stubGenerator_x86_32.cpp 109.0 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "assembler_x86.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_x86.hpp"
#include "oops/instanceOop.hpp"
31
#include "oops/method.hpp"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/top.hpp"
#ifdef TARGET_OS_FAMILY_linux
# include "thread_linux.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_solaris
# include "thread_solaris.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_windows
# include "thread_windows.inline.hpp"
#endif
N
never 已提交
50 51 52
#ifdef TARGET_OS_FAMILY_bsd
# include "thread_bsd.inline.hpp"
#endif
53 54 55
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
D
duke 已提交
56 57 58 59 60 61

// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp

#define __ _masm->
62
#define a__ ((Assembler*)_masm)->
D
duke 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
const int FPU_CNTRL_WRD_MASK = 0xFFFF;

// -------------------------------------------------------------------------------------------------------------------------
// Stub Code definitions

static address handle_unsafe_access() {
  JavaThread* thread = JavaThread::current();
  address pc  = thread->saved_exception_pc();
  // pc is the instruction which we must emulate
  // doing a no-op is fine:  return garbage from the load
  // therefore, compute npc
  address npc = Assembler::locate_next_instruction(pc);

  // request an async exception
  thread->set_pending_unsafe_access_error();

  // return address of next instruction to execute
  return npc;
}

class StubGenerator: public StubCodeGenerator {
 private:

#ifdef PRODUCT
#define inc_counter_np(counter) (0)
#else
  void inc_counter_np_(int& counter) {
100
    __ incrementl(ExternalAddress((address)&counter));
D
duke 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  }
#define inc_counter_np(counter) \
  BLOCK_COMMENT("inc_counter " #counter); \
  inc_counter_np_(counter);
#endif //PRODUCT

  void inc_copy_counter_np(BasicType t) {
#ifndef PRODUCT
    switch (t) {
    case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
    case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
    case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
    case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
    case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
    }
    ShouldNotReachHere();
#endif //PRODUCT
  }

  //------------------------------------------------------------------------------------------------------------------------
  // Call stubs are used to call Java from C
  //
  //    [ return_from_Java     ] <--- rsp
  //    [ argument word n      ]
  //      ...
  // -N [ argument word 1      ]
  // -7 [ Possible padding for stack alignment ]
  // -6 [ Possible padding for stack alignment ]
  // -5 [ Possible padding for stack alignment ]
  // -4 [ mxcsr save           ] <--- rsp_after_call
  // -3 [ saved rbx,            ]
  // -2 [ saved rsi            ]
  // -1 [ saved rdi            ]
  //  0 [ saved rbp,            ] <--- rbp,
  //  1 [ return address       ]
  //  2 [ ptr. to call wrapper ]
  //  3 [ result               ]
  //  4 [ result_type          ]
  //  5 [ method               ]
  //  6 [ entry_point          ]
  //  7 [ parameters           ]
  //  8 [ parameter_size       ]
  //  9 [ thread               ]


  address generate_call_stub(address& return_address) {
    StubCodeMark mark(this, "StubRoutines", "call_stub");
    address start = __ pc();

    // stub code parameters / addresses
    assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
    bool  sse_save = false;
    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
    const int     locals_count_in_bytes  (4*wordSize);
    const Address mxcsr_save    (rbp, -4 * wordSize);
    const Address saved_rbx     (rbp, -3 * wordSize);
    const Address saved_rsi     (rbp, -2 * wordSize);
    const Address saved_rdi     (rbp, -1 * wordSize);
    const Address result        (rbp,  3 * wordSize);
    const Address result_type   (rbp,  4 * wordSize);
    const Address method        (rbp,  5 * wordSize);
    const Address entry_point   (rbp,  6 * wordSize);
    const Address parameters    (rbp,  7 * wordSize);
    const Address parameter_size(rbp,  8 * wordSize);
    const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
    sse_save =  UseSSE > 0;

    // stub code
    __ enter();
170
    __ movptr(rcx, parameter_size);              // parameter counter
171
    __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
172 173 174
    __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
    __ subptr(rsp, rcx);
    __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
D
duke 已提交
175 176

    // save rdi, rsi, & rbx, according to C calling conventions
177 178 179
    __ movptr(saved_rdi, rdi);
    __ movptr(saved_rsi, rsi);
    __ movptr(saved_rbx, rbx);
D
duke 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    // save and initialize %mxcsr
    if (sse_save) {
      Label skip_ldmx;
      __ stmxcsr(mxcsr_save);
      __ movl(rax, mxcsr_save);
      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
      __ cmp32(rax, mxcsr_std);
      __ jcc(Assembler::equal, skip_ldmx);
      __ ldmxcsr(mxcsr_std);
      __ bind(skip_ldmx);
    }

    // make sure the control word is correct.
    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));

#ifdef ASSERT
    // make sure we have no pending exceptions
    { Label L;
199 200
      __ movptr(rcx, thread);
      __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
D
duke 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
      __ jcc(Assembler::equal, L);
      __ stop("StubRoutines::call_stub: entered with pending exception");
      __ bind(L);
    }
#endif

    // pass parameters if any
    BLOCK_COMMENT("pass parameters if any");
    Label parameters_done;
    __ movl(rcx, parameter_size);  // parameter counter
    __ testl(rcx, rcx);
    __ jcc(Assembler::zero, parameters_done);

    // parameter passing loop

    Label loop;
    // Copy Java parameters in reverse order (receiver last)
    // Note that the argument order is inverted in the process
    // source is rdx[rcx: N-1..0]
    // dest   is rsp[rbx: 0..N-1]

222 223
    __ movptr(rdx, parameters);          // parameter pointer
    __ xorptr(rbx, rbx);
D
duke 已提交
224 225 226 227

    __ BIND(loop);

    // get parameter
228 229
    __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
    __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
D
duke 已提交
230 231 232 233 234 235 236
                    Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
    __ increment(rbx);
    __ decrement(rcx);
    __ jcc(Assembler::notZero, loop);

    // call Java function
    __ BIND(parameters_done);
237
    __ movptr(rbx, method);           // get Method*
238 239
    __ movptr(rax, entry_point);      // get entry_point
    __ mov(rsi, rsp);                 // set sender sp
D
duke 已提交
240 241 242 243 244 245
    BLOCK_COMMENT("call Java function");
    __ call(rax);

    BLOCK_COMMENT("call_stub_return_address:");
    return_address = __ pc();

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
#ifdef COMPILER2
    {
      Label L_skip;
      if (UseSSE >= 2) {
        __ verify_FPU(0, "call_stub_return");
      } else {
        for (int i = 1; i < 8; i++) {
          __ ffree(i);
        }

        // UseSSE <= 1 so double result should be left on TOS
        __ movl(rsi, result_type);
        __ cmpl(rsi, T_DOUBLE);
        __ jcc(Assembler::equal, L_skip);
        if (UseSSE == 0) {
          // UseSSE == 0 so float result should be left on TOS
          __ cmpl(rsi, T_FLOAT);
          __ jcc(Assembler::equal, L_skip);
        }
        __ ffree(0);
      }
      __ BIND(L_skip);
    }
#endif // COMPILER2
D
duke 已提交
270 271 272

    // store result depending on type
    // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
273
    __ movptr(rdi, result);
D
duke 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    Label is_long, is_float, is_double, exit;
    __ movl(rsi, result_type);
    __ cmpl(rsi, T_LONG);
    __ jcc(Assembler::equal, is_long);
    __ cmpl(rsi, T_FLOAT);
    __ jcc(Assembler::equal, is_float);
    __ cmpl(rsi, T_DOUBLE);
    __ jcc(Assembler::equal, is_double);

    // handle T_INT case
    __ movl(Address(rdi, 0), rax);
    __ BIND(exit);

    // check that FPU stack is empty
    __ verify_FPU(0, "generate_call_stub");

    // pop parameters
291
    __ lea(rsp, rsp_after_call);
D
duke 已提交
292 293 294 295 296 297 298

    // restore %mxcsr
    if (sse_save) {
      __ ldmxcsr(mxcsr_save);
    }

    // restore rdi, rsi and rbx,
299 300 301 302
    __ movptr(rbx, saved_rbx);
    __ movptr(rsi, saved_rsi);
    __ movptr(rdi, saved_rdi);
    __ addptr(rsp, 4*wordSize);
D
duke 已提交
303 304

    // return
305
    __ pop(rbp);
D
duke 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    __ ret(0);

    // handle return types different from T_INT
    __ BIND(is_long);
    __ movl(Address(rdi, 0 * wordSize), rax);
    __ movl(Address(rdi, 1 * wordSize), rdx);
    __ jmp(exit);

    __ BIND(is_float);
    // interpreter uses xmm0 for return values
    if (UseSSE >= 1) {
      __ movflt(Address(rdi, 0), xmm0);
    } else {
      __ fstp_s(Address(rdi, 0));
    }
    __ jmp(exit);

    __ BIND(is_double);
    // interpreter uses xmm0 for return values
    if (UseSSE >= 2) {
      __ movdbl(Address(rdi, 0), xmm0);
    } else {
      __ fstp_d(Address(rdi, 0));
    }
    __ jmp(exit);

    return start;
  }


  //------------------------------------------------------------------------------------------------------------------------
  // Return point for a Java call if there's an exception thrown in Java code.
  // The exception is caught and transformed into a pending exception stored in
  // JavaThread that can be tested from within the VM.
  //
  // Note: Usually the parameters are removed by the callee. In case of an exception
  //       crossing an activation frame boundary, that is not the case if the callee
  //       is compiled code => need to setup the rsp.
  //
  // rax,: exception oop

  address generate_catch_exception() {
    StubCodeMark mark(this, "StubRoutines", "catch_exception");
    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
    const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
    address start = __ pc();

    // get thread directly
354
    __ movptr(rcx, thread);
D
duke 已提交
355 356 357 358
#ifdef ASSERT
    // verify that threads correspond
    { Label L;
      __ get_thread(rbx);
359
      __ cmpptr(rbx, rcx);
D
duke 已提交
360 361 362 363 364 365 366
      __ jcc(Assembler::equal, L);
      __ stop("StubRoutines::catch_exception: threads must correspond");
      __ bind(L);
    }
#endif
    // set pending exception
    __ verify_oop(rax);
367
    __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
D
duke 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    __ lea(Address(rcx, Thread::exception_file_offset   ()),
           ExternalAddress((address)__FILE__));
    __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
    // complete return to VM
    assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
    __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));

    return start;
  }


  //------------------------------------------------------------------------------------------------------------------------
  // Continuation point for runtime calls returning with a pending exception.
  // The pending exception check happened in the runtime or native call stub.
  // The pending exception in Thread is converted into a Java-level exception.
  //
  // Contract with Java-level exception handlers:
385
  // rax: exception
D
duke 已提交
386 387 388 389 390 391 392
  // rdx: throwing pc
  //
  // NOTE: At entry of this stub, exception-pc must be on stack !!

  address generate_forward_exception() {
    StubCodeMark mark(this, "StubRoutines", "forward exception");
    address start = __ pc();
393 394 395 396 397 398
    const Register thread = rcx;

    // other registers used in this stub
    const Register exception_oop = rax;
    const Register handler_addr  = rbx;
    const Register exception_pc  = rdx;
D
duke 已提交
399 400 401 402 403 404 405 406 407 408 409 410

    // Upon entry, the sp points to the return address returning into Java
    // (interpreted or compiled) code; i.e., the return address becomes the
    // throwing pc.
    //
    // Arguments pushed before the runtime call are still on the stack but
    // the exception handler will reset the stack pointer -> ignore them.
    // A potential result in registers can be ignored as well.

#ifdef ASSERT
    // make sure this code is only executed if there is a pending exception
    { Label L;
411 412
      __ get_thread(thread);
      __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
D
duke 已提交
413 414 415 416 417 418 419
      __ jcc(Assembler::notEqual, L);
      __ stop("StubRoutines::forward exception: no pending exception (1)");
      __ bind(L);
    }
#endif

    // compute exception handler into rbx,
420 421
    __ get_thread(thread);
    __ movptr(exception_pc, Address(rsp, 0));
D
duke 已提交
422
    BLOCK_COMMENT("call exception_handler_for_return_address");
423 424
    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
    __ mov(handler_addr, rax);
D
duke 已提交
425

426 427 428 429 430
    // setup rax & rdx, remove return address & clear pending exception
    __ get_thread(thread);
    __ pop(exception_pc);
    __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
D
duke 已提交
431 432 433 434

#ifdef ASSERT
    // make sure exception is set
    { Label L;
435
      __ testptr(exception_oop, exception_oop);
D
duke 已提交
436 437 438 439 440 441
      __ jcc(Assembler::notEqual, L);
      __ stop("StubRoutines::forward exception: no pending exception (2)");
      __ bind(L);
    }
#endif

442 443 444
    // Verify that there is really a valid exception in RAX.
    __ verify_oop(exception_oop);

D
duke 已提交
445
    // continue at exception handler (return address removed)
446 447
    // rax: exception
    // rbx: exception handler
D
duke 已提交
448
    // rdx: throwing pc
449
    __ jmp(handler_addr);
D
duke 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

    return start;
  }


  //----------------------------------------------------------------------------------------------------
  // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
  //
  // xchg exists as far back as 8086, lock needed for MP only
  // Stack layout immediately after call:
  //
  // 0 [ret addr ] <--- rsp
  // 1 [  ex     ]
  // 2 [  dest   ]
  //
  // Result:   *dest <- ex, return (old *dest)
  //
  // Note: win32 does not currently use this code

  address generate_atomic_xchg() {
    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
    address start = __ pc();

473
    __ push(rdx);
D
duke 已提交
474 475 476
    Address exchange(rsp, 2 * wordSize);
    Address dest_addr(rsp, 3 * wordSize);
    __ movl(rax, exchange);
477 478 479
    __ movptr(rdx, dest_addr);
    __ xchgl(rax, Address(rdx, 0));
    __ pop(rdx);
D
duke 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    __ ret(0);

    return start;
  }

  //----------------------------------------------------------------------------------------------------
  // Support for void verify_mxcsr()
  //
  // This routine is used with -Xcheck:jni to verify that native
  // JNI code does not return to Java code without restoring the
  // MXCSR register to our expected state.


  address generate_verify_mxcsr() {
    StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
    address start = __ pc();

    const Address mxcsr_save(rsp, 0);

    if (CheckJNICalls && UseSSE > 0 ) {
      Label ok_ret;
      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
502 503
      __ push(rax);
      __ subptr(rsp, wordSize);      // allocate a temp location
D
duke 已提交
504 505 506 507 508 509 510 511 512 513 514
      __ stmxcsr(mxcsr_save);
      __ movl(rax, mxcsr_save);
      __ andl(rax, MXCSR_MASK);
      __ cmp32(rax, mxcsr_std);
      __ jcc(Assembler::equal, ok_ret);

      __ warn("MXCSR changed by native JNI code.");

      __ ldmxcsr(mxcsr_std);

      __ bind(ok_ret);
515 516
      __ addptr(rsp, wordSize);
      __ pop(rax);
D
duke 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    }

    __ ret(0);

    return start;
  }


  //---------------------------------------------------------------------------
  // Support for void verify_fpu_cntrl_wrd()
  //
  // This routine is used with -Xcheck:jni to verify that native
  // JNI code does not return to Java code without restoring the
  // FP control word to our expected state.

  address generate_verify_fpu_cntrl_wrd() {
    StubCodeMark mark(this, "StubRoutines", "verify_spcw");
    address start = __ pc();

    const Address fpu_cntrl_wrd_save(rsp, 0);

    if (CheckJNICalls) {
      Label ok_ret;
540 541
      __ push(rax);
      __ subptr(rsp, wordSize);      // allocate a temp location
D
duke 已提交
542 543 544 545 546 547 548 549 550 551 552 553
      __ fnstcw(fpu_cntrl_wrd_save);
      __ movl(rax, fpu_cntrl_wrd_save);
      __ andl(rax, FPU_CNTRL_WRD_MASK);
      ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
      __ cmp32(rax, fpu_std);
      __ jcc(Assembler::equal, ok_ret);

      __ warn("Floating point control word changed by native JNI code.");

      __ fldcw(fpu_std);

      __ bind(ok_ret);
554 555
      __ addptr(rsp, wordSize);
      __ pop(rax);
D
duke 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    }

    __ ret(0);

    return start;
  }

  //---------------------------------------------------------------------------
  // Wrapper for slow-case handling of double-to-integer conversion
  // d2i or f2i fast case failed either because it is nan or because
  // of under/overflow.
  // Input:  FPU TOS: float value
  // Output: rax, (rdx): integer (long) result

  address generate_d2i_wrapper(BasicType t, address fcn) {
    StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
    address start = __ pc();

  // Capture info about frame layout
  enum layout { FPUState_off         = 0,
                rbp_off              = FPUStateSizeInWords,
                rdi_off,
                rsi_off,
                rcx_off,
                rbx_off,
                saved_argument_off,
                saved_argument_off2, // 2nd half of double
                framesize
  };

  assert(FPUStateSizeInWords == 27, "update stack layout");

    // Save outgoing argument to stack across push_FPU_state()
589
    __ subptr(rsp, wordSize * 2);
D
duke 已提交
590 591 592
    __ fstp_d(Address(rsp, 0));

    // Save CPU & FPU state
593 594 595 596 597
    __ push(rbx);
    __ push(rcx);
    __ push(rsi);
    __ push(rdi);
    __ push(rbp);
D
duke 已提交
598 599 600 601 602 603
    __ push_FPU_state();

    // push_FPU_state() resets the FP top of stack
    // Load original double into FP top of stack
    __ fld_d(Address(rsp, saved_argument_off * wordSize));
    // Store double into stack as outgoing argument
604
    __ subptr(rsp, wordSize*2);
D
duke 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617
    __ fst_d(Address(rsp, 0));

    // Prepare FPU for doing math in C-land
    __ empty_FPU_stack();
    // Call the C code to massage the double.  Result in EAX
    if (t == T_INT)
      { BLOCK_COMMENT("SharedRuntime::d2i"); }
    else if (t == T_LONG)
      { BLOCK_COMMENT("SharedRuntime::d2l"); }
    __ call_VM_leaf( fcn, 2 );

    // Restore CPU & FPU state
    __ pop_FPU_state();
618 619 620 621 622 623
    __ pop(rbp);
    __ pop(rdi);
    __ pop(rsi);
    __ pop(rcx);
    __ pop(rbx);
    __ addptr(rsp, wordSize * 2);
D
duke 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

    __ ret(0);

    return start;
  }


  //---------------------------------------------------------------------------
  // The following routine generates a subroutine to throw an asynchronous
  // UnknownError when an unsafe access gets a fault that could not be
  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
  address generate_handler_for_unsafe_access() {
    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
    address start = __ pc();

639 640
    __ push(0);                       // hole for return address-to-be
    __ pusha();                       // push registers
D
duke 已提交
641 642 643
    Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
    BLOCK_COMMENT("call handle_unsafe_access");
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
644 645
    __ movptr(next_pc, rax);          // stuff next address
    __ popa();
D
duke 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    __ ret(0);                        // jump to next address

    return start;
  }


  //----------------------------------------------------------------------------------------------------
  // Non-destructive plausibility checks for oops

  address generate_verify_oop() {
    StubCodeMark mark(this, "StubRoutines", "verify_oop");
    address start = __ pc();

    // Incoming arguments on stack after saving rax,:
    //
    // [tos    ]: saved rdx
    // [tos + 1]: saved EFLAGS
    // [tos + 2]: return address
    // [tos + 3]: char* error message
    // [tos + 4]: oop   object to verify
    // [tos + 5]: saved rax, - saved by caller and bashed

    Label exit, error;
669 670 671
    __ pushf();
    __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
    __ push(rdx);                                // save rdx
D
duke 已提交
672
    // make sure object is 'reasonable'
673 674
    __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
    __ testptr(rax, rax);
D
duke 已提交
675 676 677 678 679
    __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok

    // Check if the oop is in the right area of memory
    const int oop_mask = Universe::verify_oop_mask();
    const int oop_bits = Universe::verify_oop_bits();
680 681 682
    __ mov(rdx, rax);
    __ andptr(rdx, oop_mask);
    __ cmpptr(rdx, oop_bits);
D
duke 已提交
683 684
    __ jcc(Assembler::notZero, error);

685
    // make sure klass is 'reasonable', which is not zero.
686 687
    __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
    __ testptr(rax, rax);
D
duke 已提交
688
    __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
689
    // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
D
duke 已提交
690 691 692

    // return if everything seems ok
    __ bind(exit);
693 694 695
    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
    __ pop(rdx);                                 // restore rdx
    __ popf();                                   // restore EFLAGS
D
duke 已提交
696 697 698 699
    __ ret(3 * wordSize);                        // pop arguments

    // handle errors
    __ bind(error);
700 701 702 703
    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
    __ pop(rdx);                                 // get saved rdx back
    __ popf();                                   // get saved EFLAGS off stack -- will be ignored
    __ pusha();                                  // push registers (eip = return address & msg are already pushed)
D
duke 已提交
704
    BLOCK_COMMENT("call MacroAssembler::debug");
705 706
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
    __ popa();
D
duke 已提交
707 708 709 710 711 712 713 714 715
    __ ret(3 * wordSize);                        // pop arguments
    return start;
  }

  //
  //  Generate pre-barrier for array stores
  //
  //  Input:
  //     start   -  starting address
716
  //     count   -  element count
717
  void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
D
duke 已提交
718 719 720 721 722
    assert_different_registers(start, count);
    BarrierSet* bs = Universe::heap()->barrier_set();
    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
723 724 725 726 727 728 729
        // With G1, don't generate the call if we statically know that the target in uninitialized
        if (!uninitialized_target) {
           __ pusha();                      // push registers
           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
                           start, count);
           __ popa();
         }
D
duke 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
        break;
      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
      case BarrierSet::ModRef:
        break;
      default      :
        ShouldNotReachHere();

    }
  }


  //
  // Generate a post-barrier for an array store
  //
  //     start    -  starting address
  //     count    -  element count
  //
  //  The two input registers are overwritten.
  //
  void  gen_write_ref_array_post_barrier(Register start, Register count) {
    BarrierSet* bs = Universe::heap()->barrier_set();
    assert_different_registers(start, count);
    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
        {
757
          __ pusha();                      // push registers
758 759
          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
                          start, count);
760
          __ popa();
D
duke 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773
        }
        break;

      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
        {
          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

          Label L_loop;
          const Register end = count;  // elements count; end == start+count-1
          assert_different_registers(start, end);

774 775 776 777
          __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
          __ shrptr(start, CardTableModRefBS::card_shift);
          __ shrptr(end,   CardTableModRefBS::card_shift);
          __ subptr(end, start); // end --> count
D
duke 已提交
778
        __ BIND(L_loop);
779 780 781
          intptr_t disp = (intptr_t) ct->byte_map_base;
          Address cardtable(start, count, Address::times_1, disp);
          __ movb(cardtable, 0);
D
duke 已提交
782 783 784 785 786 787 788 789 790 791 792 793
          __ decrement(count);
          __ jcc(Assembler::greaterEqual, L_loop);
        }
        break;
      case BarrierSet::ModRef:
        break;
      default      :
        ShouldNotReachHere();

    }
  }

794 795 796 797 798 799 800 801 802 803 804 805 806

  // Copy 64 bytes chunks
  //
  // Inputs:
  //   from        - source array address
  //   to_from     - destination array address - from
  //   qword_count - 8-bytes element count, negative
  //
  void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
    assert( UseSSE >= 2, "supported cpu only" );
    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
    // Copy 64-byte chunks
    __ jmpb(L_copy_64_bytes);
807
    __ align(OptoLoopAlignment);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
  __ BIND(L_copy_64_bytes_loop);

    if(UseUnalignedLoadStores) {
      __ movdqu(xmm0, Address(from, 0));
      __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
      __ movdqu(xmm1, Address(from, 16));
      __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
      __ movdqu(xmm2, Address(from, 32));
      __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
      __ movdqu(xmm3, Address(from, 48));
      __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);

    } else {
      __ movq(xmm0, Address(from, 0));
      __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
      __ movq(xmm1, Address(from, 8));
      __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
      __ movq(xmm2, Address(from, 16));
      __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
      __ movq(xmm3, Address(from, 24));
      __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
      __ movq(xmm4, Address(from, 32));
      __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
      __ movq(xmm5, Address(from, 40));
      __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
      __ movq(xmm6, Address(from, 48));
      __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
      __ movq(xmm7, Address(from, 56));
      __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
    }

    __ addl(from, 64);
  __ BIND(L_copy_64_bytes);
    __ subl(qword_count, 8);
    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
    __ addl(qword_count, 8);
    __ jccb(Assembler::zero, L_exit);
    //
    // length is too short, just copy qwords
    //
  __ BIND(L_copy_8_bytes);
    __ movq(xmm0, Address(from, 0));
    __ movq(Address(from, to_from, Address::times_1), xmm0);
    __ addl(from, 8);
    __ decrement(qword_count);
    __ jcc(Assembler::greater, L_copy_8_bytes);
  __ BIND(L_exit);
  }

D
duke 已提交
857 858 859 860 861 862 863 864
  // Copy 64 bytes chunks
  //
  // Inputs:
  //   from        - source array address
  //   to_from     - destination array address - from
  //   qword_count - 8-bytes element count, negative
  //
  void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
865
    assert( VM_Version::supports_mmx(), "supported cpu only" );
D
duke 已提交
866 867 868
    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
    // Copy 64-byte chunks
    __ jmpb(L_copy_64_bytes);
869
    __ align(OptoLoopAlignment);
D
duke 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
  __ BIND(L_copy_64_bytes_loop);
    __ movq(mmx0, Address(from, 0));
    __ movq(mmx1, Address(from, 8));
    __ movq(mmx2, Address(from, 16));
    __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
    __ movq(mmx3, Address(from, 24));
    __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
    __ movq(mmx4, Address(from, 32));
    __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
    __ movq(mmx5, Address(from, 40));
    __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
    __ movq(mmx6, Address(from, 48));
    __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
    __ movq(mmx7, Address(from, 56));
    __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
    __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
    __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
887
    __ addptr(from, 64);
D
duke 已提交
888 889 890 891 892 893 894 895 896 897 898
  __ BIND(L_copy_64_bytes);
    __ subl(qword_count, 8);
    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
    __ addl(qword_count, 8);
    __ jccb(Assembler::zero, L_exit);
    //
    // length is too short, just copy qwords
    //
  __ BIND(L_copy_8_bytes);
    __ movq(mmx0, Address(from, 0));
    __ movq(Address(from, to_from, Address::times_1), mmx0);
899
    __ addptr(from, 8);
D
duke 已提交
900 901 902 903 904 905 906 907
    __ decrement(qword_count);
    __ jcc(Assembler::greater, L_copy_8_bytes);
  __ BIND(L_exit);
    __ emms();
  }

  address generate_disjoint_copy(BasicType t, bool aligned,
                                 Address::ScaleFactor sf,
908 909
                                 address* entry, const char *name,
                                 bool dest_uninitialized = false) {
D
duke 已提交
910 911 912 913 914 915 916
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;

917
    int shift = Address::times_ptr - sf;
D
duke 已提交
918 919 920 921 922 923 924 925

    const Register from     = rsi;  // source array address
    const Register to       = rdi;  // destination array address
    const Register count    = rcx;  // elements count
    const Register to_from  = to;   // (to - from)
    const Register saved_to = rdx;  // saved destination array address

    __ enter(); // required for proper stackwalking of RuntimeStub frame
926 927 928 929
    __ push(rsi);
    __ push(rdi);
    __ movptr(from , Address(rsp, 12+ 4));
    __ movptr(to   , Address(rsp, 12+ 8));
D
duke 已提交
930
    __ movl(count, Address(rsp, 12+ 12));
931 932 933 934 935 936

    if (entry != NULL) {
      *entry = __ pc(); // Entry point from conjoint arraycopy stub.
      BLOCK_COMMENT("Entry:");
    }

D
duke 已提交
937 938 939
    if (t == T_OBJECT) {
      __ testl(count, count);
      __ jcc(Assembler::zero, L_0_count);
940
      gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
941
      __ mov(saved_to, to);          // save 'to'
D
duke 已提交
942 943
    }

944
    __ subptr(to, from); // to --> to_from
D
duke 已提交
945 946
    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
947
    if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
D
duke 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
      // align source address at 4 bytes address boundary
      if (t == T_BYTE) {
        // One byte misalignment happens only for byte arrays
        __ testl(from, 1);
        __ jccb(Assembler::zero, L_skip_align1);
        __ movb(rax, Address(from, 0));
        __ movb(Address(from, to_from, Address::times_1, 0), rax);
        __ increment(from);
        __ decrement(count);
      __ BIND(L_skip_align1);
      }
      // Two bytes misalignment happens only for byte and short (char) arrays
      __ testl(from, 2);
      __ jccb(Assembler::zero, L_skip_align2);
      __ movw(rax, Address(from, 0));
      __ movw(Address(from, to_from, Address::times_1, 0), rax);
964
      __ addptr(from, 2);
D
duke 已提交
965 966 967 968
      __ subl(count, 1<<(shift-1));
    __ BIND(L_skip_align2);
    }
    if (!VM_Version::supports_mmx()) {
969 970 971 972 973 974
      __ mov(rax, count);      // save 'count'
      __ shrl(count, shift); // bytes count
      __ addptr(to_from, from);// restore 'to'
      __ rep_mov();
      __ subptr(to_from, from);// restore 'to_from'
      __ mov(count, rax);      // restore 'count'
D
duke 已提交
975 976
      __ jmpb(L_copy_2_bytes); // all dwords were copied
    } else {
977 978 979 980 981 982 983 984 985
      if (!UseUnalignedLoadStores) {
        // align to 8 bytes, we know we are 4 byte aligned to start
        __ testptr(from, 4);
        __ jccb(Assembler::zero, L_copy_64_bytes);
        __ movl(rax, Address(from, 0));
        __ movl(Address(from, to_from, Address::times_1, 0), rax);
        __ addptr(from, 4);
        __ subl(count, 1<<shift);
      }
D
duke 已提交
986
    __ BIND(L_copy_64_bytes);
987
      __ mov(rax, count);
D
duke 已提交
988 989 990 991
      __ shrl(rax, shift+1);  // 8 bytes chunk count
      //
      // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
      //
992 993 994 995 996
      if (UseXMMForArrayCopy) {
        xmm_copy_forward(from, to_from, rax);
      } else {
        mmx_copy_forward(from, to_from, rax);
      }
D
duke 已提交
997 998 999 1000 1001 1002 1003 1004
    }
    // copy tailing dword
  __ BIND(L_copy_4_bytes);
    __ testl(count, 1<<shift);
    __ jccb(Assembler::zero, L_copy_2_bytes);
    __ movl(rax, Address(from, 0));
    __ movl(Address(from, to_from, Address::times_1, 0), rax);
    if (t == T_BYTE || t == T_SHORT) {
1005
      __ addptr(from, 4);
D
duke 已提交
1006 1007 1008 1009 1010 1011 1012
    __ BIND(L_copy_2_bytes);
      // copy tailing word
      __ testl(count, 1<<(shift-1));
      __ jccb(Assembler::zero, L_copy_byte);
      __ movw(rax, Address(from, 0));
      __ movw(Address(from, to_from, Address::times_1, 0), rax);
      if (t == T_BYTE) {
1013
        __ addptr(from, 2);
D
duke 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
      __ BIND(L_copy_byte);
        // copy tailing byte
        __ testl(count, 1);
        __ jccb(Assembler::zero, L_exit);
        __ movb(rax, Address(from, 0));
        __ movb(Address(from, to_from, Address::times_1, 0), rax);
      __ BIND(L_exit);
      } else {
      __ BIND(L_copy_byte);
      }
    } else {
    __ BIND(L_copy_2_bytes);
    }

    if (t == T_OBJECT) {
      __ movl(count, Address(rsp, 12+12)); // reread 'count'
1030
      __ mov(to, saved_to); // restore 'to'
D
duke 已提交
1031 1032 1033 1034
      gen_write_ref_array_post_barrier(to, count);
    __ BIND(L_0_count);
    }
    inc_copy_counter_np(t);
1035 1036
    __ pop(rdi);
    __ pop(rsi);
D
duke 已提交
1037
    __ leave(); // required for proper stackwalking of RuntimeStub frame
1038
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1039 1040 1041 1042 1043
    __ ret(0);
    return start;
  }


N
never 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
  address generate_fill(BasicType t, bool aligned, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    BLOCK_COMMENT("Entry:");

    const Register to       = rdi;  // source array address
    const Register value    = rdx;  // value
    const Register count    = rsi;  // elements count

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ push(rsi);
    __ push(rdi);
    __ movptr(to   , Address(rsp, 12+ 4));
    __ movl(value, Address(rsp, 12+ 8));
    __ movl(count, Address(rsp, 12+ 12));

    __ generate_fill(t, aligned, to, value, count, rax, xmm0);

    __ pop(rdi);
    __ pop(rsi);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);
    return start;
  }

D
duke 已提交
1071 1072 1073
  address generate_conjoint_copy(BasicType t, bool aligned,
                                 Address::ScaleFactor sf,
                                 address nooverlap_target,
1074 1075
                                 address* entry, const char *name,
                                 bool dest_uninitialized = false) {
D
duke 已提交
1076 1077 1078 1079 1080 1081 1082
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;

1083
    int shift = Address::times_ptr - sf;
D
duke 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092

    const Register src   = rax;  // source array address
    const Register dst   = rdx;  // destination array address
    const Register from  = rsi;  // source array address
    const Register to    = rdi;  // destination array address
    const Register count = rcx;  // elements count
    const Register end   = rax;  // array end address

    __ enter(); // required for proper stackwalking of RuntimeStub frame
1093 1094 1095 1096 1097
    __ push(rsi);
    __ push(rdi);
    __ movptr(src  , Address(rsp, 12+ 4));   // from
    __ movptr(dst  , Address(rsp, 12+ 8));   // to
    __ movl2ptr(count, Address(rsp, 12+12)); // count
D
duke 已提交
1098 1099 1100 1101 1102 1103

    if (entry != NULL) {
      *entry = __ pc(); // Entry point from generic arraycopy stub.
      BLOCK_COMMENT("Entry:");
    }

1104
    // nooverlap_target expects arguments in rsi and rdi.
1105 1106
    __ mov(from, src);
    __ mov(to  , dst);
D
duke 已提交
1107

1108
    // arrays overlap test: dispatch to disjoint stub if necessary.
D
duke 已提交
1109
    RuntimeAddress nooverlap(nooverlap_target);
1110 1111
    __ cmpptr(dst, src);
    __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
D
duke 已提交
1112
    __ jump_cc(Assembler::belowEqual, nooverlap);
1113
    __ cmpptr(dst, end);
D
duke 已提交
1114 1115
    __ jump_cc(Assembler::aboveEqual, nooverlap);

1116 1117 1118
    if (t == T_OBJECT) {
      __ testl(count, count);
      __ jcc(Assembler::zero, L_0_count);
1119
      gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
1120 1121
    }

D
duke 已提交
1122 1123 1124 1125 1126
    // copy from high to low
    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
    if (t == T_BYTE || t == T_SHORT) {
      // Align the end of destination array at 4 bytes address boundary
1127
      __ lea(end, Address(dst, count, sf, 0));
D
duke 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
      if (t == T_BYTE) {
        // One byte misalignment happens only for byte arrays
        __ testl(end, 1);
        __ jccb(Assembler::zero, L_skip_align1);
        __ decrement(count);
        __ movb(rdx, Address(from, count, sf, 0));
        __ movb(Address(to, count, sf, 0), rdx);
      __ BIND(L_skip_align1);
      }
      // Two bytes misalignment happens only for byte and short (char) arrays
      __ testl(end, 2);
      __ jccb(Assembler::zero, L_skip_align2);
1140
      __ subptr(count, 1<<(shift-1));
D
duke 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149
      __ movw(rdx, Address(from, count, sf, 0));
      __ movw(Address(to, count, sf, 0), rdx);
    __ BIND(L_skip_align2);
      __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
      __ jcc(Assembler::below, L_copy_4_bytes);
    }

    if (!VM_Version::supports_mmx()) {
      __ std();
1150 1151 1152 1153 1154 1155
      __ mov(rax, count); // Save 'count'
      __ mov(rdx, to);    // Save 'to'
      __ lea(rsi, Address(from, count, sf, -4));
      __ lea(rdi, Address(to  , count, sf, -4));
      __ shrptr(count, shift); // bytes count
      __ rep_mov();
D
duke 已提交
1156
      __ cld();
1157
      __ mov(count, rax); // restore 'count'
D
duke 已提交
1158
      __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1159 1160
      __ movptr(from, Address(rsp, 12+4)); // reread 'from'
      __ mov(to, rdx);   // restore 'to'
D
duke 已提交
1161 1162 1163
      __ jmpb(L_copy_2_bytes); // all dword were copied
   } else {
      // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1164
      __ testptr(end, 4);
D
duke 已提交
1165 1166 1167 1168 1169 1170
      __ jccb(Assembler::zero, L_copy_8_bytes);
      __ subl(count, 1<<shift);
      __ movl(rdx, Address(from, count, sf, 0));
      __ movl(Address(to, count, sf, 0), rdx);
      __ jmpb(L_copy_8_bytes);

1171
      __ align(OptoLoopAlignment);
D
duke 已提交
1172 1173
      // Move 8 bytes
    __ BIND(L_copy_8_bytes_loop);
1174 1175 1176 1177 1178 1179 1180
      if (UseXMMForArrayCopy) {
        __ movq(xmm0, Address(from, count, sf, 0));
        __ movq(Address(to, count, sf, 0), xmm0);
      } else {
        __ movq(mmx0, Address(from, count, sf, 0));
        __ movq(Address(to, count, sf, 0), mmx0);
      }
D
duke 已提交
1181 1182 1183 1184
    __ BIND(L_copy_8_bytes);
      __ subl(count, 2<<shift);
      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
      __ addl(count, 2<<shift);
1185 1186 1187
      if (!UseXMMForArrayCopy) {
        __ emms();
      }
D
duke 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    }
  __ BIND(L_copy_4_bytes);
    // copy prefix qword
    __ testl(count, 1<<shift);
    __ jccb(Assembler::zero, L_copy_2_bytes);
    __ movl(rdx, Address(from, count, sf, -4));
    __ movl(Address(to, count, sf, -4), rdx);

    if (t == T_BYTE || t == T_SHORT) {
        __ subl(count, (1<<shift));
      __ BIND(L_copy_2_bytes);
        // copy prefix dword
        __ testl(count, 1<<(shift-1));
        __ jccb(Assembler::zero, L_copy_byte);
        __ movw(rdx, Address(from, count, sf, -2));
        __ movw(Address(to, count, sf, -2), rdx);
        if (t == T_BYTE) {
          __ subl(count, 1<<(shift-1));
        __ BIND(L_copy_byte);
          // copy prefix byte
          __ testl(count, 1);
          __ jccb(Assembler::zero, L_exit);
          __ movb(rdx, Address(from, 0));
          __ movb(Address(to, 0), rdx);
        __ BIND(L_exit);
        } else {
        __ BIND(L_copy_byte);
        }
    } else {
    __ BIND(L_copy_2_bytes);
    }
    if (t == T_OBJECT) {
1220
      __ movl2ptr(count, Address(rsp, 12+12)); // reread count
D
duke 已提交
1221 1222 1223 1224
      gen_write_ref_array_post_barrier(to, count);
    __ BIND(L_0_count);
    }
    inc_copy_counter_np(t);
1225 1226
    __ pop(rdi);
    __ pop(rsi);
D
duke 已提交
1227
    __ leave(); // required for proper stackwalking of RuntimeStub frame
1228
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
    __ ret(0);
    return start;
  }


  address generate_disjoint_long_copy(address* entry, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_copy_8_bytes, L_copy_8_bytes_loop;
    const Register from       = rax;  // source array address
    const Register to         = rdx;  // destination array address
    const Register count      = rcx;  // elements count
    const Register to_from    = rdx;  // (to - from)

    __ enter(); // required for proper stackwalking of RuntimeStub frame
1246 1247 1248
    __ movptr(from , Address(rsp, 8+0));       // from
    __ movptr(to   , Address(rsp, 8+4));       // to
    __ movl2ptr(count, Address(rsp, 8+8));     // count
D
duke 已提交
1249 1250 1251 1252

    *entry = __ pc(); // Entry point from conjoint arraycopy stub.
    BLOCK_COMMENT("Entry:");

1253
    __ subptr(to, from); // to --> to_from
D
duke 已提交
1254
    if (VM_Version::supports_mmx()) {
1255 1256 1257 1258 1259
      if (UseXMMForArrayCopy) {
        xmm_copy_forward(from, to_from, count);
      } else {
        mmx_copy_forward(from, to_from, count);
      }
D
duke 已提交
1260 1261
    } else {
      __ jmpb(L_copy_8_bytes);
1262
      __ align(OptoLoopAlignment);
D
duke 已提交
1263 1264 1265
    __ BIND(L_copy_8_bytes_loop);
      __ fild_d(Address(from, 0));
      __ fistp_d(Address(from, to_from, Address::times_1));
1266
      __ addptr(from, 8);
D
duke 已提交
1267 1268 1269 1270 1271 1272
    __ BIND(L_copy_8_bytes);
      __ decrement(count);
      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
    }
    inc_copy_counter_np(T_LONG);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
1273
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    __ ret(0);
    return start;
  }

  address generate_conjoint_long_copy(address nooverlap_target,
                                      address* entry, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_copy_8_bytes, L_copy_8_bytes_loop;
    const Register from       = rax;  // source array address
    const Register to         = rdx;  // destination array address
    const Register count      = rcx;  // elements count
    const Register end_from   = rax;  // source array end address

    __ enter(); // required for proper stackwalking of RuntimeStub frame
1291 1292 1293
    __ movptr(from , Address(rsp, 8+0));       // from
    __ movptr(to   , Address(rsp, 8+4));       // to
    __ movl2ptr(count, Address(rsp, 8+8));     // count
D
duke 已提交
1294 1295 1296 1297 1298

    *entry = __ pc(); // Entry point from generic arraycopy stub.
    BLOCK_COMMENT("Entry:");

    // arrays overlap test
1299
    __ cmpptr(to, from);
D
duke 已提交
1300 1301
    RuntimeAddress nooverlap(nooverlap_target);
    __ jump_cc(Assembler::belowEqual, nooverlap);
1302 1303 1304
    __ lea(end_from, Address(from, count, Address::times_8, 0));
    __ cmpptr(to, end_from);
    __ movptr(from, Address(rsp, 8));  // from
D
duke 已提交
1305 1306 1307 1308
    __ jump_cc(Assembler::aboveEqual, nooverlap);

    __ jmpb(L_copy_8_bytes);

1309
    __ align(OptoLoopAlignment);
D
duke 已提交
1310 1311
  __ BIND(L_copy_8_bytes_loop);
    if (VM_Version::supports_mmx()) {
1312 1313 1314 1315 1316 1317 1318
      if (UseXMMForArrayCopy) {
        __ movq(xmm0, Address(from, count, Address::times_8));
        __ movq(Address(to, count, Address::times_8), xmm0);
      } else {
        __ movq(mmx0, Address(from, count, Address::times_8));
        __ movq(Address(to, count, Address::times_8), mmx0);
      }
D
duke 已提交
1319 1320 1321 1322 1323 1324 1325 1326
    } else {
      __ fild_d(Address(from, count, Address::times_8));
      __ fistp_d(Address(to, count, Address::times_8));
    }
  __ BIND(L_copy_8_bytes);
    __ decrement(count);
    __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);

1327
    if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
D
duke 已提交
1328 1329 1330 1331
      __ emms();
    }
    inc_copy_counter_np(T_LONG);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
1332
    __ xorptr(rax, rax); // return 0
D
duke 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
    __ ret(0);
    return start;
  }


  // Helper for generating a dynamic type check.
  // The sub_klass must be one of {rbx, rdx, rsi}.
  // The temp is killed.
  void generate_type_check(Register sub_klass,
                           Address& super_check_offset_addr,
                           Address& super_klass_addr,
                           Register temp,
1345
                           Label* L_success, Label* L_failure) {
D
duke 已提交
1346 1347 1348
    BLOCK_COMMENT("type_check:");

    Label L_fallthrough;
1349 1350 1351 1352 1353 1354 1355 1356
#define LOCAL_JCC(assembler_con, label_ptr)                             \
    if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
    else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/

    // The following is a strange variation of the fast path which requires
    // one less register, because needed values are on the argument stack.
    // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
    //                                  L_success, L_failure, NULL);
D
duke 已提交
1357 1358
    assert_different_registers(sub_klass, temp);

1359
    int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
D
duke 已提交
1360 1361

    // if the pointers are equal, we are done (e.g., String[] elements)
1362
    __ cmpptr(sub_klass, super_klass_addr);
1363
    LOCAL_JCC(Assembler::equal, L_success);
D
duke 已提交
1364 1365

    // check the supertype display:
1366
    __ movl2ptr(temp, super_check_offset_addr);
D
duke 已提交
1367
    Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1368 1369
    __ movptr(temp, super_check_addr); // load displayed supertype
    __ cmpptr(temp, super_klass_addr); // test the super type
1370
    LOCAL_JCC(Assembler::equal, L_success);
D
duke 已提交
1371 1372 1373

    // if it was a primary super, we can just fail immediately
    __ cmpl(super_check_offset_addr, sc_offset);
1374
    LOCAL_JCC(Assembler::notEqual, L_failure);
D
duke 已提交
1375

1376 1377 1378 1379 1380 1381
    // The repne_scan instruction uses fixed registers, which will get spilled.
    // We happen to know this works best when super_klass is in rax.
    Register super_klass = temp;
    __ movptr(super_klass, super_klass_addr);
    __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
                                     L_success, L_failure);
D
duke 已提交
1382 1383

    __ bind(L_fallthrough);
1384 1385 1386 1387 1388

    if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
    if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }

#undef LOCAL_JCC
D
duke 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
  }

  //
  //  Generate checkcasting array copy stub
  //
  //  Input:
  //    4(rsp)   - source array address
  //    8(rsp)   - destination array address
  //   12(rsp)   - element count, can be zero
  //   16(rsp)   - size_t ckoff (super_check_offset)
  //   20(rsp)   - oop ckval (super_klass)
  //
  //  Output:
  //    rax, ==  0  -  success
  //    rax, == -1^K - failure, where K is partial transfer count
  //
1405
  address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
D
duke 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_load_element, L_store_element, L_do_card_marks, L_done;

    // register use:
    //  rax, rdx, rcx -- loop control (end_from, end_to, count)
    //  rdi, rsi      -- element access (oop, klass)
    //  rbx,           -- temp
    const Register from       = rax;    // source array address
    const Register to         = rdx;    // destination array address
    const Register length     = rcx;    // elements count
    const Register elem       = rdi;    // each oop copied
    const Register elem_klass = rsi;    // each elem._klass (sub_klass)
    const Register temp       = rbx;    // lone remaining temp

    __ enter(); // required for proper stackwalking of RuntimeStub frame

1425 1426 1427
    __ push(rsi);
    __ push(rdi);
    __ push(rbx);
D
duke 已提交
1428 1429 1430 1431 1432 1433 1434 1435

    Address   from_arg(rsp, 16+ 4);     // from
    Address     to_arg(rsp, 16+ 8);     // to
    Address length_arg(rsp, 16+12);     // elements count
    Address  ckoff_arg(rsp, 16+16);     // super_check_offset
    Address  ckval_arg(rsp, 16+20);     // super_klass

    // Load up:
1436 1437 1438
    __ movptr(from,     from_arg);
    __ movptr(to,         to_arg);
    __ movl2ptr(length, length_arg);
D
duke 已提交
1439

1440 1441 1442 1443
    if (entry != NULL) {
      *entry = __ pc(); // Entry point from generic arraycopy stub.
      BLOCK_COMMENT("Entry:");
    }
D
duke 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452

    //---------------------------------------------------------------
    // Assembler stub will be used for this call to arraycopy
    // if the two arrays are subtypes of Object[] but the
    // destination array type is not equal to or a supertype
    // of the source type.  Each element must be separately
    // checked.

    // Loop-invariant addresses.  They are exclusive end pointers.
1453 1454
    Address end_from_addr(from, length, Address::times_ptr, 0);
    Address   end_to_addr(to,   length, Address::times_ptr, 0);
D
duke 已提交
1455 1456 1457 1458 1459 1460

    Register end_from = from;           // re-use
    Register end_to   = to;             // re-use
    Register count    = length;         // re-use

    // Loop-variant addresses.  They assume post-incremented count < 0.
1461 1462
    Address from_element_addr(end_from, count, Address::times_ptr, 0);
    Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
D
duke 已提交
1463 1464 1465
    Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());

    // Copy from low to high addresses, indexed from the end of each array.
1466
    gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1467 1468
    __ lea(end_from, end_from_addr);
    __ lea(end_to,   end_to_addr);
D
duke 已提交
1469
    assert(length == count, "");        // else fix next line:
1470
    __ negptr(count);                   // negate and test the length
D
duke 已提交
1471 1472 1473
    __ jccb(Assembler::notZero, L_load_element);

    // Empty array:  Nothing to do.
1474
    __ xorptr(rax, rax);                  // return 0 on (trivial) success
D
duke 已提交
1475 1476 1477 1478 1479 1480 1481
    __ jmp(L_done);

    // ======== begin loop ========
    // (Loop is rotated; its entry is L_load_element.)
    // Loop control:
    //   for (count = -count; count != 0; count++)
    // Base pointers src, dst are biased by 8*count,to last element.
1482
    __ align(OptoLoopAlignment);
D
duke 已提交
1483 1484

    __ BIND(L_store_element);
1485
    __ movptr(to_element_addr, elem);     // store the oop
D
duke 已提交
1486 1487 1488 1489 1490
    __ increment(count);                // increment the count toward zero
    __ jccb(Assembler::zero, L_do_card_marks);

    // ======== loop entry is here ========
    __ BIND(L_load_element);
1491 1492
    __ movptr(elem, from_element_addr);   // load the oop
    __ testptr(elem, elem);
D
duke 已提交
1493 1494 1495 1496 1497
    __ jccb(Assembler::zero, L_store_element);

    // (Could do a trick here:  Remember last successful non-null
    // element stored and make a quick oop equality check on it.)

1498
    __ movptr(elem_klass, elem_klass_addr); // query the object klass
D
duke 已提交
1499 1500 1501 1502 1503 1504
    generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
                        &L_store_element, NULL);
      // (On fall-through, we have failed the element type check.)
    // ======== end loop ========

    // It was a real error; we must depend on the caller to finish the job.
1505 1506
    // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
    // Emit GC store barriers for the oops we have copied (length_arg + count),
D
duke 已提交
1507 1508
    // and report their number to the caller.
    __ addl(count, length_arg);         // transfers = (length - remaining)
1509 1510 1511
    __ movl2ptr(rax, count);            // save the value
    __ notptr(rax);                     // report (-1^K) to caller
    __ movptr(to, to_arg);              // reload
D
duke 已提交
1512 1513 1514 1515 1516 1517
    assert_different_registers(to, count, rax);
    gen_write_ref_array_post_barrier(to, count);
    __ jmpb(L_done);

    // Come here on success only.
    __ BIND(L_do_card_marks);
1518 1519
    __ movl2ptr(count, length_arg);
    __ movptr(to, to_arg);                // reload
D
duke 已提交
1520
    gen_write_ref_array_post_barrier(to, count);
1521
    __ xorptr(rax, rax);                  // return 0 on success
D
duke 已提交
1522 1523 1524

    // Common exit point (success or failure).
    __ BIND(L_done);
1525 1526 1527
    __ pop(rbx);
    __ pop(rdi);
    __ pop(rsi);
D
duke 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  //
  //  Generate 'unsafe' array copy stub
  //  Though just as safe as the other stubs, it takes an unscaled
  //  size_t argument instead of an element count.
  //
  //  Input:
  //    4(rsp)   - source array address
  //    8(rsp)   - destination array address
  //   12(rsp)   - byte count, can be zero
  //
  //  Output:
  //    rax, ==  0  -  success
  //    rax, == -1  -  need to call System.arraycopy
  //
  // Examines the alignment of the operands and dispatches
  // to a long, int, short, or byte copy loop.
  //
  address generate_unsafe_copy(const char *name,
                               address byte_copy_entry,
                               address short_copy_entry,
                               address int_copy_entry,
                               address long_copy_entry) {

    Label L_long_aligned, L_int_aligned, L_short_aligned;

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    const Register from       = rax;  // source array address
    const Register to         = rdx;  // destination array address
    const Register count      = rcx;  // elements count

    __ enter(); // required for proper stackwalking of RuntimeStub frame
1569 1570
    __ push(rsi);
    __ push(rdi);
D
duke 已提交
1571 1572 1573 1574 1575
    Address  from_arg(rsp, 12+ 4);      // from
    Address    to_arg(rsp, 12+ 8);      // to
    Address count_arg(rsp, 12+12);      // byte count

    // Load up:
1576 1577 1578
    __ movptr(from ,  from_arg);
    __ movptr(to   ,    to_arg);
    __ movl2ptr(count, count_arg);
D
duke 已提交
1579 1580 1581 1582 1583

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);

    const Register bits = rsi;
1584 1585 1586
    __ mov(bits, from);
    __ orptr(bits, to);
    __ orptr(bits, count);
D
duke 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

    __ testl(bits, BytesPerLong-1);
    __ jccb(Assembler::zero, L_long_aligned);

    __ testl(bits, BytesPerInt-1);
    __ jccb(Assembler::zero, L_int_aligned);

    __ testl(bits, BytesPerShort-1);
    __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));

    __ BIND(L_short_aligned);
1598
    __ shrptr(count, LogBytesPerShort); // size => short_count
D
duke 已提交
1599 1600 1601 1602
    __ movl(count_arg, count);          // update 'count'
    __ jump(RuntimeAddress(short_copy_entry));

    __ BIND(L_int_aligned);
1603
    __ shrptr(count, LogBytesPerInt); // size => int_count
D
duke 已提交
1604 1605 1606 1607
    __ movl(count_arg, count);          // update 'count'
    __ jump(RuntimeAddress(int_copy_entry));

    __ BIND(L_long_aligned);
1608
    __ shrptr(count, LogBytesPerLong); // size => qword_count
D
duke 已提交
1609
    __ movl(count_arg, count);          // update 'count'
1610 1611
    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
    __ pop(rsi);
D
duke 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    __ jump(RuntimeAddress(long_copy_entry));

    return start;
  }


  // Perform range checks on the proposed arraycopy.
  // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  void arraycopy_range_checks(Register src,
                              Register src_pos,
                              Register dst,
                              Register dst_pos,
                              Address& length,
                              Label& L_failed) {
    BLOCK_COMMENT("arraycopy_range_checks:");
    const Register src_end = src_pos;   // source array end position
    const Register dst_end = dst_pos;   // destination array end position
    __ addl(src_end, length); // src_pos + length
    __ addl(dst_end, length); // dst_pos + length

    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
    __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
    __ jcc(Assembler::above, L_failed);

    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
    __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
    __ jcc(Assembler::above, L_failed);

    BLOCK_COMMENT("arraycopy_range_checks done");
  }


  //
  //  Generate generic array copy stubs
  //
  //  Input:
  //     4(rsp)    -  src oop
  //     8(rsp)    -  src_pos
  //    12(rsp)    -  dst oop
  //    16(rsp)    -  dst_pos
  //    20(rsp)    -  element count
  //
  //  Output:
  //    rax, ==  0  -  success
  //    rax, == -1^K - failure, where K is partial transfer count
  //
  address generate_generic_copy(const char *name,
                                address entry_jbyte_arraycopy,
                                address entry_jshort_arraycopy,
                                address entry_jint_arraycopy,
                                address entry_oop_arraycopy,
                                address entry_jlong_arraycopy,
                                address entry_checkcast_arraycopy) {
    Label L_failed, L_failed_0, L_objArray;

    { int modulus = CodeEntryAlignment;
      int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
      int advance = target - (__ offset() % modulus);
      if (advance < 0)  advance += modulus;
      if (advance > 0)  __ nop(advance);
    }
    StubCodeMark mark(this, "StubRoutines", name);

    // Short-hop target to L_failed.  Makes for denser prologue code.
    __ BIND(L_failed_0);
    __ jmp(L_failed);
    assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");

    __ align(CodeEntryAlignment);
    address start = __ pc();

    __ enter(); // required for proper stackwalking of RuntimeStub frame
1684 1685
    __ push(rsi);
    __ push(rdi);
D
duke 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);

    // Input values
    Address SRC     (rsp, 12+ 4);
    Address SRC_POS (rsp, 12+ 8);
    Address DST     (rsp, 12+12);
    Address DST_POS (rsp, 12+16);
    Address LENGTH  (rsp, 12+20);

    //-----------------------------------------------------------------------
    // Assembler stub will be used for this call to arraycopy
    // if the following conditions are met:
    //
    // (1) src and dst must not be null.
    // (2) src_pos must not be negative.
    // (3) dst_pos must not be negative.
    // (4) length  must not be negative.
    // (5) src klass and dst klass should be the same and not NULL.
    // (6) src and dst should be arrays.
    // (7) src_pos + length must not exceed length of src.
    // (8) dst_pos + length must not exceed length of dst.
    //

    const Register src     = rax;       // source array oop
    const Register src_pos = rsi;
    const Register dst     = rdx;       // destination array oop
    const Register dst_pos = rdi;
    const Register length  = rcx;       // transfer count

    //  if (src == NULL) return -1;
1718 1719
    __ movptr(src, SRC);      // src oop
    __ testptr(src, src);
D
duke 已提交
1720 1721 1722
    __ jccb(Assembler::zero, L_failed_0);

    //  if (src_pos < 0) return -1;
1723
    __ movl2ptr(src_pos, SRC_POS);  // src_pos
D
duke 已提交
1724 1725 1726 1727
    __ testl(src_pos, src_pos);
    __ jccb(Assembler::negative, L_failed_0);

    //  if (dst == NULL) return -1;
1728 1729
    __ movptr(dst, DST);      // dst oop
    __ testptr(dst, dst);
D
duke 已提交
1730 1731 1732
    __ jccb(Assembler::zero, L_failed_0);

    //  if (dst_pos < 0) return -1;
1733
    __ movl2ptr(dst_pos, DST_POS);  // dst_pos
D
duke 已提交
1734 1735 1736 1737
    __ testl(dst_pos, dst_pos);
    __ jccb(Assembler::negative, L_failed_0);

    //  if (length < 0) return -1;
1738
    __ movl2ptr(length, LENGTH);   // length
D
duke 已提交
1739 1740 1741 1742 1743 1744 1745
    __ testl(length, length);
    __ jccb(Assembler::negative, L_failed_0);

    //  if (src->klass() == NULL) return -1;
    Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
    Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
    const Register rcx_src_klass = rcx;    // array klass
1746
    __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
D
duke 已提交
1747 1748 1749 1750 1751

#ifdef ASSERT
    //  assert(src->klass() != NULL);
    BLOCK_COMMENT("assert klasses not null");
    { Label L1, L2;
1752
      __ testptr(rcx_src_klass, rcx_src_klass);
D
duke 已提交
1753 1754 1755 1756
      __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
      __ bind(L1);
      __ stop("broken null klass");
      __ bind(L2);
1757
      __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
D
duke 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
      __ jccb(Assembler::equal, L1);      // this would be broken also
      BLOCK_COMMENT("assert done");
    }
#endif //ASSERT

    // Load layout helper (32-bits)
    //
    //  |array_tag|     | header_size | element_type |     |log2_element_size|
    // 32        30    24            16              8     2                 0
    //
    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
    //

1771
    int lh_offset = in_bytes(Klass::layout_helper_offset());
D
duke 已提交
1772 1773 1774 1775 1776 1777 1778 1779
    Address src_klass_lh_addr(rcx_src_klass, lh_offset);

    // Handle objArrays completely differently...
    jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
    __ cmpl(src_klass_lh_addr, objArray_lh);
    __ jcc(Assembler::equal, L_objArray);

    //  if (src->klass() != dst->klass()) return -1;
1780
    __ cmpptr(rcx_src_klass, dst_klass_addr);
D
duke 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
    __ jccb(Assembler::notEqual, L_failed_0);

    const Register rcx_lh = rcx;  // layout helper
    assert(rcx_lh == rcx_src_klass, "known alias");
    __ movl(rcx_lh, src_klass_lh_addr);

    //  if (!src->is_Array()) return -1;
    __ cmpl(rcx_lh, Klass::_lh_neutral_value);
    __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp

    // At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
    { Label L;
      __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
      __ jcc(Assembler::greaterEqual, L); // signed cmp
      __ stop("must be a primitive array");
      __ bind(L);
    }
#endif

    assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);

1804
    // TypeArrayKlass
D
duke 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813
    //
    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
    //
    const Register rsi_offset = rsi; // array offset
    const Register src_array  = src; // src array offset
    const Register dst_array  = dst; // dst array offset
    const Register rdi_elsize = rdi; // log2 element size

1814 1815 1816 1817 1818 1819
    __ mov(rsi_offset, rcx_lh);
    __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
    __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
    __ addptr(src_array, rsi_offset);  // src array offset
    __ addptr(dst_array, rsi_offset);  // dst array offset
    __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
D
duke 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

    // next registers should be set before the jump to corresponding stub
    const Register from       = src; // source array address
    const Register to         = dst; // destination array address
    const Register count      = rcx; // elements count
    // some of them should be duplicated on stack
#define FROM   Address(rsp, 12+ 4)
#define TO     Address(rsp, 12+ 8)   // Not used now
#define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy

    BLOCK_COMMENT("scale indexes to element size");
1831 1832
    __ movl2ptr(rsi, SRC_POS);  // src_pos
    __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
D
duke 已提交
1833
    assert(src_array == from, "");
1834 1835 1836
    __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
    __ movl2ptr(rdi, DST_POS);  // dst_pos
    __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
D
duke 已提交
1837
    assert(dst_array == to, "");
1838 1839 1840 1841
    __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
    __ movptr(FROM, from);      // src_addr
    __ mov(rdi_elsize, rcx_lh); // log2 elsize
    __ movl2ptr(count, LENGTH); // elements count
D
duke 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854

    BLOCK_COMMENT("choose copy loop based on element size");
    __ cmpl(rdi_elsize, 0);

    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
    __ cmpl(rdi_elsize, LogBytesPerShort);
    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
    __ cmpl(rdi_elsize, LogBytesPerInt);
    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
#ifdef ASSERT
    __ cmpl(rdi_elsize, LogBytesPerLong);
    __ jccb(Assembler::notEqual, L_failed);
#endif
1855 1856
    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
    __ pop(rsi);
D
duke 已提交
1857 1858 1859
    __ jump(RuntimeAddress(entry_jlong_arraycopy));

  __ BIND(L_failed);
1860 1861 1862 1863
    __ xorptr(rax, rax);
    __ notptr(rax); // return -1
    __ pop(rdi);
    __ pop(rsi);
D
duke 已提交
1864 1865 1866
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

1867
    // ObjArrayKlass
D
duke 已提交
1868 1869 1870 1871 1872
  __ BIND(L_objArray);
    // live at this point:  rcx_src_klass, src[_pos], dst[_pos]

    Label L_plain_copy, L_checkcast_copy;
    //  test array classes for subtyping
1873
    __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
D
duke 已提交
1874 1875 1876 1877 1878 1879 1880
    __ jccb(Assembler::notEqual, L_checkcast_copy);

    // Identically typed arrays can be copied without element-wise checks.
    assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);

  __ BIND(L_plain_copy);
1881 1882 1883 1884 1885 1886 1887 1888 1889
    __ movl2ptr(count, LENGTH); // elements count
    __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
    __ lea(from, Address(src, src_pos, Address::times_ptr,
                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
    __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
    __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
    __ movptr(FROM,  from);   // src_addr
    __ movptr(TO,    to);     // dst_addr
D
duke 已提交
1890 1891 1892 1893 1894 1895 1896
    __ movl(COUNT, count);  // count
    __ jump(RuntimeAddress(entry_oop_arraycopy));

  __ BIND(L_checkcast_copy);
    // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
    {
      // Handy offsets:
1897
      int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
1898
      int sco_offset = in_bytes(Klass::super_check_offset_offset());
D
duke 已提交
1899 1900 1901 1902 1903 1904 1905 1906

      Register rsi_dst_klass = rsi;
      Register rdi_temp      = rdi;
      assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
      assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
      Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);

      // Before looking at dst.length, make sure dst is also an objArray.
1907
      __ movptr(rsi_dst_klass, dst_klass_addr);
D
duke 已提交
1908 1909 1910 1911
      __ cmpl(dst_klass_lh_addr, objArray_lh);
      __ jccb(Assembler::notEqual, L_failed);

      // It is safe to examine both src.length and dst.length.
1912
      __ movl2ptr(src_pos, SRC_POS);        // reload rsi
D
duke 已提交
1913 1914 1915 1916
      arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
      // (Now src_pos and dst_pos are killed, but not src and dst.)

      // We'll need this temp (don't forget to pop it after the type check).
1917
      __ push(rbx);
D
duke 已提交
1918 1919
      Register rbx_src_klass = rbx;

1920 1921
      __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
      __ movptr(rsi_dst_klass, dst_klass_addr);
D
duke 已提交
1922 1923 1924 1925 1926 1927
      Address super_check_offset_addr(rsi_dst_klass, sco_offset);
      Label L_fail_array_check;
      generate_type_check(rbx_src_klass,
                          super_check_offset_addr, dst_klass_addr,
                          rdi_temp, NULL, &L_fail_array_check);
      // (On fall-through, we have passed the array type check.)
1928
      __ pop(rbx);
D
duke 已提交
1929 1930 1931 1932 1933 1934
      __ jmp(L_plain_copy);

      __ BIND(L_fail_array_check);
      // Reshuffle arguments so we can call checkcast_arraycopy:

      // match initial saves for checkcast_arraycopy
1935 1936 1937
      // push(rsi);    // already done; see above
      // push(rdi);    // already done; see above
      // push(rbx);    // already done; see above
D
duke 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

      // Marshal outgoing arguments now, freeing registers.
      Address   from_arg(rsp, 16+ 4);   // from
      Address     to_arg(rsp, 16+ 8);   // to
      Address length_arg(rsp, 16+12);   // elements count
      Address  ckoff_arg(rsp, 16+16);   // super_check_offset
      Address  ckval_arg(rsp, 16+20);   // super_klass

      Address SRC_POS_arg(rsp, 16+ 8);
      Address DST_POS_arg(rsp, 16+16);
      Address  LENGTH_arg(rsp, 16+20);
      // push rbx, changed the incoming offsets (why not just use rbp,??)
      // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");

1952 1953 1954 1955
      __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
      __ movl2ptr(length, LENGTH_arg);    // reload elements count
      __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
      __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
D
duke 已提交
1956

1957
      __ movptr(ckval_arg, rbx);          // destination element type
D
duke 已提交
1958 1959 1960 1961 1962
      __ movl(rbx, Address(rbx, sco_offset));
      __ movl(ckoff_arg, rbx);          // corresponding class check offset

      __ movl(length_arg, length);      // outgoing length argument

1963
      __ lea(from, Address(src, src_pos, Address::times_ptr,
D
duke 已提交
1964
                            arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1965
      __ movptr(from_arg, from);
D
duke 已提交
1966

1967
      __ lea(to, Address(dst, dst_pos, Address::times_ptr,
D
duke 已提交
1968
                          arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1969
      __ movptr(to_arg, to);
D
duke 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
      __ jump(RuntimeAddress(entry_checkcast_arraycopy));
    }

    return start;
  }

  void generate_arraycopy_stubs() {
    address entry;
    address entry_jbyte_arraycopy;
    address entry_jshort_arraycopy;
    address entry_jint_arraycopy;
    address entry_oop_arraycopy;
    address entry_jlong_arraycopy;
    address entry_checkcast_arraycopy;

    StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
        generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
                               "arrayof_jbyte_disjoint_arraycopy");
    StubRoutines::_arrayof_jbyte_arraycopy =
        generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
                               NULL, "arrayof_jbyte_arraycopy");
    StubRoutines::_jbyte_disjoint_arraycopy =
        generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
                               "jbyte_disjoint_arraycopy");
    StubRoutines::_jbyte_arraycopy =
        generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
                               &entry_jbyte_arraycopy, "jbyte_arraycopy");

    StubRoutines::_arrayof_jshort_disjoint_arraycopy =
        generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
                               "arrayof_jshort_disjoint_arraycopy");
    StubRoutines::_arrayof_jshort_arraycopy =
        generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
                               NULL, "arrayof_jshort_arraycopy");
    StubRoutines::_jshort_disjoint_arraycopy =
        generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
                               "jshort_disjoint_arraycopy");
    StubRoutines::_jshort_arraycopy =
        generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
                               &entry_jshort_arraycopy, "jshort_arraycopy");

    // Next arrays are always aligned on 4 bytes at least.
    StubRoutines::_jint_disjoint_arraycopy =
        generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
                               "jint_disjoint_arraycopy");
    StubRoutines::_jint_arraycopy =
        generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
                               &entry_jint_arraycopy, "jint_arraycopy");

    StubRoutines::_oop_disjoint_arraycopy =
2020
        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
D
duke 已提交
2021 2022
                               "oop_disjoint_arraycopy");
    StubRoutines::_oop_arraycopy =
2023
        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
D
duke 已提交
2024 2025
                               &entry_oop_arraycopy, "oop_arraycopy");

2026 2027 2028 2029 2030 2031 2032 2033 2034
    StubRoutines::_oop_disjoint_arraycopy_uninit =
        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
                               "oop_disjoint_arraycopy_uninit",
                               /*dest_uninitialized*/true);
    StubRoutines::_oop_arraycopy_uninit =
        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
                               NULL, "oop_arraycopy_uninit",
                               /*dest_uninitialized*/true);

D
duke 已提交
2035 2036 2037 2038 2039 2040
    StubRoutines::_jlong_disjoint_arraycopy =
        generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
    StubRoutines::_jlong_arraycopy =
        generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
                                    "jlong_arraycopy");

N
never 已提交
2041 2042 2043 2044 2045 2046 2047
    StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
    StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
    StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
    StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
    StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");

2048 2049 2050 2051
    StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
    StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
    StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
    StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
D
duke 已提交
2052

2053 2054 2055 2056
    StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
    StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
    StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
    StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
D
duke 已提交
2057 2058

    StubRoutines::_checkcast_arraycopy =
2059 2060 2061
        generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
    StubRoutines::_checkcast_arraycopy_uninit =
        generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
D
duke 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

    StubRoutines::_unsafe_arraycopy =
        generate_unsafe_copy("unsafe_arraycopy",
                               entry_jbyte_arraycopy,
                               entry_jshort_arraycopy,
                               entry_jint_arraycopy,
                               entry_jlong_arraycopy);

    StubRoutines::_generic_arraycopy =
        generate_generic_copy("generic_arraycopy",
                               entry_jbyte_arraycopy,
                               entry_jshort_arraycopy,
                               entry_jint_arraycopy,
                               entry_oop_arraycopy,
                               entry_jlong_arraycopy,
                               entry_checkcast_arraycopy);
  }

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
  void generate_math_stubs() {
    {
      StubCodeMark mark(this, "StubRoutines", "log");
      StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();

      __ fld_d(Address(rsp, 4));
      __ flog();
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "log10");
      StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();

      __ fld_d(Address(rsp, 4));
      __ flog10();
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "sin");
      StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();

      __ fld_d(Address(rsp, 4));
      __ trigfunc('s');
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "cos");
      StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();

      __ fld_d(Address(rsp, 4));
      __ trigfunc('c');
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "tan");
      StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();

      __ fld_d(Address(rsp, 4));
      __ trigfunc('t');
      __ ret(0);
    }
2121 2122 2123
    {
      StubCodeMark mark(this, "StubRoutines", "exp");
      StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
2124

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
      __ fld_d(Address(rsp, 4));
      __ exp_with_fallback(0);
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "pow");
      StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();

      __ fld_d(Address(rsp, 12));
      __ fld_d(Address(rsp, 4));
      __ pow_with_fallback(0);
      __ ret(0);
    }
2138 2139
  }

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
  // AES intrinsic stubs
  enum {AESBlockSize = 16};

  address generate_key_shuffle_mask() {
    __ align(16);
    StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
    address start = __ pc();
    __ emit_data(0x00010203, relocInfo::none, 0 );
    __ emit_data(0x04050607, relocInfo::none, 0 );
    __ emit_data(0x08090a0b, relocInfo::none, 0 );
    __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
    return start;
  }

  // Utility routine for loading a 128-bit key word in little endian format
  // can optionally specify that the shuffle mask is already in an xmmregister
  void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
    __ movdqu(xmmdst, Address(key, offset));
    if (xmm_shuf_mask != NULL) {
      __ pshufb(xmmdst, xmm_shuf_mask);
    } else {
      __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    }
  }

  // aesenc using specified key+offset
  // can optionally specify that the shuffle mask is already in an xmmregister
  void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
    load_key(xmmtmp, key, offset, xmm_shuf_mask);
    __ aesenc(xmmdst, xmmtmp);
  }

  // aesdec using specified key+offset
  // can optionally specify that the shuffle mask is already in an xmmregister
  void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
    load_key(xmmtmp, key, offset, xmm_shuf_mask);
    __ aesdec(xmmdst, xmmtmp);
  }


  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //
  address generate_aescrypt_encryptBlock() {
    assert(UseAES && (UseAVX > 0), "need AES instructions and misaligned SSE support");
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
    Label L_doLast;
    address start = __ pc();

    const Register from        = rsi;      // source array address
    const Register to          = rdx;      // destination array address
    const Register key         = rcx;      // key array address
    const Register keylen      = rax;
    const Address  from_param(rbp, 8+0);
    const Address  to_param  (rbp, 8+4);
    const Address  key_param (rbp, 8+8);

    const XMMRegister xmm_result = xmm0;
    const XMMRegister xmm_temp   = xmm1;
    const XMMRegister xmm_key_shuf_mask = xmm2;

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ push(rsi);
    __ movptr(from , from_param);
    __ movptr(to   , to_param);
    __ movptr(key  , key_param);

    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
    // keylen = # of 32-bit words, convert to 128-bit words
    __ shrl(keylen, 2);
    __ subl(keylen, 11);   // every key has at least 11 128-bit words, some have more

    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input

    // For encryption, the java expanded key ordering is just what we need

    load_key(xmm_temp, key, 0x00, xmm_key_shuf_mask);
    __ pxor(xmm_result, xmm_temp);
    for (int offset = 0x10; offset <= 0x90; offset += 0x10) {
      aes_enc_key(xmm_result, xmm_temp, key, offset, xmm_key_shuf_mask);
    }
    load_key  (xmm_temp, key, 0xa0, xmm_key_shuf_mask);
    __ cmpl(keylen, 0);
    __ jcc(Assembler::equal, L_doLast);
    __ aesenc(xmm_result, xmm_temp);                   // only in 192 and 256 bit keys
    aes_enc_key(xmm_result, xmm_temp, key, 0xb0, xmm_key_shuf_mask);
    load_key(xmm_temp, key, 0xc0, xmm_key_shuf_mask);
    __ subl(keylen, 2);
    __ jcc(Assembler::equal, L_doLast);
    __ aesenc(xmm_result, xmm_temp);                   // only in 256 bit keys
    aes_enc_key(xmm_result, xmm_temp, key, 0xd0, xmm_key_shuf_mask);
    load_key(xmm_temp, key, 0xe0, xmm_key_shuf_mask);

    __ BIND(L_doLast);
    __ aesenclast(xmm_result, xmm_temp);
    __ movdqu(Address(to, 0), xmm_result);        // store the result
    __ xorptr(rax, rax); // return 0
    __ pop(rsi);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }


  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //
  address generate_aescrypt_decryptBlock() {
    assert(UseAES && (UseAVX > 0), "need AES instructions and misaligned SSE support");
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
    Label L_doLast;
    address start = __ pc();

    const Register from        = rsi;      // source array address
    const Register to          = rdx;      // destination array address
    const Register key         = rcx;      // key array address
    const Register keylen      = rax;
    const Address  from_param(rbp, 8+0);
    const Address  to_param  (rbp, 8+4);
    const Address  key_param (rbp, 8+8);

    const XMMRegister xmm_result = xmm0;
    const XMMRegister xmm_temp   = xmm1;
    const XMMRegister xmm_key_shuf_mask = xmm2;

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ push(rsi);
    __ movptr(from , from_param);
    __ movptr(to   , to_param);
    __ movptr(key  , key_param);

    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
    // keylen = # of 32-bit words, convert to 128-bit words
    __ shrl(keylen, 2);
    __ subl(keylen, 11);   // every key has at least 11 128-bit words, some have more

    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    __ movdqu(xmm_result, Address(from, 0));

    // for decryption java expanded key ordering is rotated one position from what we want
    // so we start from 0x10 here and hit 0x00 last
    // we don't know if the key is aligned, hence not using load-execute form
    load_key(xmm_temp, key, 0x10, xmm_key_shuf_mask);
    __ pxor  (xmm_result, xmm_temp);
    for (int offset = 0x20; offset <= 0xa0; offset += 0x10) {
      aes_dec_key(xmm_result, xmm_temp, key, offset, xmm_key_shuf_mask);
    }
    __ cmpl(keylen, 0);
    __ jcc(Assembler::equal, L_doLast);
    // only in 192 and 256 bit keys
    aes_dec_key(xmm_result, xmm_temp, key, 0xb0, xmm_key_shuf_mask);
    aes_dec_key(xmm_result, xmm_temp, key, 0xc0, xmm_key_shuf_mask);
    __ subl(keylen, 2);
    __ jcc(Assembler::equal, L_doLast);
    // only in 256 bit keys
    aes_dec_key(xmm_result, xmm_temp, key, 0xd0, xmm_key_shuf_mask);
    aes_dec_key(xmm_result, xmm_temp, key, 0xe0, xmm_key_shuf_mask);

    __ BIND(L_doLast);
    // for decryption the aesdeclast operation is always on key+0x00
    load_key(xmm_temp, key, 0x00, xmm_key_shuf_mask);
    __ aesdeclast(xmm_result, xmm_temp);

    __ movdqu(Address(to, 0), xmm_result);  // store the result

    __ xorptr(rax, rax); // return 0
    __ pop(rsi);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  void handleSOERegisters(bool saving) {
    const int saveFrameSizeInBytes = 4 * wordSize;
    const Address saved_rbx     (rbp, -3 * wordSize);
    const Address saved_rsi     (rbp, -2 * wordSize);
    const Address saved_rdi     (rbp, -1 * wordSize);

    if (saving) {
      __ subptr(rsp, saveFrameSizeInBytes);
      __ movptr(saved_rsi, rsi);
      __ movptr(saved_rdi, rdi);
      __ movptr(saved_rbx, rbx);
    } else {
      // restoring
      __ movptr(rsi, saved_rsi);
      __ movptr(rdi, saved_rdi);
      __ movptr(rbx, saved_rbx);
    }
  }

  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //   c_rarg3   - r vector byte array address
  //   c_rarg4   - input length
  //
  address generate_cipherBlockChaining_encryptAESCrypt() {
    assert(UseAES && (UseAVX > 0), "need AES instructions and misaligned SSE support");
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
    address start = __ pc();

    Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
    const Register from        = rsi;      // source array address
    const Register to          = rdx;      // destination array address
    const Register key         = rcx;      // key array address
    const Register rvec        = rdi;      // r byte array initialized from initvector array address
                                           // and left with the results of the last encryption block
    const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
    const Register pos         = rax;

    // xmm register assignments for the loops below
    const XMMRegister xmm_result = xmm0;
    const XMMRegister xmm_temp   = xmm1;
    // first 6 keys preloaded into xmm2-xmm7
    const int XMM_REG_NUM_KEY_FIRST = 2;
    const int XMM_REG_NUM_KEY_LAST  = 7;
    const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    handleSOERegisters(true /*saving*/);

    // load registers from incoming parameters
    const Address  from_param(rbp, 8+0);
    const Address  to_param  (rbp, 8+4);
    const Address  key_param (rbp, 8+8);
    const Address  rvec_param (rbp, 8+12);
    const Address  len_param  (rbp, 8+16);
    __ movptr(from , from_param);
    __ movptr(to   , to_param);
    __ movptr(key  , key_param);
    __ movptr(rvec , rvec_param);
    __ movptr(len_reg , len_param);

    const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    // load up xmm regs 2 thru 7 with keys 0-5
    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
      offset += 0x10;
    }

    __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec

    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
    __ cmpl(rax, 44);
    __ jcc(Assembler::notEqual, L_key_192_256);

    // 128 bit code follows here
    __ movptr(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_loopTop_128);
    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector

    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesenc(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0xa0);
    __ aesenclast(xmm_result, xmm_temp);

    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual, L_loopTop_128);

    __ BIND(L_exit);
    __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object

    handleSOERegisters(false /*restoring*/);
    __ movl(rax, 0);                             // return 0 (why?)
    __ leave();                                  // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

  __ BIND(L_key_192_256);
  // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
    __ cmpl(rax, 52);
    __ jcc(Assembler::notEqual, L_key_256);

    // 192-bit code follows here (could be changed to use more xmm registers)
    __ movptr(pos, 0);
  __ align(OptoLoopAlignment);
  __ BIND(L_loopTop_192);
    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector

    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesenc(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0xc0);
    __ aesenclast(xmm_result, xmm_temp);

    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual, L_loopTop_192);
    __ jmp(L_exit);

  __ BIND(L_key_256);
    // 256-bit code follows here (could be changed to use more xmm registers)
    __ movptr(pos, 0);
  __ align(OptoLoopAlignment);
  __ BIND(L_loopTop_256);
    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector

    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesenc(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0xe0);
    __ aesenclast(xmm_result, xmm_temp);

    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual, L_loopTop_256);
    __ jmp(L_exit);

    return start;
  }


  // CBC AES Decryption.
  // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
  //
  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //   c_rarg3   - r vector byte array address
  //   c_rarg4   - input length
  //

  address generate_cipherBlockChaining_decryptAESCrypt() {
    assert(UseAES && (UseAVX > 0), "need AES instructions and misaligned SSE support");
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
    address start = __ pc();

    Label L_exit, L_key_192_256, L_key_256;
    Label L_singleBlock_loopTop_128;
    Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
    const Register from        = rsi;      // source array address
    const Register to          = rdx;      // destination array address
    const Register key         = rcx;      // key array address
    const Register rvec        = rdi;      // r byte array initialized from initvector array address
                                           // and left with the results of the last encryption block
    const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
    const Register pos         = rax;

    // xmm register assignments for the loops below
    const XMMRegister xmm_result = xmm0;
    const XMMRegister xmm_temp   = xmm1;
    // first 6 keys preloaded into xmm2-xmm7
    const int XMM_REG_NUM_KEY_FIRST = 2;
    const int XMM_REG_NUM_KEY_LAST  = 7;
    const int FIRST_NON_REG_KEY_offset = 0x70;
    const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    handleSOERegisters(true /*saving*/);

    // load registers from incoming parameters
    const Address  from_param(rbp, 8+0);
    const Address  to_param  (rbp, 8+4);
    const Address  key_param (rbp, 8+8);
    const Address  rvec_param (rbp, 8+12);
    const Address  len_param  (rbp, 8+16);
    __ movptr(from , from_param);
    __ movptr(to   , to_param);
    __ movptr(key  , key_param);
    __ movptr(rvec , rvec_param);
    __ movptr(len_reg , len_param);

    // the java expanded key ordering is rotated one position from what we want
    // so we start from 0x10 here and hit 0x00 last
    const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    // load up xmm regs 2 thru 6 with first 5 keys
    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
      offset += 0x10;
    }

    // inside here, use the rvec register to point to previous block cipher
    // with which we xor at the end of each newly decrypted block
    const Register  prev_block_cipher_ptr = rvec;

    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
    __ cmpl(rax, 44);
    __ jcc(Assembler::notEqual, L_key_192_256);


    // 128-bit code follows here, parallelized
    __ movptr(pos, 0);
  __ align(OptoLoopAlignment);
  __ BIND(L_singleBlock_loopTop_128);
    __ cmpptr(len_reg, 0);           // any blocks left??
    __ jcc(Assembler::equal, L_exit);
    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesdec(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
    __ aesdeclast(xmm_result, xmm_temp);
    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jmp(L_singleBlock_loopTop_128);


    __ BIND(L_exit);
    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
    __ movptr(rvec , rvec_param);                                     // restore this since used in loop
    __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
    handleSOERegisters(false /*restoring*/);
    __ movl(rax, 0);                                                  // return 0 (why?)
    __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
    __ ret(0);


    __ BIND(L_key_192_256);
    // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
    __ cmpl(rax, 52);
    __ jcc(Assembler::notEqual, L_key_256);

    // 192-bit code follows here (could be optimized to use parallelism)
    __ movptr(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_singleBlock_loopTop_192);
    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesdec(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
    __ aesdeclast(xmm_result, xmm_temp);
    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
    __ jmp(L_exit);

    __ BIND(L_key_256);
    // 256-bit code follows here (could be optimized to use parallelism)
    __ movptr(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_singleBlock_loopTop_256);
    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesdec(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
    __ aesdeclast(xmm_result, xmm_temp);
    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
    __ jmp(L_exit);

    return start;
  }


D
duke 已提交
2663 2664 2665 2666 2667 2668 2669
 public:
  // Information about frame layout at time of blocking runtime call.
  // Note that we only have to preserve callee-saved registers since
  // the compilers are responsible for supplying a continuation point
  // if they expect all registers to be preserved.
  enum layout {
    thread_off,    // last_java_sp
2670 2671
    arg1_off,
    arg2_off,
D
duke 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
    rbp_off,       // callee saved register
    ret_pc,
    framesize
  };

 private:

#undef  __
#define __ masm->

  //------------------------------------------------------------------------------------------------------------------------
  // Continuation point for throwing of implicit exceptions that are not handled in
  // the current activation. Fabricates an exception oop and initiates normal
  // exception dispatching in this frame.
  //
  // Previously the compiler (c2) allowed for callee save registers on Java calls.
  // This is no longer true after adapter frames were removed but could possibly
  // be brought back in the future if the interpreter code was reworked and it
  // was deemed worthwhile. The comment below was left to describe what must
  // happen here if callee saves were resurrected. As it stands now this stub
  // could actually be a vanilla BufferBlob and have now oopMap at all.
  // Since it doesn't make much difference we've chosen to leave it the
  // way it was in the callee save days and keep the comment.

  // If we need to preserve callee-saved values we need a callee-saved oop map and
  // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  // If the compiler needs all registers to be preserved between the fault
  // point and the exception handler then it must assume responsibility for that in
  // AbstractCompiler::continuation_for_implicit_null_exception or
  // continuation_for_implicit_division_by_zero_exception. All other implicit
  // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  // either at call sites or otherwise assume that stack unwinding will be initiated,
  // so caller saved registers were assumed volatile in the compiler.
  address generate_throw_exception(const char* name, address runtime_entry,
2706
                                   Register arg1 = noreg, Register arg2 = noreg) {
D
duke 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

    int insts_size = 256;
    int locs_size  = 32;

    CodeBuffer code(name, insts_size, locs_size);
    OopMapSet* oop_maps  = new OopMapSet();
    MacroAssembler* masm = new MacroAssembler(&code);

    address start = __ pc();

    // This is an inlined and slightly modified version of call_VM
    // which has the ability to fetch the return PC out of
    // thread-local storage and also sets up last_Java_sp slightly
    // differently than the real call_VM
    Register java_thread = rbx;
    __ get_thread(java_thread);

    __ enter(); // required for proper stackwalking of RuntimeStub frame

    // pc and rbp, already pushed
2727
    __ subptr(rsp, (framesize-2) * wordSize); // prolog
D
duke 已提交
2728 2729 2730 2731 2732 2733

    // Frame is now completed as far as size and linkage.

    int frame_complete = __ pc() - start;

    // push java thread (becomes first argument of C function)
2734
    __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2735 2736 2737 2738 2739 2740 2741
    if (arg1 != noreg) {
      __ movptr(Address(rsp, arg1_off * wordSize), arg1);
    }
    if (arg2 != noreg) {
      assert(arg1 != noreg, "missing reg arg");
      __ movptr(Address(rsp, arg2_off * wordSize), arg2);
    }
D
duke 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

    // Set up last_Java_sp and last_Java_fp
    __ set_last_Java_frame(java_thread, rsp, rbp, NULL);

    // Call runtime
    BLOCK_COMMENT("call runtime_entry");
    __ call(RuntimeAddress(runtime_entry));
    // Generate oop map
    OopMap* map =  new OopMap(framesize, 0);
    oop_maps->add_gc_map(__ pc() - start, map);

    // restore the thread (cannot use the pushed argument since arguments
    // may be overwritten by C code generated by an optimizing compiler);
    // however can use the register value directly if it is callee saved.
    __ get_thread(java_thread);

    __ reset_last_Java_frame(java_thread, true, false);

    __ leave(); // required for proper stackwalking of RuntimeStub frame

    // check for pending exceptions
#ifdef ASSERT
    Label L;
2765
    __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
D
duke 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
    __ jcc(Assembler::notEqual, L);
    __ should_not_reach_here();
    __ bind(L);
#endif /* ASSERT */
    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));


    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
    return stub->entry_point();
  }


  void create_control_words() {
    // Round to nearest, 53-bit mode, exceptions masked
    StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
    // Round to zero, 53-bit mode, exception mased
    StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
    // Round to nearest, 24-bit mode, exceptions masked
    StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
    // Round to nearest, 64-bit mode, exceptions masked
    StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
    // Round to nearest, 64-bit mode, exceptions masked
    StubRoutines::_mxcsr_std           = 0x1F80;
    // Note: the following two constants are 80-bit values
    //       layout is critical for correct loading by FPU.
    // Bias for strict fp multiply/divide
    StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
    StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
    StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
    // Un-Bias for strict fp multiply/divide
    StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
    StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
    StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  }

  //---------------------------------------------------------------------------
  // Initialization

  void generate_initial() {
    // Generates all stubs and initializes the entry points

    //------------------------------------------------------------------------------------------------------------------------
    // entry points that exist in all platforms
    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
    StubRoutines::_forward_exception_entry      = generate_forward_exception();

    StubRoutines::_call_stub_entry              =
      generate_call_stub(StubRoutines::_call_stub_return_address);
    // is referenced by megamorphic call
    StubRoutines::_catch_exception_entry        = generate_catch_exception();

    // These are currently used by Solaris/Intel
    StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();

    StubRoutines::_handler_for_unsafe_access_entry =
      generate_handler_for_unsafe_access();

    // platform dependent
    create_control_words();

2827 2828
    StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
    StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
D
duke 已提交
2829 2830 2831 2832
    StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
    StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
2833

B
bdelsart 已提交
2834 2835
    // Build this early so it's available for the interpreter
    StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
D
duke 已提交
2836 2837 2838 2839 2840 2841 2842 2843
  }


  void generate_all() {
    // Generates all stubs and initializes the entry points

    // These entry points require SharedInfo::stack0 to be set up in non-core builds
    // and need to be relocatable, so they each fabricate a RuntimeStub internally.
2844 2845 2846
    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
D
duke 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855

    //------------------------------------------------------------------------------------------------------------------------
    // entry points that are platform specific

    // support for verify_oop (must happen after universe_init)
    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();

    // arraycopy stubs used by compilers
    generate_arraycopy_stubs();
2856

2857
    generate_math_stubs();
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867

    // don't bother generating these AES intrinsic stubs unless global flag is set
    if (UseAESIntrinsics) {
      StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others

      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
      StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
      StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
    }
D
duke 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
  }


 public:
  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
    if (all) {
      generate_all();
    } else {
      generate_initial();
    }
  }
}; // end class declaration


void StubGenerator_generate(CodeBuffer* code, bool all) {
  StubGenerator g(code, all);
}