset_in_bytes()));
  // if icache check fails, then jump to runtime routine
  // Note: RECEIVER must still contain the receiver!
  jump_cc(Assembler::notEqual,
          RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  assert(offset() - start_offset == 9, "check alignment in emit_method_entry");
}


void C1_MacroAssembler::method_exit(bool restore_frame) {
  if (restore_frame) {
    leave();
  }
  ret(0);
}


void C1_MacroAssembler::build_frame(int frame_size_in_bytes) {
  // Make sure there is enough stack space for this method's activation.
  // Note that we do this before doing an enter(). This matches the
  // ordering of C2's stack overflow check / rsp decrement and allows
  // the SharedRuntime stack overflow handling to be consistent
  // between the two compilers.
  generate_stack_overflow_check(frame_size_in_bytes);

  enter();
#ifdef TIERED
  // c2 leaves fpu stack dirty. Clean it on entry
  if (UseSSE < 2 ) {
    empty_FPU_stack();
  }
#endif // TIERED
  decrement(rsp, frame_size_in_bytes); // does not emit code for frame_size == 0
}


void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) {
  if (C1Breakpoint) int3();
  inline_cache_check(receiver, ic_klass);
}


void C1_MacroAssembler::verified_entry() {
  if (C1Breakpoint)int3();
  // build frame
  verify_FPU(0, "method_entry");
}


#ifndef PRODUCT

void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
  if (!VerifyOops) return;
  verify_oop_addr(Address(rsp, stack_offset));
}

void C1_MacroAssembler::verify_not_null_oop(Register r) {
  if (!VerifyOops) return;
  Label not_null;
  testl(r, r);
  jcc(Assembler::notZero, not_null);
  stop("non-null oop required");
  bind(not_null);
  verify_oop(r);
}

void C1_MacroAssembler::invalidate_registers(bool inv_rax, bool inv_rbx, bool inv_rcx, bool inv_rdx, bool inv_rsi, bool inv_rdi) {
#ifdef ASSERT
  if (inv_rax) movl(rax, 0xDEAD);
  if (inv_rbx) movl(rbx, 0xDEAD);
  if (inv_rcx) movl(rcx, 0xDEAD);
  if (inv_rdx) movl(rdx, 0xDEAD);
  if (inv_rsi) movl(rsi, 0xDEAD);
  if (inv_rdi) movl(rdi, 0xDEAD);
#endif
}

#endif // ifndef PRODUCT