macroAssembler_x86.cpp 248.2 KB
Newer Older
1
/*
2
 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/resourceArea.hpp"
33
#include "memory/universe.hpp"
34 35 36 37 38 39 40
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
41 42
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
43 44 45
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
46
#endif // INCLUDE_ALL_GCS
47 48 49 50 51 52 53 54 55 56 57

#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

58
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
59

60 61 62 63
#ifdef ASSERT
bool AbstractAssembler::pd_check_instruction_mark() { return true; }
#endif

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
static Assembler::Condition reverse[] = {
    Assembler::noOverflow     /* overflow      = 0x0 */ ,
    Assembler::overflow       /* noOverflow    = 0x1 */ ,
    Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    Assembler::above          /* belowEqual    = 0x6 */ ,
    Assembler::belowEqual     /* above         = 0x7 */ ,
    Assembler::positive       /* negative      = 0x8 */ ,
    Assembler::negative       /* positive      = 0x9 */ ,
    Assembler::noParity       /* parity        = 0xa */ ,
    Assembler::parity         /* noParity      = 0xb */ ,
    Assembler::greaterEqual   /* less          = 0xc */ ,
    Assembler::less           /* greaterEqual  = 0xd */ ,
    Assembler::greater        /* lessEqual     = 0xe */ ,
    Assembler::lessEqual      /* greater       = 0xf, */

};


// Implementation of MacroAssembler

// First all the versions that have distinct versions depending on 32/64 bit
// Unless the difference is trivial (1 line or so).

#ifndef _LP64

// 32bit versions

Address MacroAssembler::as_Address(AddressLiteral adr) {
  return Address(adr.target(), adr.rspec());
}

Address MacroAssembler::as_Address(ArrayAddress adr) {
  return Address::make_array(adr);
}

void MacroAssembler::call_VM_leaf_base(address entry_point,
                                       int number_of_arguments) {
  call(RuntimeAddress(entry_point));
  increment(rsp, number_of_arguments * wordSize);
}

void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}

void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}

void MacroAssembler::cmpoop(Address src1, jobject obj) {
  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}

void MacroAssembler::cmpoop(Register src1, jobject obj) {
  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
}

void MacroAssembler::extend_sign(Register hi, Register lo) {
  // According to Intel Doc. AP-526, "Integer Divide", p.18.
  if (VM_Version::is_P6() && hi == rdx && lo == rax) {
    cdql();
  } else {
    movl(hi, lo);
    sarl(hi, 31);
  }
}

void MacroAssembler::jC2(Register tmp, Label& L) {
  // set parity bit if FPU flag C2 is set (via rax)
  save_rax(tmp);
  fwait(); fnstsw_ax();
  sahf();
  restore_rax(tmp);
  // branch
  jcc(Assembler::parity, L);
}

void MacroAssembler::jnC2(Register tmp, Label& L) {
  // set parity bit if FPU flag C2 is set (via rax)
  save_rax(tmp);
  fwait(); fnstsw_ax();
  sahf();
  restore_rax(tmp);
  // branch
  jcc(Assembler::noParity, L);
}

// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
  jmp(as_Address(entry));
}

// Note: y_lo will be destroyed
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  // Long compare for Java (semantics as described in JVM spec.)
  Label high, low, done;

  cmpl(x_hi, y_hi);
  jcc(Assembler::less, low);
  jcc(Assembler::greater, high);
  // x_hi is the return register
  xorl(x_hi, x_hi);
  cmpl(x_lo, y_lo);
  jcc(Assembler::below, low);
  jcc(Assembler::equal, done);

  bind(high);
  xorl(x_hi, x_hi);
  increment(x_hi);
  jmp(done);

  bind(low);
  xorl(x_hi, x_hi);
  decrementl(x_hi);

  bind(done);
}

void MacroAssembler::lea(Register dst, AddressLiteral src) {
    mov_literal32(dst, (int32_t)src.target(), src.rspec());
}

void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  // leal(dst, as_Address(adr));
  // see note in movl as to why we must use a move
  mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
}

void MacroAssembler::leave() {
  mov(rsp, rbp);
  pop(rbp);
}

void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  // Multiplication of two Java long values stored on the stack
  // as illustrated below. Result is in rdx:rax.
  //
  // rsp ---> [  ??  ] \               \
  //            ....    | y_rsp_offset  |
  //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  //          [ y_hi ]                  | (in bytes)
  //            ....                    |
  //          [ x_lo ]                 /
  //          [ x_hi ]
  //            ....
  //
  // Basic idea: lo(result) = lo(x_lo * y_lo)
  //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  Label quick;
  // load x_hi, y_hi and check if quick
  // multiplication is possible
  movl(rbx, x_hi);
  movl(rcx, y_hi);
  movl(rax, rbx);
  orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  // do full multiplication
  // 1st step
  mull(y_lo);                                    // x_hi * y_lo
  movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  // 2nd step
  movl(rax, x_lo);
  mull(rcx);                                     // x_lo * y_hi
  addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  // 3rd step
  bind(quick);                                   // note: rbx, = 0 if quick multiply!
  movl(rax, x_lo);
  mull(y_lo);                                    // x_lo * y_lo
  addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
}

void MacroAssembler::lneg(Register hi, Register lo) {
  negl(lo);
  adcl(hi, 0);
  negl(hi);
}

void MacroAssembler::lshl(Register hi, Register lo) {
  // Java shift left long support (semantics as described in JVM spec., p.305)
  // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  // shift value is in rcx !
  assert(hi != rcx, "must not use rcx");
  assert(lo != rcx, "must not use rcx");
  const Register s = rcx;                        // shift count
  const int      n = BitsPerWord;
  Label L;
  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  cmpl(s, n);                                    // if (s < n)
  jcc(Assembler::less, L);                       // else (s >= n)
  movl(hi, lo);                                  // x := x << n
  xorl(lo, lo);
  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  bind(L);                                       // s (mod n) < n
  shldl(hi, lo);                                 // x := x << s
  shll(lo);
}


void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  assert(hi != rcx, "must not use rcx");
  assert(lo != rcx, "must not use rcx");
  const Register s = rcx;                        // shift count
  const int      n = BitsPerWord;
  Label L;
  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  cmpl(s, n);                                    // if (s < n)
  jcc(Assembler::less, L);                       // else (s >= n)
  movl(lo, hi);                                  // x := x >> n
  if (sign_extension) sarl(hi, 31);
  else                xorl(hi, hi);
  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  bind(L);                                       // s (mod n) < n
  shrdl(lo, hi);                                 // x := x >> s
  if (sign_extension) sarl(hi);
  else                shrl(hi);
}

void MacroAssembler::movoop(Register dst, jobject obj) {
  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}

void MacroAssembler::movoop(Address dst, jobject obj) {
  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
}

void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}

void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
}

305 306 307
void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
  // scratch register is not used,
  // it is defined to match parameters of 64-bit version of this method.
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
  if (src.is_lval()) {
    mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  } else {
    movl(dst, as_Address(src));
  }
}

void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  movl(as_Address(dst), src);
}

void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  movl(dst, as_Address(src));
}

// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
  movl(dst, src);
}


void MacroAssembler::pop_callee_saved_registers() {
  pop(rcx);
  pop(rdx);
  pop(rdi);
  pop(rsi);
}

void MacroAssembler::pop_fTOS() {
  fld_d(Address(rsp, 0));
  addl(rsp, 2 * wordSize);
}

void MacroAssembler::push_callee_saved_registers() {
  push(rsi);
  push(rdi);
  push(rdx);
  push(rcx);
}

void MacroAssembler::push_fTOS() {
  subl(rsp, 2 * wordSize);
  fstp_d(Address(rsp, 0));
}


void MacroAssembler::pushoop(jobject obj) {
  push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
}

void MacroAssembler::pushklass(Metadata* obj) {
  push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
}

void MacroAssembler::pushptr(AddressLiteral src) {
  if (src.is_lval()) {
    push_literal32((int32_t)src.target(), src.rspec());
  } else {
    pushl(as_Address(src));
  }
}

void MacroAssembler::set_word_if_not_zero(Register dst) {
  xorl(dst, dst);
  set_byte_if_not_zero(dst);
}

static void pass_arg0(MacroAssembler* masm, Register arg) {
  masm->push(arg);
}

static void pass_arg1(MacroAssembler* masm, Register arg) {
  masm->push(arg);
}

static void pass_arg2(MacroAssembler* masm, Register arg) {
  masm->push(arg);
}

static void pass_arg3(MacroAssembler* masm, Register arg) {
  masm->push(arg);
}

#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif

void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  // In order to get locks to work, we need to fake a in_VM state
  JavaThread* thread = JavaThread::current();
  JavaThreadState saved_state = thread->thread_state();
  thread->set_thread_state(_thread_in_vm);
  if (ShowMessageBoxOnError) {
    JavaThread* thread = JavaThread::current();
    JavaThreadState saved_state = thread->thread_state();
    thread->set_thread_state(_thread_in_vm);
    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
      ttyLocker ttyl;
      BytecodeCounter::print();
    }
    // To see where a verify_oop failed, get $ebx+40/X for this frame.
    // This is the value of eip which points to where verify_oop will return.
    if (os::message_box(msg, "Execution stopped, print registers?")) {
      print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
      BREAKPOINT;
    }
  } else {
    ttyLocker ttyl;
    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  }
  // Don't assert holding the ttyLock
    assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
}

void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  ttyLocker ttyl;
  FlagSetting fs(Debugging, true);
  tty->print_cr("eip = 0x%08x", eip);
#ifndef PRODUCT
  if ((WizardMode || Verbose) && PrintMiscellaneous) {
    tty->cr();
    findpc(eip);
    tty->cr();
  }
#endif
#define PRINT_REG(rax) \
  { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  PRINT_REG(rax);
  PRINT_REG(rbx);
  PRINT_REG(rcx);
  PRINT_REG(rdx);
  PRINT_REG(rdi);
  PRINT_REG(rsi);
  PRINT_REG(rbp);
  PRINT_REG(rsp);
#undef PRINT_REG
  // Print some words near top of staack.
  int* dump_sp = (int*) rsp;
  for (int col1 = 0; col1 < 8; col1++) {
    tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
    os::print_location(tty, *dump_sp++);
  }
  for (int row = 0; row < 16; row++) {
    tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
    for (int col = 0; col < 8; col++) {
      tty->print(" 0x%08x", *dump_sp++);
    }
    tty->cr();
  }
  // Print some instructions around pc:
  Disassembler::decode((address)eip-64, (address)eip);
  tty->print_cr("--------");
  Disassembler::decode((address)eip, (address)eip+32);
}

void MacroAssembler::stop(const char* msg) {
  ExternalAddress message((address)msg);
  // push address of message
  pushptr(message.addr());
  { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  pusha();                                            // push registers
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  hlt();
}

void MacroAssembler::warn(const char* msg) {
  push_CPU_state();

  ExternalAddress message((address) msg);
  // push address of message
  pushptr(message.addr());

  call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  addl(rsp, wordSize);       // discard argument
  pop_CPU_state();
}

void MacroAssembler::print_state() {
  { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  pusha();                                            // push registers

  push_CPU_state();
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  pop_CPU_state();

  popa();
  addl(rsp, wordSize);
}

#else // _LP64

// 64 bit versions

Address MacroAssembler::as_Address(AddressLiteral adr) {
  // amd64 always does this as a pc-rel
  // we can be absolute or disp based on the instruction type
  // jmp/call are displacements others are absolute
  assert(!adr.is_lval(), "must be rval");
507 508
  assert(reachable(adr), "must be");
  return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
509

510
}
511

512 513 514 515 516 517 518
Address MacroAssembler::as_Address(ArrayAddress adr) {
  AddressLiteral base = adr.base();
  lea(rscratch1, base);
  Address index = adr.index();
  assert(index._disp == 0, "must not have disp"); // maybe it can?
  Address array(rscratch1, index._index, index._scale, index._disp);
  return array;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
}

void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  Label L, E;

#ifdef _WIN64
  // Windows always allocates space for it's register args
  assert(num_args <= 4, "only register arguments supported");
  subq(rsp,  frame::arg_reg_save_area_bytes);
#endif

  // Align stack if necessary
  testl(rsp, 15);
  jcc(Assembler::zero, L);

  subq(rsp, 8);
  {
    call(RuntimeAddress(entry_point));
  }
  addq(rsp, 8);
  jmp(E);

  bind(L);
  {
    call(RuntimeAddress(entry_point));
  }

  bind(E);

#ifdef _WIN64
  // restore stack pointer
  addq(rsp, frame::arg_reg_save_area_bytes);
#endif

}

void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  assert(!src2.is_lval(), "should use cmpptr");

  if (reachable(src2)) {
    cmpq(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    Assembler::cmpq(src1, Address(rscratch1, 0));
  }
}

int MacroAssembler::corrected_idivq(Register reg) {
  // Full implementation of Java ldiv and lrem; checks for special
  // case as described in JVM spec., p.243 & p.271.  The function
  // returns the (pc) offset of the idivl instruction - may be needed
  // for implicit exceptions.
  //
  //         normal case                           special case
  //
  // input : rax: dividend                         min_long
  //         reg: divisor   (may not be eax/edx)   -1
  //
  // output: rax: quotient  (= rax idiv reg)       min_long
  //         rdx: remainder (= rax irem reg)       0
  assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  static const int64_t min_long = 0x8000000000000000;
  Label normal_case, special_case;

  // check for special case
  cmp64(rax, ExternalAddress((address) &min_long));
  jcc(Assembler::notEqual, normal_case);
  xorl(rdx, rdx); // prepare rdx for possible special case (where
                  // remainder = 0)
  cmpq(reg, -1);
  jcc(Assembler::equal, special_case);

  // handle normal case
  bind(normal_case);
  cdqq();
  int idivq_offset = offset();
  idivq(reg);

  // normal and special case exit
  bind(special_case);

  return idivq_offset;
}

void MacroAssembler::decrementq(Register reg, int value) {
  if (value == min_jint) { subq(reg, value); return; }
  if (value <  0) { incrementq(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decq(reg) ; return; }
  /* else */      { subq(reg, value)       ; return; }
}

void MacroAssembler::decrementq(Address dst, int value) {
  if (value == min_jint) { subq(dst, value); return; }
  if (value <  0) { incrementq(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decq(dst) ; return; }
  /* else */      { subq(dst, value)       ; return; }
}

619 620 621 622 623 624 625 626 627
void MacroAssembler::incrementq(AddressLiteral dst) {
  if (reachable(dst)) {
    incrementq(as_Address(dst));
  } else {
    lea(rscratch1, dst);
    incrementq(Address(rscratch1, 0));
  }
}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
void MacroAssembler::incrementq(Register reg, int value) {
  if (value == min_jint) { addq(reg, value); return; }
  if (value <  0) { decrementq(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incq(reg) ; return; }
  /* else */      { addq(reg, value)       ; return; }
}

void MacroAssembler::incrementq(Address dst, int value) {
  if (value == min_jint) { addq(dst, value); return; }
  if (value <  0) { decrementq(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incq(dst) ; return; }
  /* else */      { addq(dst, value)       ; return; }
}

// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
  lea(rscratch1, entry.base());
  Address dispatch = entry.index();
  assert(dispatch._base == noreg, "must be");
  dispatch._base = rscratch1;
  jmp(dispatch);
}

void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  ShouldNotReachHere(); // 64bit doesn't use two regs
  cmpq(x_lo, y_lo);
}

void MacroAssembler::lea(Register dst, AddressLiteral src) {
    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
}

void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  movptr(dst, rscratch1);
}

void MacroAssembler::leave() {
  // %%% is this really better? Why not on 32bit too?
670
  emit_int8((unsigned char)0xC9); // LEAVE
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
}

void MacroAssembler::lneg(Register hi, Register lo) {
  ShouldNotReachHere(); // 64bit doesn't use two regs
  negq(lo);
}

void MacroAssembler::movoop(Register dst, jobject obj) {
  mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
}

void MacroAssembler::movoop(Address dst, jobject obj) {
  mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  movq(dst, rscratch1);
}

void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
}

void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  movq(dst, rscratch1);
}

696
void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
697 698 699 700 701 702
  if (src.is_lval()) {
    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  } else {
    if (reachable(src)) {
      movq(dst, as_Address(src));
    } else {
703 704
      lea(scratch, src);
      movq(dst, Address(scratch, 0));
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
    }
  }
}

void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  movq(as_Address(dst), src);
}

void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  movq(dst, as_Address(src));
}

// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
  mov64(rscratch1, src);
  movq(dst, rscratch1);
}

// These are mostly for initializing NULL
void MacroAssembler::movptr(Address dst, int32_t src) {
  movslq(dst, src);
}

void MacroAssembler::movptr(Register dst, int32_t src) {
  mov64(dst, (intptr_t)src);
}

void MacroAssembler::pushoop(jobject obj) {
  movoop(rscratch1, obj);
  push(rscratch1);
}

void MacroAssembler::pushklass(Metadata* obj) {
  mov_metadata(rscratch1, obj);
  push(rscratch1);
}

void MacroAssembler::pushptr(AddressLiteral src) {
  lea(rscratch1, src);
  if (src.is_lval()) {
    push(rscratch1);
  } else {
    pushq(Address(rscratch1, 0));
  }
}

void MacroAssembler::reset_last_Java_frame(bool clear_fp,
                                           bool clear_pc) {
  // we must set sp to zero to clear frame
  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  // must clear fp, so that compiled frames are not confused; it is
  // possible that we need it only for debugging
  if (clear_fp) {
    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  }

  if (clear_pc) {
    movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  }
}

void MacroAssembler::set_last_Java_frame(Register last_java_sp,
                                         Register last_java_fp,
                                         address  last_java_pc) {
  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = rsp;
  }

  // last_java_fp is optional
  if (last_java_fp->is_valid()) {
    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
           last_java_fp);
  }

  // last_java_pc is optional
  if (last_java_pc != NULL) {
    Address java_pc(r15_thread,
                    JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
    lea(rscratch1, InternalAddress(last_java_pc));
    movptr(java_pc, rscratch1);
  }

  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}

static void pass_arg0(MacroAssembler* masm, Register arg) {
  if (c_rarg0 != arg ) {
    masm->mov(c_rarg0, arg);
  }
}

static void pass_arg1(MacroAssembler* masm, Register arg) {
  if (c_rarg1 != arg ) {
    masm->mov(c_rarg1, arg);
  }
}

static void pass_arg2(MacroAssembler* masm, Register arg) {
  if (c_rarg2 != arg ) {
    masm->mov(c_rarg2, arg);
  }
}

static void pass_arg3(MacroAssembler* masm, Register arg) {
  if (c_rarg3 != arg ) {
    masm->mov(c_rarg3, arg);
  }
}

void MacroAssembler::stop(const char* msg) {
  address rip = pc();
  pusha(); // get regs on stack
  lea(c_rarg0, ExternalAddress((address) msg));
  lea(c_rarg1, InternalAddress(rip));
  movq(c_rarg2, rsp); // pass pointer to regs array
  andq(rsp, -16); // align stack as required by ABI
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  hlt();
}

void MacroAssembler::warn(const char* msg) {
  push(rbp);
  movq(rbp, rsp);
  andq(rsp, -16);     // align stack as required by push_CPU_state and call
  push_CPU_state();   // keeps alignment at 16 bytes
  lea(c_rarg0, ExternalAddress((address) msg));
  call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  pop_CPU_state();
  mov(rsp, rbp);
  pop(rbp);
}

void MacroAssembler::print_state() {
  address rip = pc();
  pusha();            // get regs on stack
  push(rbp);
  movq(rbp, rsp);
  andq(rsp, -16);     // align stack as required by push_CPU_state and call
  push_CPU_state();   // keeps alignment at 16 bytes

  lea(c_rarg0, InternalAddress(rip));
  lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);

  pop_CPU_state();
  mov(rsp, rbp);
  pop(rbp);
  popa();
}

#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif

void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  // In order to get locks to work, we need to fake a in_VM state
  if (ShowMessageBoxOnError) {
    JavaThread* thread = JavaThread::current();
    JavaThreadState saved_state = thread->thread_state();
    thread->set_thread_state(_thread_in_vm);
#ifndef PRODUCT
    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
      ttyLocker ttyl;
      BytecodeCounter::print();
    }
#endif
    // To see where a verify_oop failed, get $ebx+40/X for this frame.
    // XXX correct this offset for amd64
    // This is the value of eip which points to where verify_oop will return.
    if (os::message_box(msg, "Execution stopped, print registers?")) {
      print_state64(pc, regs);
      BREAKPOINT;
      assert(false, "start up GDB");
    }
    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  } else {
    ttyLocker ttyl;
    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
                    msg);
    assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  }
}

void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  ttyLocker ttyl;
  FlagSetting fs(Debugging, true);
  tty->print_cr("rip = 0x%016lx", pc);
#ifndef PRODUCT
  tty->cr();
  findpc(pc);
  tty->cr();
#endif
#define PRINT_REG(rax, value) \
  { tty->print("%s = ", #rax); os::print_location(tty, value); }
  PRINT_REG(rax, regs[15]);
  PRINT_REG(rbx, regs[12]);
  PRINT_REG(rcx, regs[14]);
  PRINT_REG(rdx, regs[13]);
  PRINT_REG(rdi, regs[8]);
  PRINT_REG(rsi, regs[9]);
  PRINT_REG(rbp, regs[10]);
  PRINT_REG(rsp, regs[11]);
  PRINT_REG(r8 , regs[7]);
  PRINT_REG(r9 , regs[6]);
  PRINT_REG(r10, regs[5]);
  PRINT_REG(r11, regs[4]);
  PRINT_REG(r12, regs[3]);
  PRINT_REG(r13, regs[2]);
  PRINT_REG(r14, regs[1]);
  PRINT_REG(r15, regs[0]);
#undef PRINT_REG
  // Print some words near top of staack.
  int64_t* rsp = (int64_t*) regs[11];
  int64_t* dump_sp = rsp;
  for (int col1 = 0; col1 < 8; col1++) {
    tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
    os::print_location(tty, *dump_sp++);
  }
  for (int row = 0; row < 25; row++) {
    tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
    for (int col = 0; col < 4; col++) {
      tty->print(" 0x%016lx", *dump_sp++);
    }
    tty->cr();
  }
  // Print some instructions around pc:
  Disassembler::decode((address)pc-64, (address)pc);
  tty->print_cr("--------");
  Disassembler::decode((address)pc, (address)pc+32);
}

#endif // _LP64

// Now versions that are common to 32/64 bit

void MacroAssembler::addptr(Register dst, int32_t imm32) {
  LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
}

void MacroAssembler::addptr(Register dst, Register src) {
  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
}

void MacroAssembler::addptr(Address dst, Register src) {
  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
}

void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::addsd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::addsd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    addss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    addss(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::align(int modulus) {
  if (offset() % modulus != 0) {
    nop(modulus - (offset() % modulus));
  }
}

void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  // Used in sign-masking with aligned address.
  assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  if (reachable(src)) {
    Assembler::andpd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::andpd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  // Used in sign-masking with aligned address.
  assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  if (reachable(src)) {
    Assembler::andps(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::andps(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::andptr(Register dst, int32_t imm32) {
  LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
}

1003 1004 1005 1006 1007 1008 1009
void MacroAssembler::atomic_incl(Address counter_addr) {
  if (os::is_MP())
    lock();
  incrementl(counter_addr);
}

void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1010
  if (reachable(counter_addr)) {
1011
    atomic_incl(as_Address(counter_addr));
1012
  } else {
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    lea(scr, counter_addr);
    atomic_incl(Address(scr, 0));
  }
}

#ifdef _LP64
void MacroAssembler::atomic_incq(Address counter_addr) {
  if (os::is_MP())
    lock();
  incrementq(counter_addr);
}

void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
  if (reachable(counter_addr)) {
    atomic_incq(as_Address(counter_addr));
  } else {
    lea(scr, counter_addr);
    atomic_incq(Address(scr, 0));
1031
  }
1032
}
1033
#endif
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages.  This clobbers tmp.
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  movptr(tmp, rsp);
  // Bang stack for total size given plus shadow page size.
  // Bang one page at a time because large size can bang beyond yellow and
  // red zones.
  Label loop;
  bind(loop);
  movl(Address(tmp, (-os::vm_page_size())), size );
  subptr(tmp, os::vm_page_size());
  subl(size, os::vm_page_size());
  jcc(Assembler::greater, loop);

  // Bang down shadow pages too.
1050 1051 1052 1053 1054 1055
  // At this point, (tmp-0) is the last address touched, so don't
  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
  // was post-decremented.)  Skip this address by starting at i=1, and
  // touch a few more pages below.  N.B.  It is important to touch all
  // the way down to and including i=StackShadowPages.
  for (int i = 1; i <= StackShadowPages; i++) {
1056 1057 1058 1059 1060 1061
    // this could be any sized move but this is can be a debugging crumb
    // so the bigger the better.
    movptr(Address(tmp, (-i*os::vm_page_size())), size );
  }
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
int MacroAssembler::biased_locking_enter(Register lock_reg,
                                         Register obj_reg,
                                         Register swap_reg,
                                         Register tmp_reg,
                                         bool swap_reg_contains_mark,
                                         Label& done,
                                         Label* slow_case,
                                         BiasedLockingCounters* counters) {
  assert(UseBiasedLocking, "why call this otherwise?");
  assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
  bool need_tmp_reg = false;
  if (tmp_reg == noreg) {
    need_tmp_reg = true;
    tmp_reg = lock_reg;
    assert_different_registers(lock_reg, obj_reg, swap_reg);
  } else {
    assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  }
  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  Address saved_mark_addr(lock_reg, 0);

  if (PrintBiasedLockingStatistics && counters == NULL) {
    counters = BiasedLocking::counters();
  }
  // Biased locking
  // See whether the lock is currently biased toward our thread and
  // whether the epoch is still valid
  // Note that the runtime guarantees sufficient alignment of JavaThread
  // pointers to allow age to be placed into low bits
  // First check to see whether biasing is even enabled for this object
  Label cas_label;
  int null_check_offset = -1;
  if (!swap_reg_contains_mark) {
    null_check_offset = offset();
    movptr(swap_reg, mark_addr);
  }
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  movptr(tmp_reg, swap_reg);
  andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  jcc(Assembler::notEqual, cas_label);
  // The bias pattern is present in the object's header. Need to check
  // whether the bias owner and the epoch are both still current.
#ifndef _LP64
  // Note that because there is no current thread register on x86_32 we
  // need to store off the mark word we read out of the object to
  // avoid reloading it and needing to recheck invariants below. This
  // store is unfortunate but it makes the overall code shorter and
  // simpler.
  movptr(saved_mark_addr, swap_reg);
#endif
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  if (swap_reg_contains_mark) {
    null_check_offset = offset();
  }
  load_prototype_header(tmp_reg, obj_reg);
#ifdef _LP64
  orptr(tmp_reg, r15_thread);
  xorptr(tmp_reg, swap_reg);
  Register header_reg = tmp_reg;
#else
  xorptr(tmp_reg, swap_reg);
  get_thread(swap_reg);
  xorptr(swap_reg, tmp_reg);
  Register header_reg = swap_reg;
#endif
  andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->biased_lock_entry_count_addr()));
  }
  jcc(Assembler::equal, done);

  Label try_revoke_bias;
  Label try_rebias;

  // At this point we know that the header has the bias pattern and
  // that we are not the bias owner in the current epoch. We need to
  // figure out more details about the state of the header in order to
  // know what operations can be legally performed on the object's
  // header.

  // If the low three bits in the xor result aren't clear, that means
  // the prototype header is no longer biased and we have to revoke
  // the bias on this object.
  testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
  jccb(Assembler::notZero, try_revoke_bias);

  // Biasing is still enabled for this data type. See whether the
  // epoch of the current bias is still valid, meaning that the epoch
  // bits of the mark word are equal to the epoch bits of the
  // prototype header. (Note that the prototype header's epoch bits
  // only change at a safepoint.) If not, attempt to rebias the object
  // toward the current thread. Note that we must be absolutely sure
  // that the current epoch is invalid in order to do this because
  // otherwise the manipulations it performs on the mark word are
  // illegal.
  testptr(header_reg, markOopDesc::epoch_mask_in_place);
  jccb(Assembler::notZero, try_rebias);

  // The epoch of the current bias is still valid but we know nothing
  // about the owner; it might be set or it might be clear. Try to
  // acquire the bias of the object using an atomic operation. If this
  // fails we will go in to the runtime to revoke the object's bias.
  // Note that we first construct the presumed unbiased header so we
  // don't accidentally blow away another thread's valid bias.
  NOT_LP64( movptr(swap_reg, saved_mark_addr); )
  andptr(swap_reg,
         markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  if (need_tmp_reg) {
    push(tmp_reg);
  }
#ifdef _LP64
  movptr(tmp_reg, swap_reg);
  orptr(tmp_reg, r15_thread);
#else
  get_thread(tmp_reg);
  orptr(tmp_reg, swap_reg);
#endif
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);

  bind(try_rebias);
  // At this point we know the epoch has expired, meaning that the
  // current "bias owner", if any, is actually invalid. Under these
  // circumstances _only_, we are allowed to use the current header's
  // value as the comparison value when doing the cas to acquire the
  // bias in the current epoch. In other words, we allow transfer of
  // the bias from one thread to another directly in this situation.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  load_prototype_header(tmp_reg, obj_reg);
#ifdef _LP64
  orptr(tmp_reg, r15_thread);
#else
  get_thread(swap_reg);
  orptr(tmp_reg, swap_reg);
  movptr(swap_reg, saved_mark_addr);
#endif
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  // If the biasing toward our thread failed, then another thread
  // succeeded in biasing it toward itself and we need to revoke that
  // bias. The revocation will occur in the runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);

  bind(try_revoke_bias);
  // The prototype mark in the klass doesn't have the bias bit set any
  // more, indicating that objects of this data type are not supposed
  // to be biased any more. We are going to try to reset the mark of
  // this object to the prototype value and fall through to the
  // CAS-based locking scheme. Note that if our CAS fails, it means
  // that another thread raced us for the privilege of revoking the
  // bias of this particular object, so it's okay to continue in the
  // normal locking code.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  NOT_LP64( movptr(swap_reg, saved_mark_addr); )
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  load_prototype_header(tmp_reg, obj_reg);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  // Fall through to the normal CAS-based lock, because no matter what
  // the result of the above CAS, some thread must have succeeded in
  // removing the bias bit from the object's header.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  }

  bind(cas_label);

  return null_check_offset;
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  assert(UseBiasedLocking, "why call this otherwise?");

  // Check for biased locking unlock case, which is a no-op
  // Note: we do not have to check the thread ID for two reasons.
  // First, the interpreter checks for IllegalMonitorStateException at
  // a higher level. Second, if the bias was revoked while we held the
  // lock, the object could not be rebiased toward another thread, so
  // the bias bit would be clear.
  movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  jcc(Assembler::equal, done);
}

1305
#ifdef COMPILER2
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

#if INCLUDE_RTM_OPT

// Update rtm_counters based on abort status
// input: abort_status
//        rtm_counters (RTMLockingCounters*)
// flags are killed
void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {

  atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
  if (PrintPreciseRTMLockingStatistics) {
    for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
      Label check_abort;
      testl(abort_status, (1<<i));
      jccb(Assembler::equal, check_abort);
      atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
      bind(check_abort);
    }
  }
}

// Branch if (random & (count-1) != 0), count is 2^n
// tmp, scr and flags are killed
void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
  assert(tmp == rax, "");
  assert(scr == rdx, "");
  rdtsc(); // modifies EDX:EAX
  andptr(tmp, count-1);
  jccb(Assembler::notZero, brLabel);
}

// Perform abort ratio calculation, set no_rtm bit if high ratio
// input:  rtm_counters_Reg (RTMLockingCounters* address)
// tmpReg, rtm_counters_Reg and flags are killed
void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
                                                 Register rtm_counters_Reg,
                                                 RTMLockingCounters* rtm_counters,
                                                 Metadata* method_data) {
  Label L_done, L_check_always_rtm1, L_check_always_rtm2;

  if (RTMLockingCalculationDelay > 0) {
    // Delay calculation
    movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
    testptr(tmpReg, tmpReg);
    jccb(Assembler::equal, L_done);
  }
  // Abort ratio calculation only if abort_count > RTMAbortThreshold
  //   Aborted transactions = abort_count * 100
  //   All transactions = total_count *  RTMTotalCountIncrRate
  //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)

  movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
  cmpptr(tmpReg, RTMAbortThreshold);
  jccb(Assembler::below, L_check_always_rtm2);
  imulptr(tmpReg, tmpReg, 100);

  Register scrReg = rtm_counters_Reg;
  movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
  imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
  imulptr(scrReg, scrReg, RTMAbortRatio);
  cmpptr(tmpReg, scrReg);
  jccb(Assembler::below, L_check_always_rtm1);
  if (method_data != NULL) {
    // set rtm_state to "no rtm" in MDO
    mov_metadata(tmpReg, method_data);
    if (os::is_MP()) {
      lock();
    }
    orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
  }
  jmpb(L_done);
  bind(L_check_always_rtm1);
  // Reload RTMLockingCounters* address
  lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
  bind(L_check_always_rtm2);
  movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
  cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
  jccb(Assembler::below, L_done);
  if (method_data != NULL) {
    // set rtm_state to "always rtm" in MDO
    mov_metadata(tmpReg, method_data);
    if (os::is_MP()) {
      lock();
    }
    orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
  }
  bind(L_done);
}

// Update counters and perform abort ratio calculation
// input:  abort_status_Reg
// rtm_counters_Reg, flags are killed
void MacroAssembler::rtm_profiling(Register abort_status_Reg,
                                   Register rtm_counters_Reg,
                                   RTMLockingCounters* rtm_counters,
                                   Metadata* method_data,
                                   bool profile_rtm) {

  assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  // update rtm counters based on rax value at abort
  // reads abort_status_Reg, updates flags
  lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
  rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
  if (profile_rtm) {
    // Save abort status because abort_status_Reg is used by following code.
    if (RTMRetryCount > 0) {
      push(abort_status_Reg);
    }
    assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
    rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
    // restore abort status
    if (RTMRetryCount > 0) {
      pop(abort_status_Reg);
    }
  }
}

// Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
// inputs: retry_count_Reg
//       : abort_status_Reg
// output: retry_count_Reg decremented by 1
// flags are killed
void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
  Label doneRetry;
  assert(abort_status_Reg == rax, "");
  // The abort reason bits are in eax (see all states in rtmLocking.hpp)
  // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
  // if reason is in 0x6 and retry count != 0 then retry
  andptr(abort_status_Reg, 0x6);
  jccb(Assembler::zero, doneRetry);
  testl(retry_count_Reg, retry_count_Reg);
  jccb(Assembler::zero, doneRetry);
  pause();
  decrementl(retry_count_Reg);
  jmp(retryLabel);
  bind(doneRetry);
}

// Spin and retry if lock is busy,
// inputs: box_Reg (monitor address)
//       : retry_count_Reg
// output: retry_count_Reg decremented by 1
//       : clear z flag if retry count exceeded
// tmp_Reg, scr_Reg, flags are killed
void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
                                            Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
  Label SpinLoop, SpinExit, doneRetry;
  // Clean monitor_value bit to get valid pointer
  int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;

  testl(retry_count_Reg, retry_count_Reg);
  jccb(Assembler::zero, doneRetry);
  decrementl(retry_count_Reg);
  movptr(scr_Reg, RTMSpinLoopCount);

  bind(SpinLoop);
  pause();
  decrementl(scr_Reg);
  jccb(Assembler::lessEqual, SpinExit);
  movptr(tmp_Reg, Address(box_Reg, owner_offset));
  testptr(tmp_Reg, tmp_Reg);
  jccb(Assembler::notZero, SpinLoop);

  bind(SpinExit);
  jmp(retryLabel);
  bind(doneRetry);
  incrementl(retry_count_Reg); // clear z flag
}

// Use RTM for normal stack locks
// Input: objReg (object to lock)
void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
                                       Register retry_on_abort_count_Reg,
                                       RTMLockingCounters* stack_rtm_counters,
                                       Metadata* method_data, bool profile_rtm,
                                       Label& DONE_LABEL, Label& IsInflated) {
  assert(UseRTMForStackLocks, "why call this otherwise?");
  assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
  assert(tmpReg == rax, "");
  assert(scrReg == rdx, "");
  Label L_rtm_retry, L_decrement_retry, L_on_abort;

  if (RTMRetryCount > 0) {
    movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
    bind(L_rtm_retry);
  }
1492 1493 1494 1495
  movptr(tmpReg, Address(objReg, 0));
  testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
  jcc(Assembler::notZero, IsInflated);

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
    Label L_noincrement;
    if (RTMTotalCountIncrRate > 1) {
      // tmpReg, scrReg and flags are killed
      branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
    }
    assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
    atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
    bind(L_noincrement);
  }
  xbegin(L_on_abort);
  movptr(tmpReg, Address(objReg, 0));       // fetch markword
  andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
  cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
  jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked

  Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
  if (UseRTMXendForLockBusy) {
    xend();
1515
    movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    jmp(L_decrement_retry);
  }
  else {
    xabort(0);
  }
  bind(L_on_abort);
  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
    rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
  }
  bind(L_decrement_retry);
  if (RTMRetryCount > 0) {
    // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
    rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
  }
}

// Use RTM for inflating locks
// inputs: objReg (object to lock)
//         boxReg (on-stack box address (displaced header location) - KILLED)
//         tmpReg (ObjectMonitor address + 2(monitor_value))
void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
                                          Register scrReg, Register retry_on_busy_count_Reg,
                                          Register retry_on_abort_count_Reg,
                                          RTMLockingCounters* rtm_counters,
                                          Metadata* method_data, bool profile_rtm,
                                          Label& DONE_LABEL) {
  assert(UseRTMLocking, "why call this otherwise?");
  assert(tmpReg == rax, "");
  assert(scrReg == rdx, "");
  Label L_rtm_retry, L_decrement_retry, L_on_abort;
  // Clean monitor_value bit to get valid pointer
  int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;

  // Without cast to int32_t a movptr will destroy r10 which is typically obj
  movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  movptr(boxReg, tmpReg); // Save ObjectMonitor address

  if (RTMRetryCount > 0) {
    movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
    movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
    bind(L_rtm_retry);
  }
  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
    Label L_noincrement;
    if (RTMTotalCountIncrRate > 1) {
      // tmpReg, scrReg and flags are killed
      branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
    }
    assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
    atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
    bind(L_noincrement);
  }
  xbegin(L_on_abort);
  movptr(tmpReg, Address(objReg, 0));
  movptr(tmpReg, Address(tmpReg, owner_offset));
  testptr(tmpReg, tmpReg);
  jcc(Assembler::zero, DONE_LABEL);
  if (UseRTMXendForLockBusy) {
    xend();
    jmp(L_decrement_retry);
  }
  else {
    xabort(0);
  }
  bind(L_on_abort);
  Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
  if (PrintPreciseRTMLockingStatistics || profile_rtm) {
    rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
  }
  if (RTMRetryCount > 0) {
    // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
    rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
  }

  movptr(tmpReg, Address(boxReg, owner_offset)) ;
  testptr(tmpReg, tmpReg) ;
  jccb(Assembler::notZero, L_decrement_retry) ;

  // Appears unlocked - try to swing _owner from null to non-null.
  // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
#ifdef _LP64
  Register threadReg = r15_thread;
#else
  get_thread(scrReg);
  Register threadReg = scrReg;
#endif
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg

  if (RTMRetryCount > 0) {
    // success done else retry
    jccb(Assembler::equal, DONE_LABEL) ;
    bind(L_decrement_retry);
    // Spin and retry if lock is busy.
    rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
  }
  else {
    bind(L_decrement_retry);
  }
}

#endif //  INCLUDE_RTM_OPT

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
// Fast_Lock and Fast_Unlock used by C2

// Because the transitions from emitted code to the runtime
// monitorenter/exit helper stubs are so slow it's critical that
// we inline both the stack-locking fast-path and the inflated fast path.
//
// See also: cmpFastLock and cmpFastUnlock.
//
// What follows is a specialized inline transliteration of the code
// in slow_enter() and slow_exit().  If we're concerned about I$ bloat
// another option would be to emit TrySlowEnter and TrySlowExit methods
// at startup-time.  These methods would accept arguments as
// (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
// indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
// marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
// In practice, however, the # of lock sites is bounded and is usually small.
// Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
// if the processor uses simple bimodal branch predictors keyed by EIP
// Since the helper routines would be called from multiple synchronization
// sites.
//
// An even better approach would be write "MonitorEnter()" and "MonitorExit()"
// in java - using j.u.c and unsafe - and just bind the lock and unlock sites
// to those specialized methods.  That'd give us a mostly platform-independent
// implementation that the JITs could optimize and inline at their pleasure.
// Done correctly, the only time we'd need to cross to native could would be
// to park() or unpark() threads.  We'd also need a few more unsafe operators
// to (a) prevent compiler-JIT reordering of non-volatile accesses, and
// (b) explicit barriers or fence operations.
//
// TODO:
//
// *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
//    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
//    Given TLAB allocation, Self is usually manifested in a register, so passing it into
//    the lock operators would typically be faster than reifying Self.
//
// *  Ideally I'd define the primitives as:
//       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
//       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
//    Unfortunately ADLC bugs prevent us from expressing the ideal form.
//    Instead, we're stuck with a rather awkward and brittle register assignments below.
//    Furthermore the register assignments are overconstrained, possibly resulting in
//    sub-optimal code near the synchronization site.
//
// *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
//    Alternately, use a better sp-proximity test.
//
// *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
//    Either one is sufficient to uniquely identify a thread.
//    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
//
// *  Intrinsify notify() and notifyAll() for the common cases where the
//    object is locked by the calling thread but the waitlist is empty.
//    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
//
// *  use jccb and jmpb instead of jcc and jmp to improve code density.
//    But beware of excessive branch density on AMD Opterons.
//
// *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
//    or failure of the fast-path.  If the fast-path fails then we pass
//    control to the slow-path, typically in C.  In Fast_Lock and
//    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
//    will emit a conditional branch immediately after the node.
//    So we have branches to branches and lots of ICC.ZF games.
//    Instead, it might be better to have C2 pass a "FailureLabel"
//    into Fast_Lock and Fast_Unlock.  In the case of success, control
//    will drop through the node.  ICC.ZF is undefined at exit.
//    In the case of failure, the node will branch directly to the
//    FailureLabel


// obj: object to lock
// box: on-stack box address (displaced header location) - KILLED
// rax,: tmp -- KILLED
// scr: tmp -- KILLED
1697 1698 1699 1700 1701 1702 1703
void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
                               Register scrReg, Register cx1Reg, Register cx2Reg,
                               BiasedLockingCounters* counters,
                               RTMLockingCounters* rtm_counters,
                               RTMLockingCounters* stack_rtm_counters,
                               Metadata* method_data,
                               bool use_rtm, bool profile_rtm) {
1704
  // Ensure the register assignents are disjoint
1705 1706 1707 1708 1709 1710 1711 1712 1713
  assert(tmpReg == rax, "");

  if (use_rtm) {
    assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
  } else {
    assert(cx1Reg == noreg, "");
    assert(cx2Reg == noreg, "");
    assert_different_registers(objReg, boxReg, tmpReg, scrReg);
  }
1714 1715

  if (counters != NULL) {
1716
    atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
  }
  if (EmitSync & 1) {
      // set box->dhw = unused_mark (3)
      // Force all sync thru slow-path: slow_enter() and slow_exit()
      movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
      cmpptr (rsp, (int32_t)NULL_WORD);
  } else
  if (EmitSync & 2) {
      Label DONE_LABEL ;
      if (UseBiasedLocking) {
         // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
         biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
      }

      movptr(tmpReg, Address(objReg, 0));           // fetch markword
      orptr (tmpReg, 0x1);
      movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
      if (os::is_MP()) {
        lock();
      }
      cmpxchgptr(boxReg, Address(objReg, 0));       // Updates tmpReg
      jccb(Assembler::equal, DONE_LABEL);
      // Recursive locking
      subptr(tmpReg, rsp);
      andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
      movptr(Address(boxReg, 0), tmpReg);
      bind(DONE_LABEL);
  } else {
    // Possible cases that we'll encounter in fast_lock
    // ------------------------------------------------
    // * Inflated
    //    -- unlocked
    //    -- Locked
    //       = by self
    //       = by other
    // * biased
    //    -- by Self
    //    -- by other
    // * neutral
    // * stack-locked
    //    -- by self
    //       = sp-proximity test hits
    //       = sp-proximity test generates false-negative
    //    -- by other
    //

    Label IsInflated, DONE_LABEL;

    // it's stack-locked, biased or neutral
    // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
    // order to reduce the number of conditional branches in the most common cases.
    // Beware -- there's a subtle invariant that fetch of the markword
    // at [FETCH], below, will never observe a biased encoding (*101b).
    // If this invariant is not held we risk exclusion (safety) failure.
    if (UseBiasedLocking && !UseOptoBiasInlining) {
      biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, counters);
    }

1775 1776 1777 1778 1779 1780 1781 1782
#if INCLUDE_RTM_OPT
    if (UseRTMForStackLocks && use_rtm) {
      rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
                        stack_rtm_counters, method_data, profile_rtm,
                        DONE_LABEL, IsInflated);
    }
#endif // INCLUDE_RTM_OPT

1783
    movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1784 1785
    testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
    jccb(Assembler::notZero, IsInflated);
1786 1787

    // Attempt stack-locking ...
1788
    orptr (tmpReg, markOopDesc::unlocked_value);
1789 1790 1791 1792 1793 1794 1795 1796 1797
    movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
    if (os::is_MP()) {
      lock();
    }
    cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
    if (counters != NULL) {
      cond_inc32(Assembler::equal,
                 ExternalAddress((address)counters->fast_path_entry_count_addr()));
    }
1798
    jcc(Assembler::equal, DONE_LABEL);           // Success
1799

1800 1801 1802
    // Recursive locking.
    // The object is stack-locked: markword contains stack pointer to BasicLock.
    // Locked by current thread if difference with current SP is less than one page.
1803
    subptr(tmpReg, rsp);
1804
    // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1805 1806 1807 1808 1809 1810
    andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
    movptr(Address(boxReg, 0), tmpReg);
    if (counters != NULL) {
      cond_inc32(Assembler::equal,
                 ExternalAddress((address)counters->fast_path_entry_count_addr()));
    }
1811
    jmp(DONE_LABEL);
1812 1813

    bind(IsInflated);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
    // The object is inflated. tmpReg contains pointer to ObjectMonitor* + 2(monitor_value)

#if INCLUDE_RTM_OPT
    // Use the same RTM locking code in 32- and 64-bit VM.
    if (use_rtm) {
      rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
                           rtm_counters, method_data, profile_rtm, DONE_LABEL);
    } else {
#endif // INCLUDE_RTM_OPT

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
#ifndef _LP64
    // The object is inflated.
    //
    // TODO-FIXME: eliminate the ugly use of manifest constants:
    //   Use markOopDesc::monitor_value instead of "2".
    //   use markOop::unused_mark() instead of "3".
    // The tmpReg value is an objectMonitor reference ORed with
    // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
    // objectmonitor pointer by masking off the "2" bit or we can just
    // use tmpReg as an objectmonitor pointer but bias the objectmonitor
    // field offsets with "-2" to compensate for and annul the low-order tag bit.
    //
    // I use the latter as it avoids AGI stalls.
    // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
    // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
    //
    #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)

    // boxReg refers to the on-stack BasicLock in the current frame.
    // We'd like to write:
    //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
    // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
    // additional latency as we have another ST in the store buffer that must drain.

    if (EmitSync & 8192) {
       movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
       get_thread (scrReg);
       movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
       movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
       if (os::is_MP()) {
         lock();
       }
       cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
    } else
    if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
       movptr(scrReg, boxReg);
       movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]

       // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
       if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
          // prefetchw [eax + Offset(_owner)-2]
          prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
       }

       if ((EmitSync & 64) == 0) {
         // Optimistic form: consider XORL tmpReg,tmpReg
         movptr(tmpReg, NULL_WORD);
       } else {
         // Can suffer RTS->RTO upgrades on shared or cold $ lines
         // Test-And-CAS instead of CAS
         movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
         testptr(tmpReg, tmpReg);                   // Locked ?
         jccb  (Assembler::notZero, DONE_LABEL);
       }

       // Appears unlocked - try to swing _owner from null to non-null.
       // Ideally, I'd manifest "Self" with get_thread and then attempt
       // to CAS the register containing Self into m->Owner.
       // But we don't have enough registers, so instead we can either try to CAS
       // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
       // we later store "Self" into m->Owner.  Transiently storing a stack address
       // (rsp or the address of the box) into  m->owner is harmless.
       // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
       if (os::is_MP()) {
         lock();
       }
       cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
       movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
       jccb  (Assembler::notZero, DONE_LABEL);
       get_thread (scrReg);                    // beware: clobbers ICCs
       movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg);
       xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success

       // If the CAS fails we can either retry or pass control to the slow-path.
       // We use the latter tactic.
       // Pass the CAS result in the icc.ZFlag into DONE_LABEL
       // If the CAS was successful ...
       //   Self has acquired the lock
       //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
       // Intentional fall-through into DONE_LABEL ...
    } else {
       movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
       movptr(boxReg, tmpReg);

       // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
       if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
          // prefetchw [eax + Offset(_owner)-2]
          prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
       }

       if ((EmitSync & 64) == 0) {
         // Optimistic form
         xorptr  (tmpReg, tmpReg);
       } else {
         // Can suffer RTS->RTO upgrades on shared or cold $ lines
         movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
         testptr(tmpReg, tmpReg);                   // Locked ?
         jccb  (Assembler::notZero, DONE_LABEL);
       }

       // Appears unlocked - try to swing _owner from null to non-null.
       // Use either "Self" (in scr) or rsp as thread identity in _owner.
       // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
       get_thread (scrReg);
       if (os::is_MP()) {
         lock();
       }
       cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));

       // If the CAS fails we can either retry or pass control to the slow-path.
       // We use the latter tactic.
       // Pass the CAS result in the icc.ZFlag into DONE_LABEL
       // If the CAS was successful ...
       //   Self has acquired the lock
       //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
       // Intentional fall-through into DONE_LABEL ...
    }
#else // _LP64
    // It's inflated

    // TODO: someday avoid the ST-before-CAS penalty by
    // relocating (deferring) the following ST.
    // We should also think about trying a CAS without having
    // fetched _owner.  If the CAS is successful we may
    // avoid an RTO->RTS upgrade on the $line.

    // Without cast to int32_t a movptr will destroy r10 which is typically obj
    movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));

1953
    movptr (boxReg, tmpReg);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    movptr (tmpReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
    testptr(tmpReg, tmpReg);
    jccb   (Assembler::notZero, DONE_LABEL);

    // It's inflated and appears unlocked
    if (os::is_MP()) {
      lock();
    }
    cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
    // Intentional fall-through into DONE_LABEL ...
1964
#endif // _LP64
1965

1966 1967
#if INCLUDE_RTM_OPT
    } // use_rtm()
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
#endif
    // DONE_LABEL is a hot target - we'd really like to place it at the
    // start of cache line by padding with NOPs.
    // See the AMD and Intel software optimization manuals for the
    // most efficient "long" NOP encodings.
    // Unfortunately none of our alignment mechanisms suffice.
    bind(DONE_LABEL);

    // At DONE_LABEL the icc ZFlag is set as follows ...
    // Fast_Unlock uses the same protocol.
    // ZFlag == 1 -> Success
    // ZFlag == 0 -> Failure - force control through the slow-path
  }
}

// obj: object to unlock
// box: box address (displaced header location), killed.  Must be EAX.
// tmp: killed, cannot be obj nor box.
//
// Some commentary on balanced locking:
//
// Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
// Methods that don't have provably balanced locking are forced to run in the
// interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
// The interpreter provides two properties:
// I1:  At return-time the interpreter automatically and quietly unlocks any
//      objects acquired the current activation (frame).  Recall that the
//      interpreter maintains an on-stack list of locks currently held by
//      a frame.
// I2:  If a method attempts to unlock an object that is not held by the
//      the frame the interpreter throws IMSX.
//
// Lets say A(), which has provably balanced locking, acquires O and then calls B().
// B() doesn't have provably balanced locking so it runs in the interpreter.
// Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
// is still locked by A().
//
// The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
// Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
// should not be unlocked by "normal" java-level locking and vice-versa.  The specification
// doesn't specify what will occur if a program engages in such mixed-mode locking, however.

2010 2011 2012
void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
  assert(boxReg == rax, "");
  assert_different_registers(objReg, boxReg, tmpReg);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

  if (EmitSync & 4) {
    // Disable - inhibit all inlining.  Force control through the slow-path
    cmpptr (rsp, 0);
  } else
  if (EmitSync & 8) {
    Label DONE_LABEL;
    if (UseBiasedLocking) {
       biased_locking_exit(objReg, tmpReg, DONE_LABEL);
    }
    // Classic stack-locking code ...
    // Check whether the displaced header is 0
    //(=> recursive unlock)
    movptr(tmpReg, Address(boxReg, 0));
    testptr(tmpReg, tmpReg);
    jccb(Assembler::zero, DONE_LABEL);
    // If not recursive lock, reset the header to displaced header
    if (os::is_MP()) {
      lock();
    }
    cmpxchgptr(tmpReg, Address(objReg, 0));   // Uses RAX which is box
    bind(DONE_LABEL);
  } else {
    Label DONE_LABEL, Stacked, CheckSucc;

    // Critically, the biased locking test must have precedence over
    // and appear before the (box->dhw == 0) recursive stack-lock test.
    if (UseBiasedLocking && !UseOptoBiasInlining) {
       biased_locking_exit(objReg, tmpReg, DONE_LABEL);
    }

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
#if INCLUDE_RTM_OPT
    if (UseRTMForStackLocks && use_rtm) {
      assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
      Label L_regular_unlock;
      movptr(tmpReg, Address(objReg, 0));           // fetch markword
      andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
      cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
      jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
      xend();                                       // otherwise end...
      jmp(DONE_LABEL);                              // ... and we're done
      bind(L_regular_unlock);
    }
#endif

2058
    cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2059
    jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2060
    movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2061
    testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2062 2063 2064
    jccb  (Assembler::zero, Stacked);

    // It's inflated.
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
#if INCLUDE_RTM_OPT
    if (use_rtm) {
      Label L_regular_inflated_unlock;
      // Clean monitor_value bit to get valid pointer
      int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
      movptr(boxReg, Address(tmpReg, owner_offset));
      testptr(boxReg, boxReg);
      jccb(Assembler::notZero, L_regular_inflated_unlock);
      xend();
      jmpb(DONE_LABEL);
      bind(L_regular_inflated_unlock);
    }
#endif

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
    // Despite our balanced locking property we still check that m->_owner == Self
    // as java routines or native JNI code called by this thread might
    // have released the lock.
    // Refer to the comments in synchronizer.cpp for how we might encode extra
    // state in _succ so we can avoid fetching EntryList|cxq.
    //
    // I'd like to add more cases in fast_lock() and fast_unlock() --
    // such as recursive enter and exit -- but we have to be wary of
    // I$ bloat, T$ effects and BP$ effects.
    //
    // If there's no contention try a 1-0 exit.  That is, exit without
    // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
    // we detect and recover from the race that the 1-0 exit admits.
    //
    // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
    // before it STs null into _owner, releasing the lock.  Updates
    // to data protected by the critical section must be visible before
    // we drop the lock (and thus before any other thread could acquire
    // the lock and observe the fields protected by the lock).
    // IA32's memory-model is SPO, so STs are ordered with respect to
    // each other and there's no need for an explicit barrier (fence).
    // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
#ifndef _LP64
    get_thread (boxReg);
    if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
      // prefetchw [ebx + Offset(_owner)-2]
      prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
    }

    // Note that we could employ various encoding schemes to reduce
    // the number of loads below (currently 4) to just 2 or 3.
    // Refer to the comments in synchronizer.cpp.
    // In practice the chain of fetches doesn't seem to impact performance, however.
    if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
       // Attempt to reduce branch density - AMD's branch predictor.
       xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
       orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
       orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
       orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
       jccb  (Assembler::notZero, DONE_LABEL);
       movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
       jmpb  (DONE_LABEL);
    } else {
       xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
       orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
       jccb  (Assembler::notZero, DONE_LABEL);
       movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
       orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
       jccb  (Assembler::notZero, CheckSucc);
       movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
       jmpb  (DONE_LABEL);
    }

    // The Following code fragment (EmitSync & 65536) improves the performance of
    // contended applications and contended synchronization microbenchmarks.
    // Unfortunately the emission of the code - even though not executed - causes regressions
    // in scimark and jetstream, evidently because of $ effects.  Replacing the code
    // with an equal number of never-executed NOPs results in the same regression.
    // We leave it off by default.

    if ((EmitSync & 65536) != 0) {
       Label LSuccess, LGoSlowPath ;

       bind  (CheckSucc);

       // Optional pre-test ... it's safe to elide this
       if ((EmitSync & 16) == 0) {
          cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
          jccb  (Assembler::zero, LGoSlowPath);
       }

       // We have a classic Dekker-style idiom:
       //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
       // There are a number of ways to implement the barrier:
       // (1) lock:andl &m->_owner, 0
       //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
       //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
       //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
       // (2) If supported, an explicit MFENCE is appealing.
       //     In older IA32 processors MFENCE is slower than lock:add or xchg
       //     particularly if the write-buffer is full as might be the case if
       //     if stores closely precede the fence or fence-equivalent instruction.
       //     In more modern implementations MFENCE appears faster, however.
       // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
       //     The $lines underlying the top-of-stack should be in M-state.
       //     The locked add instruction is serializing, of course.
       // (4) Use xchg, which is serializing
       //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
       // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
       //     The integer condition codes will tell us if succ was 0.
       //     Since _succ and _owner should reside in the same $line and
       //     we just stored into _owner, it's likely that the $line
       //     remains in M-state for the lock:orl.
       //
       // We currently use (3), although it's likely that switching to (2)
       // is correct for the future.

       movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
       if (os::is_MP()) {
          if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
            mfence();
          } else {
            lock (); addptr(Address(rsp, 0), 0);
          }
       }
       // Ratify _succ remains non-null
       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0);
       jccb  (Assembler::notZero, LSuccess);

       xorptr(boxReg, boxReg);                  // box is really EAX
       if (os::is_MP()) { lock(); }
       cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
       jccb  (Assembler::notEqual, LSuccess);
       // Since we're low on registers we installed rsp as a placeholding in _owner.
       // Now install Self over rsp.  This is safe as we're transitioning from
       // non-null to non=null
       get_thread (boxReg);
       movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg);
       // Intentional fall-through into LGoSlowPath ...

       bind  (LGoSlowPath);
       orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
       jmpb  (DONE_LABEL);

       bind  (LSuccess);
       xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
       jmpb  (DONE_LABEL);
    }

    bind (Stacked);
    // It's not inflated and it's not recursively stack-locked and it's not biased.
    // It must be stack-locked.
    // Try to reset the header to displaced header.
    // The "box" value on the stack is stable, so we can reload
    // and be assured we observe the same value as above.
    movptr(tmpReg, Address(boxReg, 0));
    if (os::is_MP()) {
      lock();
    }
    cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
    // Intention fall-thru into DONE_LABEL

    // DONE_LABEL is a hot target - we'd really like to place it at the
    // start of cache line by padding with NOPs.
    // See the AMD and Intel software optimization manuals for the
    // most efficient "long" NOP encodings.
    // Unfortunately none of our alignment mechanisms suffice.
    if ((EmitSync & 65536) == 0) {
       bind (CheckSucc);
    }
#else // _LP64
    // It's inflated
    movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
    xorptr(boxReg, r15_thread);
    orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
    jccb  (Assembler::notZero, DONE_LABEL);
    movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
    orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
    jccb  (Assembler::notZero, CheckSucc);
    movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
    jmpb  (DONE_LABEL);

    if ((EmitSync & 65536) == 0) {
      Label LSuccess, LGoSlowPath ;
      bind  (CheckSucc);
      cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
      jccb  (Assembler::zero, LGoSlowPath);

      // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
      // the explicit ST;MEMBAR combination, but masm doesn't currently support
      // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
      // are all faster when the write buffer is populated.
      movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
      if (os::is_MP()) {
         lock (); addl (Address(rsp, 0), 0);
      }
      cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
      jccb  (Assembler::notZero, LSuccess);

      movptr (boxReg, (int32_t)NULL_WORD);                   // box is really EAX
      if (os::is_MP()) { lock(); }
      cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
      jccb  (Assembler::notEqual, LSuccess);
      // Intentional fall-through into slow-path

      bind  (LGoSlowPath);
      orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
      jmpb  (DONE_LABEL);

      bind  (LSuccess);
      testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
      jmpb  (DONE_LABEL);
    }

    bind  (Stacked);
    movptr(tmpReg, Address (boxReg, 0));      // re-fetch
    if (os::is_MP()) { lock(); }
    cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box

    if (EmitSync & 65536) {
       bind (CheckSucc);
    }
#endif
    bind(DONE_LABEL);
    // Avoid branch to branch on AMD processors
    if (EmitSync & 32768) {
       nop();
    }
  }
}
#endif // COMPILER2

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
void MacroAssembler::c2bool(Register x) {
  // implements x == 0 ? 0 : 1
  // note: must only look at least-significant byte of x
  //       since C-style booleans are stored in one byte
  //       only! (was bug)
  andl(x, 0xFF);
  setb(Assembler::notZero, x);
}

// Wouldn't need if AddressLiteral version had new name
void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  Assembler::call(L, rtype);
}

void MacroAssembler::call(Register entry) {
  Assembler::call(entry);
}

void MacroAssembler::call(AddressLiteral entry) {
  if (reachable(entry)) {
    Assembler::call_literal(entry.target(), entry.rspec());
  } else {
    lea(rscratch1, entry);
    Assembler::call(rscratch1);
  }
}

void MacroAssembler::ic_call(address entry) {
  RelocationHolder rh = virtual_call_Relocation::spec(pc());
  movptr(rax, (intptr_t)Universe::non_oop_word());
  call(AddressLiteral(entry, rh));
}

// Implementation of call_VM versions

void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);

  bind(C);
  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  ret(0);

  bind(E);
}

void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             Register arg_1,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);

  bind(C);
  pass_arg1(this, arg_1);
  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  ret(0);

  bind(E);
}

void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);

  bind(C);

  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));

  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  ret(0);

  bind(E);
}

void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             Register arg_3,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);

  bind(C);

  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  pass_arg3(this, arg_3);

  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);

  pass_arg1(this, arg_1);
  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  ret(0);

  bind(E);
}

void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             int number_of_arguments,
                             bool check_exceptions) {
  Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}

void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             Register arg_1,
                             bool check_exceptions) {
  pass_arg1(this, arg_1);
  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}

void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             bool check_exceptions) {

  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}

void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             Register arg_3,
                             bool check_exceptions) {
  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  pass_arg3(this, arg_3);
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}

void MacroAssembler::super_call_VM(Register oop_result,
                                   Register last_java_sp,
                                   address entry_point,
                                   int number_of_arguments,
                                   bool check_exceptions) {
  Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}

void MacroAssembler::super_call_VM(Register oop_result,
                                   Register last_java_sp,
                                   address entry_point,
                                   Register arg_1,
                                   bool check_exceptions) {
  pass_arg1(this, arg_1);
  super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}

void MacroAssembler::super_call_VM(Register oop_result,
                                   Register last_java_sp,
                                   address entry_point,
                                   Register arg_1,
                                   Register arg_2,
                                   bool check_exceptions) {

  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}

void MacroAssembler::super_call_VM(Register oop_result,
                                   Register last_java_sp,
                                   address entry_point,
                                   Register arg_1,
                                   Register arg_2,
                                   Register arg_3,
                                   bool check_exceptions) {
  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  pass_arg3(this, arg_3);
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}

void MacroAssembler::call_VM_base(Register oop_result,
                                  Register java_thread,
                                  Register last_java_sp,
                                  address  entry_point,
                                  int      number_of_arguments,
                                  bool     check_exceptions) {
  // determine java_thread register
  if (!java_thread->is_valid()) {
#ifdef _LP64
    java_thread = r15_thread;
#else
    java_thread = rdi;
    get_thread(java_thread);
#endif // LP64
  }
  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = rsp;
  }
  // debugging support
  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
#ifdef ASSERT
  // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  // r12 is the heapbase.
2522
  LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
#endif // ASSERT

  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");

  // push java thread (becomes first argument of C function)

  NOT_LP64(push(java_thread); number_of_arguments++);
  LP64_ONLY(mov(c_rarg0, r15_thread));

  // set last Java frame before call
  assert(last_java_sp != rbp, "can't use ebp/rbp");

  // Only interpreter should have to set fp
  set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);

  // do the call, remove parameters
  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);

  // restore the thread (cannot use the pushed argument since arguments
  // may be overwritten by C code generated by an optimizing compiler);
  // however can use the register value directly if it is callee saved.
  if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
    // rdi & rsi (also r15) are callee saved -> nothing to do
#ifdef ASSERT
    guarantee(java_thread != rax, "change this code");
    push(rax);
    { Label L;
      get_thread(rax);
      cmpptr(java_thread, rax);
      jcc(Assembler::equal, L);
      STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
      bind(L);
    }
    pop(rax);
#endif
  } else {
    get_thread(java_thread);
  }
  // reset last Java frame
  // Only interpreter should have to clear fp
  reset_last_Java_frame(java_thread, true, false);

#ifndef CC_INTERP
   // C++ interp handles this in the interpreter
  check_and_handle_popframe(java_thread);
  check_and_handle_earlyret(java_thread);
#endif /* CC_INTERP */

  if (check_exceptions) {
    // check for pending exceptions (java_thread is set upon return)
    cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
#ifndef _LP64
    jump_cc(Assembler::notEqual,
            RuntimeAddress(StubRoutines::forward_exception_entry()));
#else
    // This used to conditionally jump to forward_exception however it is
    // possible if we relocate that the branch will not reach. So we must jump
    // around so we can always reach

    Label ok;
    jcc(Assembler::equal, ok);
    jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
    bind(ok);
#endif // LP64
  }

  // get oop result if there is one and reset the value in the thread
  if (oop_result->is_valid()) {
    get_vm_result(oop_result, java_thread);
  }
}

void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {

  // Calculate the value for last_Java_sp
  // somewhat subtle. call_VM does an intermediate call
  // which places a return address on the stack just under the
  // stack pointer as the user finsihed with it. This allows
  // use to retrieve last_Java_pc from last_Java_sp[-1].
  // On 32bit we then have to push additional args on the stack to accomplish
  // the actual requested call. On 64bit call_VM only can use register args
  // so the only extra space is the return address that call_VM created.
  // This hopefully explains the calculations here.

#ifdef _LP64
  // We've pushed one address, correct last_Java_sp
  lea(rax, Address(rsp, wordSize));
#else
  lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
#endif // LP64

  call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);

}

void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  call_VM_leaf_base(entry_point, number_of_arguments);
}

void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  pass_arg0(this, arg_0);
  call_VM_leaf(entry_point, 1);
}

void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {

  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  pass_arg1(this, arg_1);
  pass_arg0(this, arg_0);
  call_VM_leaf(entry_point, 2);
}

void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  pass_arg1(this, arg_1);
  pass_arg0(this, arg_0);
  call_VM_leaf(entry_point, 3);
}

void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  pass_arg0(this, arg_0);
  MacroAssembler::call_VM_leaf_base(entry_point, 1);
}

void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {

  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  pass_arg1(this, arg_1);
  pass_arg0(this, arg_0);
  MacroAssembler::call_VM_leaf_base(entry_point, 2);
}

void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  pass_arg1(this, arg_1);
  pass_arg0(this, arg_0);
  MacroAssembler::call_VM_leaf_base(entry_point, 3);
}

void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  pass_arg3(this, arg_3);
  LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  pass_arg1(this, arg_1);
  pass_arg0(this, arg_0);
  MacroAssembler::call_VM_leaf_base(entry_point, 4);
}

void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  verify_oop(oop_result, "broken oop in call_VM_base");
}

void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
}

void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
}

void MacroAssembler::check_and_handle_popframe(Register java_thread) {
}

void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  if (reachable(src1)) {
    cmpl(as_Address(src1), imm);
  } else {
    lea(rscratch1, src1);
    cmpl(Address(rscratch1, 0), imm);
  }
}

void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  assert(!src2.is_lval(), "use cmpptr");
  if (reachable(src2)) {
    cmpl(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    cmpl(src1, Address(rscratch1, 0));
  }
}

void MacroAssembler::cmp32(Register src1, int32_t imm) {
  Assembler::cmpl(src1, imm);
}

void MacroAssembler::cmp32(Register src1, Address src2) {
  Assembler::cmpl(src1, src2);
}

void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  ucomisd(opr1, opr2);

  Label L;
  if (unordered_is_less) {
    movl(dst, -1);
    jcc(Assembler::parity, L);
    jcc(Assembler::below , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    increment(dst);
  } else { // unordered is greater
    movl(dst, 1);
    jcc(Assembler::parity, L);
    jcc(Assembler::above , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    decrementl(dst);
  }
  bind(L);
}

void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  ucomiss(opr1, opr2);

  Label L;
  if (unordered_is_less) {
    movl(dst, -1);
    jcc(Assembler::parity, L);
    jcc(Assembler::below , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    increment(dst);
  } else { // unordered is greater
    movl(dst, 1);
    jcc(Assembler::parity, L);
    jcc(Assembler::above , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    decrementl(dst);
  }
  bind(L);
}


void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  if (reachable(src1)) {
    cmpb(as_Address(src1), imm);
  } else {
    lea(rscratch1, src1);
    cmpb(Address(rscratch1, 0), imm);
  }
}

void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
#ifdef _LP64
  if (src2.is_lval()) {
    movptr(rscratch1, src2);
    Assembler::cmpq(src1, rscratch1);
  } else if (reachable(src2)) {
    cmpq(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    Assembler::cmpq(src1, Address(rscratch1, 0));
  }
#else
  if (src2.is_lval()) {
    cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  } else {
    cmpl(src1, as_Address(src2));
  }
#endif // _LP64
}

void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  assert(src2.is_lval(), "not a mem-mem compare");
#ifdef _LP64
  // moves src2's literal address
  movptr(rscratch1, src2);
  Assembler::cmpq(src1, rscratch1);
#else
  cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
#endif // _LP64
}

void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  if (reachable(adr)) {
    if (os::is_MP())
      lock();
    cmpxchgptr(reg, as_Address(adr));
  } else {
    lea(rscratch1, adr);
    if (os::is_MP())
      lock();
    cmpxchgptr(reg, Address(rscratch1, 0));
  }
}

void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
}

void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::comisd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::comisd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::comiss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::comiss(dst, Address(rscratch1, 0));
  }
}


void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  Condition negated_cond = negate_condition(cond);
  Label L;
  jcc(negated_cond, L);
2852
  pushf(); // Preserve flags
2853
  atomic_incl(counter_addr);
2854
  popf();
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
  bind(L);
}

int MacroAssembler::corrected_idivl(Register reg) {
  // Full implementation of Java idiv and irem; checks for
  // special case as described in JVM spec., p.243 & p.271.
  // The function returns the (pc) offset of the idivl
  // instruction - may be needed for implicit exceptions.
  //
  //         normal case                           special case
  //
  // input : rax,: dividend                         min_int
  //         reg: divisor   (may not be rax,/rdx)   -1
  //
  // output: rax,: quotient  (= rax, idiv reg)       min_int
  //         rdx: remainder (= rax, irem reg)       0
  assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  const int min_int = 0x80000000;
  Label normal_case, special_case;

  // check for special case
  cmpl(rax, min_int);
  jcc(Assembler::notEqual, normal_case);
  xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  cmpl(reg, -1);
  jcc(Assembler::equal, special_case);

  // handle normal case
  bind(normal_case);
  cdql();
  int idivl_offset = offset();
  idivl(reg);

  // normal and special case exit
  bind(special_case);

  return idivl_offset;
}



void MacroAssembler::decrementl(Register reg, int value) {
  if (value == min_jint) {subl(reg, value) ; return; }
  if (value <  0) { incrementl(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decl(reg) ; return; }
  /* else */      { subl(reg, value)       ; return; }
}

void MacroAssembler::decrementl(Address dst, int value) {
  if (value == min_jint) {subl(dst, value) ; return; }
  if (value <  0) { incrementl(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decl(dst) ; return; }
  /* else */      { subl(dst, value)       ; return; }
}

void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  assert (shift_value > 0, "illegal shift value");
  Label _is_positive;
  testl (reg, reg);
  jcc (Assembler::positive, _is_positive);
  int offset = (1 << shift_value) - 1 ;

  if (offset == 1) {
    incrementl(reg);
  } else {
    addl(reg, offset);
  }

  bind (_is_positive);
  sarl(reg, shift_value);
}

void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::divsd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::divsd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::divss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::divss(dst, Address(rscratch1, 0));
  }
}

// !defined(COMPILER2) is because of stupid core builds
#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
void MacroAssembler::empty_FPU_stack() {
  if (VM_Version::supports_mmx()) {
    emms();
  } else {
    for (int i = 8; i-- > 0; ) ffree(i);
  }
}
#endif // !LP64 || C1 || !C2


// Defines obj, preserves var_size_in_bytes
void MacroAssembler::eden_allocate(Register obj,
                                   Register var_size_in_bytes,
                                   int con_size_in_bytes,
                                   Register t1,
                                   Label& slow_case) {
  assert(obj == rax, "obj must be in rax, for cmpxchg");
  assert_different_registers(obj, var_size_in_bytes, t1);
  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
    jmp(slow_case);
  } else {
    Register end = t1;
    Label retry;
    bind(retry);
    ExternalAddress heap_top((address) Universe::heap()->top_addr());
    movptr(obj, heap_top);
    if (var_size_in_bytes == noreg) {
      lea(end, Address(obj, con_size_in_bytes));
    } else {
      lea(end, Address(obj, var_size_in_bytes, Address::times_1));
    }
    // if end < obj then we wrapped around => object too long => slow case
    cmpptr(end, obj);
    jcc(Assembler::below, slow_case);
    cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
    jcc(Assembler::above, slow_case);
    // Compare obj with the top addr, and if still equal, store the new top addr in
    // end at the address of the top addr pointer. Sets ZF if was equal, and clears
    // it otherwise. Use lock prefix for atomicity on MPs.
    locked_cmpxchgptr(end, heap_top);
    jcc(Assembler::notEqual, retry);
  }
}

void MacroAssembler::enter() {
  push(rbp);
  mov(rbp, rsp);
}

// A 5 byte nop that is safe for patching (see patch_verified_entry)
void MacroAssembler::fat_nop() {
  if (UseAddressNop) {
    addr_nop_5();
  } else {
3003 3004 3005 3006 3007
    emit_int8(0x26); // es:
    emit_int8(0x2e); // cs:
    emit_int8(0x64); // fs:
    emit_int8(0x65); // gs:
    emit_int8((unsigned char)0x90);
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
  }
}

void MacroAssembler::fcmp(Register tmp) {
  fcmp(tmp, 1, true, true);
}

void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  assert(!pop_right || pop_left, "usage error");
  if (VM_Version::supports_cmov()) {
    assert(tmp == noreg, "unneeded temp");
    if (pop_left) {
      fucomip(index);
    } else {
      fucomi(index);
    }
    if (pop_right) {
      fpop();
    }
  } else {
    assert(tmp != noreg, "need temp");
    if (pop_left) {
      if (pop_right) {
        fcompp();
      } else {
        fcomp(index);
      }
    } else {
      fcom(index);
    }
    // convert FPU condition into eflags condition via rax,
    save_rax(tmp);
    fwait(); fnstsw_ax();
    sahf();
    restore_rax(tmp);
  }
  // condition codes set as follows:
  //
  // CF (corresponds to C0) if x < y
  // PF (corresponds to C2) if unordered
  // ZF (corresponds to C3) if x = y
}

void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  fcmp2int(dst, unordered_is_less, 1, true, true);
}

void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  Label L;
  if (unordered_is_less) {
    movl(dst, -1);
    jcc(Assembler::parity, L);
    jcc(Assembler::below , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    increment(dst);
  } else { // unordered is greater
    movl(dst, 1);
    jcc(Assembler::parity, L);
    jcc(Assembler::above , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    decrementl(dst);
  }
  bind(L);
}

void MacroAssembler::fld_d(AddressLiteral src) {
  fld_d(as_Address(src));
}

void MacroAssembler::fld_s(AddressLiteral src) {
  fld_s(as_Address(src));
}

void MacroAssembler::fld_x(AddressLiteral src) {
  Assembler::fld_x(as_Address(src));
}

void MacroAssembler::fldcw(AddressLiteral src) {
  Assembler::fldcw(as_Address(src));
}

void MacroAssembler::pow_exp_core_encoding() {
  // kills rax, rcx, rdx
  subptr(rsp,sizeof(jdouble));
  // computes 2^X. Stack: X ...
  // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  // keep it on the thread's stack to compute 2^int(X) later
  // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  fld_s(0);                 // Stack: X X ...
  frndint();                // Stack: int(X) X ...
  fsuba(1);                 // Stack: int(X) X-int(X) ...
  fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  faddp(1);                 // Stack: 2^(X-int(X))
  // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  // shift int(X)+1023 to exponent position.
  // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  // values so detect them and set result to NaN.
  movl(rax,Address(rsp,0));
  movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  addl(rax, 1023);
  movl(rdx,rax);
  shll(rax,20);
  // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  addl(rdx,1);
  // Check that 1 < int(X)+1023+1 < 2048
  // in 3 steps:
  // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  // 2- (int(X)+1023+1)&-2048 != 0
  // 3- (int(X)+1023+1)&-2048 != 1
  // Do 2- first because addl just updated the flags.
  cmov32(Assembler::equal,rax,rcx);
  cmpl(rdx,1);
  cmov32(Assembler::equal,rax,rcx);
  testl(rdx,rcx);
  cmov32(Assembler::notEqual,rax,rcx);
  movl(Address(rsp,4),rax);
  movl(Address(rsp,0),0);
  fmul_d(Address(rsp,0));   // Stack: 2^X ...
  addptr(rsp,sizeof(jdouble));
}

void MacroAssembler::increase_precision() {
  subptr(rsp, BytesPerWord);
  fnstcw(Address(rsp, 0));
  movl(rax, Address(rsp, 0));
  orl(rax, 0x300);
  push(rax);
  fldcw(Address(rsp, 0));
  pop(rax);
}

void MacroAssembler::restore_precision() {
  fldcw(Address(rsp, 0));
  addptr(rsp, BytesPerWord);
}

void MacroAssembler::fast_pow() {
  // computes X^Y = 2^(Y * log2(X))
  // if fast computation is not possible, result is NaN. Requires
  // fallback from user of this macro.
  // increase precision for intermediate steps of the computation
3156
  BLOCK_COMMENT("fast_pow {");
3157 3158 3159 3160
  increase_precision();
  fyl2x();                 // Stack: (Y*log2(X)) ...
  pow_exp_core_encoding(); // Stack: exp(X) ...
  restore_precision();
3161
  BLOCK_COMMENT("} fast_pow");
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
}

void MacroAssembler::fast_exp() {
  // computes exp(X) = 2^(X * log2(e))
  // if fast computation is not possible, result is NaN. Requires
  // fallback from user of this macro.
  // increase precision for intermediate steps of the computation
  increase_precision();
  fldl2e();                // Stack: log2(e) X ...
  fmulp(1);                // Stack: (X*log2(e)) ...
  pow_exp_core_encoding(); // Stack: exp(X) ...
  restore_precision();
}

void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  // kills rax, rcx, rdx
  // pow and exp needs 2 extra registers on the fpu stack.
  Label slow_case, done;
  Register tmp = noreg;
  if (!VM_Version::supports_cmov()) {
    // fcmp needs a temporary so preserve rdx,
    tmp = rdx;
  }
  Register tmp2 = rax;
  Register tmp3 = rcx;

  if (is_exp) {
    // Stack: X
    fld_s(0);                   // duplicate argument for runtime call. Stack: X X
    fast_exp();                 // Stack: exp(X) X
    fcmp(tmp, 0, false, false); // Stack: exp(X) X
    // exp(X) not equal to itself: exp(X) is NaN go to slow case.
    jcc(Assembler::parity, slow_case);
    // get rid of duplicate argument. Stack: exp(X)
    if (num_fpu_regs_in_use > 0) {
      fxch();
      fpop();
    } else {
      ffree(1);
    }
    jmp(done);
  } else {
    // Stack: X Y
    Label x_negative, y_odd;

    fldz();                     // Stack: 0 X Y
    fcmp(tmp, 1, true, false);  // Stack: X Y
    jcc(Assembler::above, x_negative);

    // X >= 0

    fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
    fld_s(1);                   // Stack: X Y X Y
    fast_pow();                 // Stack: X^Y X Y
    fcmp(tmp, 0, false, false); // Stack: X^Y X Y
    // X^Y not equal to itself: X^Y is NaN go to slow case.
    jcc(Assembler::parity, slow_case);
    // get rid of duplicate arguments. Stack: X^Y
    if (num_fpu_regs_in_use > 0) {
      fxch(); fpop();
      fxch(); fpop();
    } else {
      ffree(2);
      ffree(1);
    }
    jmp(done);

    // X <= 0
    bind(x_negative);

    fld_s(1);                   // Stack: Y X Y
    frndint();                  // Stack: int(Y) X Y
    fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
    jcc(Assembler::notEqual, slow_case);

    subptr(rsp, 8);

    // For X^Y, when X < 0, Y has to be an integer and the final
    // result depends on whether it's odd or even. We just checked
    // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
    // integer to test its parity. If int(Y) is huge and doesn't fit
    // in the 64 bit integer range, the integer indefinite value will
    // end up in the gp registers. Huge numbers are all even, the
    // integer indefinite number is even so it's fine.

#ifdef ASSERT
    // Let's check we don't end up with an integer indefinite number
    // when not expected. First test for huge numbers: check whether
    // int(Y)+1 == int(Y) which is true for very large numbers and
    // those are all even. A 64 bit integer is guaranteed to not
    // overflow for numbers where y+1 != y (when precision is set to
    // double precision).
    Label y_not_huge;

    fld1();                     // Stack: 1 int(Y) X Y
    fadd(1);                    // Stack: 1+int(Y) int(Y) X Y

#ifdef _LP64
    // trip to memory to force the precision down from double extended
    // precision
    fstp_d(Address(rsp, 0));
    fld_d(Address(rsp, 0));
#endif

    fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
#endif

    // move int(Y) as 64 bit integer to thread's stack
    fistp_d(Address(rsp,0));    // Stack: X Y

#ifdef ASSERT
    jcc(Assembler::notEqual, y_not_huge);

    // Y is huge so we know it's even. It may not fit in a 64 bit
    // integer and we don't want the debug code below to see the
    // integer indefinite value so overwrite int(Y) on the thread's
    // stack with 0.
    movl(Address(rsp, 0), 0);
    movl(Address(rsp, 4), 0);

    bind(y_not_huge);
#endif

    fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
    fld_s(1);                   // Stack: X Y X Y
    fabs();                     // Stack: abs(X) Y X Y
    fast_pow();                 // Stack: abs(X)^Y X Y
    fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
    // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.

    pop(tmp2);
    NOT_LP64(pop(tmp3));
    jcc(Assembler::parity, slow_case);

#ifdef ASSERT
    // Check that int(Y) is not integer indefinite value (int
    // overflow). Shouldn't happen because for values that would
    // overflow, 1+int(Y)==Y which was tested earlier.
#ifndef _LP64
    {
      Label integer;
      testl(tmp2, tmp2);
      jcc(Assembler::notZero, integer);
      cmpl(tmp3, 0x80000000);
      jcc(Assembler::notZero, integer);
      STOP("integer indefinite value shouldn't be seen here");
      bind(integer);
    }
#else
    {
      Label integer;
      mov(tmp3, tmp2); // preserve tmp2 for parity check below
      shlq(tmp3, 1);
      jcc(Assembler::carryClear, integer);
      jcc(Assembler::notZero, integer);
      STOP("integer indefinite value shouldn't be seen here");
      bind(integer);
    }
#endif
#endif

    // get rid of duplicate arguments. Stack: X^Y
    if (num_fpu_regs_in_use > 0) {
      fxch(); fpop();
      fxch(); fpop();
    } else {
      ffree(2);
      ffree(1);
    }

    testl(tmp2, 1);
    jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
    // X <= 0, Y even: X^Y = -abs(X)^Y

    fchs();                     // Stack: -abs(X)^Y Y
    jmp(done);
  }

  // slow case: runtime call
  bind(slow_case);

  fpop();                       // pop incorrect result or int(Y)

  fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
                      is_exp ? 1 : 2, num_fpu_regs_in_use);

  // Come here with result in F-TOS
  bind(done);
}

void MacroAssembler::fpop() {
  ffree();
  fincstp();
}

void MacroAssembler::fremr(Register tmp) {
  save_rax(tmp);
  { Label L;
    bind(L);
    fprem();
    fwait(); fnstsw_ax();
#ifdef _LP64
    testl(rax, 0x400);
    jcc(Assembler::notEqual, L);
#else
    sahf();
    jcc(Assembler::parity, L);
#endif // _LP64
  }
  restore_rax(tmp);
  // Result is in ST0.
  // Note: fxch & fpop to get rid of ST1
  // (otherwise FPU stack could overflow eventually)
  fxch(1);
  fpop();
}


void MacroAssembler::incrementl(AddressLiteral dst) {
  if (reachable(dst)) {
    incrementl(as_Address(dst));
  } else {
    lea(rscratch1, dst);
    incrementl(Address(rscratch1, 0));
  }
}

void MacroAssembler::incrementl(ArrayAddress dst) {
  incrementl(as_Address(dst));
}

void MacroAssembler::incrementl(Register reg, int value) {
  if (value == min_jint) {addl(reg, value) ; return; }
  if (value <  0) { decrementl(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incl(reg) ; return; }
  /* else */      { addl(reg, value)       ; return; }
}

void MacroAssembler::incrementl(Address dst, int value) {
  if (value == min_jint) {addl(dst, value) ; return; }
  if (value <  0) { decrementl(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incl(dst) ; return; }
  /* else */      { addl(dst, value)       ; return; }
}

void MacroAssembler::jump(AddressLiteral dst) {
  if (reachable(dst)) {
    jmp_literal(dst.target(), dst.rspec());
  } else {
    lea(rscratch1, dst);
    jmp(rscratch1);
  }
}

void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  if (reachable(dst)) {
    InstructionMark im(this);
    relocate(dst.reloc());
    const int short_size = 2;
    const int long_size = 6;
    int offs = (intptr_t)dst.target() - ((intptr_t)pc());
    if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
      // 0111 tttn #8-bit disp
3427 3428
      emit_int8(0x70 | cc);
      emit_int8((offs - short_size) & 0xFF);
3429 3430
    } else {
      // 0000 1111 1000 tttn #32-bit disp
3431 3432
      emit_int8(0x0F);
      emit_int8((unsigned char)(0x80 | cc));
3433
      emit_int32(offs - long_size);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
    }
  } else {
#ifdef ASSERT
    warning("reversing conditional branch");
#endif /* ASSERT */
    Label skip;
    jccb(reverse[cc], skip);
    lea(rscratch1, dst);
    Assembler::jmp(rscratch1);
    bind(skip);
  }
}

void MacroAssembler::ldmxcsr(AddressLiteral src) {
  if (reachable(src)) {
    Assembler::ldmxcsr(as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::ldmxcsr(Address(rscratch1, 0));
  }
}

int MacroAssembler::load_signed_byte(Register dst, Address src) {
  int off;
  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
    off = offset();
    movsbl(dst, src); // movsxb
  } else {
    off = load_unsigned_byte(dst, src);
    shll(dst, 24);
    sarl(dst, 24);
  }
  return off;
}

// Note: load_signed_short used to be called load_signed_word.
// Although the 'w' in x86 opcodes refers to the term "word" in the assembler
// manual, which means 16 bits, that usage is found nowhere in HotSpot code.
// The term "word" in HotSpot means a 32- or 64-bit machine word.
int MacroAssembler::load_signed_short(Register dst, Address src) {
  int off;
  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
    // This is dubious to me since it seems safe to do a signed 16 => 64 bit
    // version but this is what 64bit has always done. This seems to imply
    // that users are only using 32bits worth.
    off = offset();
    movswl(dst, src); // movsxw
  } else {
    off = load_unsigned_short(dst, src);
    shll(dst, 16);
    sarl(dst, 16);
  }
  return off;
}

int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  // and "3.9 Partial Register Penalties", p. 22).
  int off;
  if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
    off = offset();
    movzbl(dst, src); // movzxb
  } else {
    xorl(dst, dst);
    off = offset();
    movb(dst, src);
  }
  return off;
}

// Note: load_unsigned_short used to be called load_unsigned_word.
int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  // and "3.9 Partial Register Penalties", p. 22).
  int off;
  if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
    off = offset();
    movzwl(dst, src); // movzxw
  } else {
    xorl(dst, dst);
    off = offset();
    movw(dst, src);
  }
  return off;
}

void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  switch (size_in_bytes) {
#ifndef _LP64
  case  8:
    assert(dst2 != noreg, "second dest register required");
    movl(dst,  src);
    movl(dst2, src.plus_disp(BytesPerInt));
    break;
#else
  case  8:  movq(dst, src); break;
#endif
  case  4:  movl(dst, src); break;
  case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  default:  ShouldNotReachHere();
  }
}

void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  switch (size_in_bytes) {
#ifndef _LP64
  case  8:
    assert(src2 != noreg, "second source register required");
    movl(dst,                        src);
    movl(dst.plus_disp(BytesPerInt), src2);
    break;
#else
  case  8:  movq(dst, src); break;
#endif
  case  4:  movl(dst, src); break;
  case  2:  movw(dst, src); break;
  case  1:  movb(dst, src); break;
  default:  ShouldNotReachHere();
  }
}

void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  if (reachable(dst)) {
    movl(as_Address(dst), src);
  } else {
    lea(rscratch1, dst);
    movl(Address(rscratch1, 0), src);
  }
}

void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  if (reachable(src)) {
    movl(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movl(dst, Address(rscratch1, 0));
  }
}

// C++ bool manipulation

void MacroAssembler::movbool(Register dst, Address src) {
  if(sizeof(bool) == 1)
    movb(dst, src);
  else if(sizeof(bool) == 2)
    movw(dst, src);
  else if(sizeof(bool) == 4)
    movl(dst, src);
  else
    // unsupported
    ShouldNotReachHere();
}

void MacroAssembler::movbool(Address dst, bool boolconst) {
  if(sizeof(bool) == 1)
    movb(dst, (int) boolconst);
  else if(sizeof(bool) == 2)
    movw(dst, (int) boolconst);
  else if(sizeof(bool) == 4)
    movl(dst, (int) boolconst);
  else
    // unsupported
    ShouldNotReachHere();
}

void MacroAssembler::movbool(Address dst, Register src) {
  if(sizeof(bool) == 1)
    movb(dst, src);
  else if(sizeof(bool) == 2)
    movw(dst, src);
  else if(sizeof(bool) == 4)
    movl(dst, src);
  else
    // unsupported
    ShouldNotReachHere();
}

void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  movb(as_Address(dst), src);
}

void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    movdl(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movdl(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    movq(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movq(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    if (UseXmmLoadAndClearUpper) {
      movsd (dst, as_Address(src));
    } else {
      movlpd(dst, as_Address(src));
    }
  } else {
    lea(rscratch1, src);
    if (UseXmmLoadAndClearUpper) {
      movsd (dst, Address(rscratch1, 0));
    } else {
      movlpd(dst, Address(rscratch1, 0));
    }
  }
}

void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    movss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movss(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::movptr(Register dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}

void MacroAssembler::movptr(Register dst, Address src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}

// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Register dst, intptr_t src) {
  LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
}

void MacroAssembler::movptr(Address dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}

void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::movdqu(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::movdqu(dst, Address(rscratch1, 0));
  }
}

3686 3687 3688 3689 3690 3691 3692 3693 3694
void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::movdqa(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::movdqa(dst, Address(rscratch1, 0));
  }
}

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::movsd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::movsd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::movss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::movss(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::mulsd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::mulsd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::mulss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::mulss(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::null_check(Register reg, int offset) {
  if (needs_explicit_null_check(offset)) {
    // provoke OS NULL exception if reg = NULL by
    // accessing M[reg] w/o changing any (non-CC) registers
    // NOTE: cmpl is plenty here to provoke a segv
    cmpptr(rax, Address(reg, 0));
    // Note: should probably use testl(rax, Address(reg, 0));
    //       may be shorter code (however, this version of
    //       testl needs to be implemented first)
  } else {
    // nothing to do, (later) access of M[reg + offset]
    // will provoke OS NULL exception if reg = NULL
  }
}

void MacroAssembler::os_breakpoint() {
  // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  // (e.g., MSVC can't call ps() otherwise)
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
}

void MacroAssembler::pop_CPU_state() {
  pop_FPU_state();
  pop_IU_state();
}

void MacroAssembler::pop_FPU_state() {
  NOT_LP64(frstor(Address(rsp, 0));)
  LP64_ONLY(fxrstor(Address(rsp, 0));)
  addptr(rsp, FPUStateSizeInWords * wordSize);
}

void MacroAssembler::pop_IU_state() {
  popa();
  LP64_ONLY(addq(rsp, 8));
  popf();
}

// Save Integer and Float state
// Warning: Stack must be 16 byte aligned (64bit)
void MacroAssembler::push_CPU_state() {
  push_IU_state();
  push_FPU_state();
}

void MacroAssembler::push_FPU_state() {
  subptr(rsp, FPUStateSizeInWords * wordSize);
#ifndef _LP64
  fnsave(Address(rsp, 0));
  fwait();
#else
  fxsave(Address(rsp, 0));
#endif // LP64
}

void MacroAssembler::push_IU_state() {
  // Push flags first because pusha kills them
  pushf();
  // Make sure rsp stays 16-byte aligned
  LP64_ONLY(subq(rsp, 8));
  pusha();
}

void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  // determine java_thread register
  if (!java_thread->is_valid()) {
    java_thread = rdi;
    get_thread(java_thread);
  }
  // we must set sp to zero to clear frame
  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  if (clear_fp) {
    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  }

  if (clear_pc)
    movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);

}

void MacroAssembler::restore_rax(Register tmp) {
  if (tmp == noreg) pop(rax);
  else if (tmp != rax) mov(rax, tmp);
}

void MacroAssembler::round_to(Register reg, int modulus) {
  addptr(reg, modulus - 1);
  andptr(reg, -modulus);
}

void MacroAssembler::save_rax(Register tmp) {
  if (tmp == noreg) push(rax);
  else if (tmp != rax) mov(tmp, rax);
}

// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  movl(tmp, thread);
  shrl(tmp, os::get_serialize_page_shift_count());
  andl(tmp, (os::vm_page_size() - sizeof(int)));

  Address index(noreg, tmp, Address::times_1);
  ExternalAddress page(os::get_memory_serialize_page());

  // Size of store must match masking code above
  movl(as_Address(ArrayAddress(page, index)), tmp);
}

// Calls to C land
//
// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
// has to be reset to 0. This is required to allow proper stack traversal.
void MacroAssembler::set_last_Java_frame(Register java_thread,
                                         Register last_java_sp,
                                         Register last_java_fp,
                                         address  last_java_pc) {
  // determine java_thread register
  if (!java_thread->is_valid()) {
    java_thread = rdi;
    get_thread(java_thread);
  }
  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = rsp;
  }

  // last_java_fp is optional

  if (last_java_fp->is_valid()) {
    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  }

  // last_java_pc is optional

  if (last_java_pc != NULL) {
    lea(Address(java_thread,
                 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
        InternalAddress(last_java_pc));

  }
  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}

void MacroAssembler::shlptr(Register dst, int imm8) {
  LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
}

void MacroAssembler::shrptr(Register dst, int imm8) {
  LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
}

void MacroAssembler::sign_extend_byte(Register reg) {
  if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
    movsbl(reg, reg); // movsxb
  } else {
    shll(reg, 24);
    sarl(reg, 24);
  }
}

void MacroAssembler::sign_extend_short(Register reg) {
  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
    movswl(reg, reg); // movsxw
  } else {
    shll(reg, 16);
    sarl(reg, 16);
  }
}

void MacroAssembler::testl(Register dst, AddressLiteral src) {
  assert(reachable(src), "Address should be reachable");
  testl(dst, as_Address(src));
}

void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::sqrtsd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::sqrtsd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::sqrtss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::sqrtss(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::subsd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::subsd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::subss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::subss(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::ucomisd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::ucomisd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    Assembler::ucomiss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::ucomiss(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  // Used in sign-bit flipping with aligned address.
  assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  if (reachable(src)) {
    Assembler::xorpd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::xorpd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  // Used in sign-bit flipping with aligned address.
  assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  if (reachable(src)) {
    Assembler::xorps(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::xorps(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
  // Used in sign-bit flipping with aligned address.
K
kvn 已提交
3987 3988
  bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
  assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
  if (reachable(src)) {
    Assembler::pshufb(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::pshufb(dst, Address(rscratch1, 0));
  }
}

// AVX 3-operands instructions

void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  if (reachable(src)) {
    vaddsd(dst, nds, as_Address(src));
  } else {
    lea(rscratch1, src);
    vaddsd(dst, nds, Address(rscratch1, 0));
  }
}

void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  if (reachable(src)) {
    vaddss(dst, nds, as_Address(src));
  } else {
    lea(rscratch1, src);
    vaddss(dst, nds, Address(rscratch1, 0));
  }
}

void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  if (reachable(src)) {
    vandpd(dst, nds, as_Address(src), vector256);
  } else {
    lea(rscratch1, src);
    vandpd(dst, nds, Address(rscratch1, 0), vector256);
  }
}

void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  if (reachable(src)) {
    vandps(dst, nds, as_Address(src), vector256);
  } else {
    lea(rscratch1, src);
    vandps(dst, nds, Address(rscratch1, 0), vector256);
  }
}

void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  if (reachable(src)) {
    vdivsd(dst, nds, as_Address(src));
  } else {
    lea(rscratch1, src);
    vdivsd(dst, nds, Address(rscratch1, 0));
  }
}

void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  if (reachable(src)) {
    vdivss(dst, nds, as_Address(src));
  } else {
    lea(rscratch1, src);
    vdivss(dst, nds, Address(rscratch1, 0));
  }
}

void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  if (reachable(src)) {
    vmulsd(dst, nds, as_Address(src));
  } else {
    lea(rscratch1, src);
    vmulsd(dst, nds, Address(rscratch1, 0));
  }
}

void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  if (reachable(src)) {
    vmulss(dst, nds, as_Address(src));
  } else {
    lea(rscratch1, src);
    vmulss(dst, nds, Address(rscratch1, 0));
  }
}

void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  if (reachable(src)) {
    vsubsd(dst, nds, as_Address(src));
  } else {
    lea(rscratch1, src);
    vsubsd(dst, nds, Address(rscratch1, 0));
  }
}

void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  if (reachable(src)) {
    vsubss(dst, nds, as_Address(src));
  } else {
    lea(rscratch1, src);
    vsubss(dst, nds, Address(rscratch1, 0));
  }
}

void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  if (reachable(src)) {
    vxorpd(dst, nds, as_Address(src), vector256);
  } else {
    lea(rscratch1, src);
    vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  }
}

void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  if (reachable(src)) {
    vxorps(dst, nds, as_Address(src), vector256);
  } else {
    lea(rscratch1, src);
    vxorps(dst, nds, Address(rscratch1, 0), vector256);
  }
}


//////////////////////////////////////////////////////////////////////////////////
4109
#if INCLUDE_ALL_GCS
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240

void MacroAssembler::g1_write_barrier_pre(Register obj,
                                          Register pre_val,
                                          Register thread,
                                          Register tmp,
                                          bool tosca_live,
                                          bool expand_call) {

  // If expand_call is true then we expand the call_VM_leaf macro
  // directly to skip generating the check by
  // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.

#ifdef _LP64
  assert(thread == r15_thread, "must be");
#endif // _LP64

  Label done;
  Label runtime;

  assert(pre_val != noreg, "check this code");

  if (obj != noreg) {
    assert_different_registers(obj, pre_val, tmp);
    assert(pre_val != rax, "check this code");
  }

  Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
                                       PtrQueue::byte_offset_of_active()));
  Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
                                       PtrQueue::byte_offset_of_index()));
  Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
                                       PtrQueue::byte_offset_of_buf()));


  // Is marking active?
  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
    cmpl(in_progress, 0);
  } else {
    assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
    cmpb(in_progress, 0);
  }
  jcc(Assembler::equal, done);

  // Do we need to load the previous value?
  if (obj != noreg) {
    load_heap_oop(pre_val, Address(obj, 0));
  }

  // Is the previous value null?
  cmpptr(pre_val, (int32_t) NULL_WORD);
  jcc(Assembler::equal, done);

  // Can we store original value in the thread's buffer?
  // Is index == 0?
  // (The index field is typed as size_t.)

  movptr(tmp, index);                   // tmp := *index_adr
  cmpptr(tmp, 0);                       // tmp == 0?
  jcc(Assembler::equal, runtime);       // If yes, goto runtime

  subptr(tmp, wordSize);                // tmp := tmp - wordSize
  movptr(index, tmp);                   // *index_adr := tmp
  addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr

  // Record the previous value
  movptr(Address(tmp, 0), pre_val);
  jmp(done);

  bind(runtime);
  // save the live input values
  if(tosca_live) push(rax);

  if (obj != noreg && obj != rax)
    push(obj);

  if (pre_val != rax)
    push(pre_val);

  // Calling the runtime using the regular call_VM_leaf mechanism generates
  // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  //
  // If we care generating the pre-barrier without a frame (e.g. in the
  // intrinsified Reference.get() routine) then ebp might be pointing to
  // the caller frame and so this check will most likely fail at runtime.
  //
  // Expanding the call directly bypasses the generation of the check.
  // So when we do not have have a full interpreter frame on the stack
  // expand_call should be passed true.

  NOT_LP64( push(thread); )

  if (expand_call) {
    LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
    pass_arg1(this, thread);
    pass_arg0(this, pre_val);
    MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  } else {
    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  }

  NOT_LP64( pop(thread); )

  // save the live input values
  if (pre_val != rax)
    pop(pre_val);

  if (obj != noreg && obj != rax)
    pop(obj);

  if(tosca_live) pop(rax);

  bind(done);
}

void MacroAssembler::g1_write_barrier_post(Register store_addr,
                                           Register new_val,
                                           Register thread,
                                           Register tmp,
                                           Register tmp2) {
#ifdef _LP64
  assert(thread == r15_thread, "must be");
#endif // _LP64

  Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
                                       PtrQueue::byte_offset_of_index()));
  Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
                                       PtrQueue::byte_offset_of_buf()));

  BarrierSet* bs = Universe::heap()->barrier_set();
  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4241 4242
  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
  Label done;
  Label runtime;

  // Does store cross heap regions?

  movptr(tmp, store_addr);
  xorptr(tmp, new_val);
  shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  jcc(Assembler::equal, done);

  // crosses regions, storing NULL?

  cmpptr(new_val, (int32_t) NULL_WORD);
  jcc(Assembler::equal, done);

  // storing region crossing non-NULL, is card already dirty?

  const Register card_addr = tmp;
4261
  const Register cardtable = tmp2;
4262

4263 4264 4265 4266 4267 4268
  movptr(card_addr, store_addr);
  shrptr(card_addr, CardTableModRefBS::card_shift);
  // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
  // a valid address and therefore is not properly handled by the relocation code.
  movptr(cardtable, (intptr_t)ct->byte_map_base);
  addptr(card_addr, cardtable);
4269

4270
  cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4271 4272
  jcc(Assembler::equal, done);

4273 4274 4275 4276 4277
  membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  jcc(Assembler::equal, done);


4278 4279 4280
  // storing a region crossing, non-NULL oop, card is clean.
  // dirty card and log.

4281
  movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292

  cmpl(queue_index, 0);
  jcc(Assembler::equal, runtime);
  subl(queue_index, wordSize);
  movptr(tmp2, buffer);
#ifdef _LP64
  movslq(rscratch1, queue_index);
  addq(tmp2, rscratch1);
  movq(Address(tmp2, 0), card_addr);
#else
  addl(tmp2, queue_index);
4293
  movl(Address(tmp2, 0), card_addr);
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
#endif
  jmp(done);

  bind(runtime);
  // save the live input values
  push(store_addr);
  push(new_val);
#ifdef _LP64
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
#else
  push(thread);
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  pop(thread);
#endif
  pop(new_val);
  pop(store_addr);

  bind(done);
}

4314
#endif // INCLUDE_ALL_GCS
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
//////////////////////////////////////////////////////////////////////////////////


void MacroAssembler::store_check(Register obj) {
  // Does a store check for the oop in register obj. The content of
  // register obj is destroyed afterwards.
  store_check_part_1(obj);
  store_check_part_2(obj);
}

void MacroAssembler::store_check(Register obj, Address dst) {
  store_check(obj);
}


// split the store check operation so that other instructions can be scheduled inbetween
void MacroAssembler::store_check_part_1(Register obj) {
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  shrptr(obj, CardTableModRefBS::card_shift);
}

void MacroAssembler::store_check_part_2(Register obj) {
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

  // The calculation for byte_map_base is as follows:
  // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4345 4346 4347
  // So this essentially converts an address to a displacement and it will
  // never need to be relocated. On 64bit however the value may be too
  // large for a 32bit displacement.
4348 4349 4350 4351 4352
  intptr_t disp = (intptr_t) ct->byte_map_base;
  if (is_simm32(disp)) {
    Address cardtable(noreg, obj, Address::times_1, disp);
    movb(cardtable, 0);
  } else {
4353 4354 4355 4356 4357
    // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
    // displacement and done in a single instruction given favorable mapping and a
    // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
    // entry and that entry is not properly handled by the relocation code.
    AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
    Address index(noreg, obj, Address::times_1);
    movb(as_Address(ArrayAddress(cardtable, index)), 0);
  }
}

void MacroAssembler::subptr(Register dst, int32_t imm32) {
  LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
}

// Force generation of a 4 byte immediate value even if it fits into 8bit
void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
}

void MacroAssembler::subptr(Register dst, Register src) {
  LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
}

// C++ bool manipulation
void MacroAssembler::testbool(Register dst) {
  if(sizeof(bool) == 1)
    testb(dst, 0xff);
  else if(sizeof(bool) == 2) {
    // testw implementation needed for two byte bools
    ShouldNotReachHere();
  } else if(sizeof(bool) == 4)
    testl(dst, dst);
  else
    // unsupported
    ShouldNotReachHere();
}

void MacroAssembler::testptr(Register dst, Register src) {
  LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
}

// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
void MacroAssembler::tlab_allocate(Register obj,
                                   Register var_size_in_bytes,
                                   int con_size_in_bytes,
                                   Register t1,
                                   Register t2,
                                   Label& slow_case) {
  assert_different_registers(obj, t1, t2);
  assert_different_registers(obj, var_size_in_bytes, t1);
  Register end = t2;
  Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);

  verify_tlab();

  NOT_LP64(get_thread(thread));

  movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  if (var_size_in_bytes == noreg) {
    lea(end, Address(obj, con_size_in_bytes));
  } else {
    lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  }
  cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  jcc(Assembler::above, slow_case);

  // update the tlab top pointer
  movptr(Address(thread, JavaThread::tlab_top_offset()), end);

  // recover var_size_in_bytes if necessary
  if (var_size_in_bytes == end) {
    subptr(var_size_in_bytes, obj);
  }
  verify_tlab();
}

// Preserves rbx, and rdx.
Register MacroAssembler::tlab_refill(Label& retry,
                                     Label& try_eden,
                                     Label& slow_case) {
  Register top = rax;
  Register t1  = rcx;
  Register t2  = rsi;
  Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  Label do_refill, discard_tlab;

  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
    // No allocation in the shared eden.
    jmp(slow_case);
  }

  NOT_LP64(get_thread(thread_reg));

  movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));

  // calculate amount of free space
  subptr(t1, top);
  shrptr(t1, LogHeapWordSize);

  // Retain tlab and allocate object in shared space if
  // the amount free in the tlab is too large to discard.
  cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  jcc(Assembler::lessEqual, discard_tlab);

  // Retain
  // %%% yuck as movptr...
  movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  if (TLABStats) {
    // increment number of slow_allocations
    addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  }
  jmp(try_eden);

  bind(discard_tlab);
  if (TLABStats) {
    // increment number of refills
    addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
    // accumulate wastage -- t1 is amount free in tlab
    addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  }

  // if tlab is currently allocated (top or end != null) then
  // fill [top, end + alignment_reserve) with array object
  testptr(top, top);
  jcc(Assembler::zero, do_refill);

  // set up the mark word
  movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  // set the length to the remaining space
  subptr(t1, typeArrayOopDesc::header_size(T_INT));
  addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  // set klass to intArrayKlass
  // dubious reloc why not an oop reloc?
  movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  // store klass last.  concurrent gcs assumes klass length is valid if
  // klass field is not null.
  store_klass(top, t1);

  movptr(t1, top);
  subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  incr_allocated_bytes(thread_reg, t1, 0);

  // refill the tlab with an eden allocation
  bind(do_refill);
  movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  shlptr(t1, LogHeapWordSize);
  // allocate new tlab, address returned in top
  eden_allocate(top, t1, 0, t2, slow_case);

  // Check that t1 was preserved in eden_allocate.
#ifdef ASSERT
  if (UseTLAB) {
    Label ok;
    Register tsize = rsi;
    assert_different_registers(tsize, thread_reg, t1);
    push(tsize);
    movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
    shlptr(tsize, LogHeapWordSize);
    cmpptr(t1, tsize);
    jcc(Assembler::equal, ok);
    STOP("assert(t1 != tlab size)");
    should_not_reach_here();

    bind(ok);
    pop(tsize);
  }
#endif
  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  addptr(top, t1);
  subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  verify_tlab();
  jmp(retry);

  return thread_reg; // for use by caller
}

void MacroAssembler::incr_allocated_bytes(Register thread,
                                          Register var_size_in_bytes,
                                          int con_size_in_bytes,
                                          Register t1) {
  if (!thread->is_valid()) {
#ifdef _LP64
    thread = r15_thread;
#else
    assert(t1->is_valid(), "need temp reg");
    thread = t1;
    get_thread(thread);
#endif
  }

#ifdef _LP64
  if (var_size_in_bytes->is_valid()) {
    addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  } else {
    addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  }
#else
  if (var_size_in_bytes->is_valid()) {
    addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  } else {
    addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  }
  adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
#endif
}

void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  pusha();

  // if we are coming from c1, xmm registers may be live
  int off = 0;
  if (UseSSE == 1)  {
    subptr(rsp, sizeof(jdouble)*8);
    movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
    movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
    movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
    movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
    movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
    movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
    movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
    movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  } else if (UseSSE >= 2)  {
#ifdef COMPILER2
    if (MaxVectorSize > 16) {
      assert(UseAVX > 0, "256bit vectors are supported only with AVX");
      // Save upper half of YMM registes
      subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
      vextractf128h(Address(rsp,  0),xmm0);
      vextractf128h(Address(rsp, 16),xmm1);
      vextractf128h(Address(rsp, 32),xmm2);
      vextractf128h(Address(rsp, 48),xmm3);
      vextractf128h(Address(rsp, 64),xmm4);
      vextractf128h(Address(rsp, 80),xmm5);
      vextractf128h(Address(rsp, 96),xmm6);
      vextractf128h(Address(rsp,112),xmm7);
#ifdef _LP64
      vextractf128h(Address(rsp,128),xmm8);
      vextractf128h(Address(rsp,144),xmm9);
      vextractf128h(Address(rsp,160),xmm10);
      vextractf128h(Address(rsp,176),xmm11);
      vextractf128h(Address(rsp,192),xmm12);
      vextractf128h(Address(rsp,208),xmm13);
      vextractf128h(Address(rsp,224),xmm14);
      vextractf128h(Address(rsp,240),xmm15);
#endif
    }
#endif
    // Save whole 128bit (16 bytes) XMM regiters
    subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
    movdqu(Address(rsp,off++*16),xmm0);
    movdqu(Address(rsp,off++*16),xmm1);
    movdqu(Address(rsp,off++*16),xmm2);
    movdqu(Address(rsp,off++*16),xmm3);
    movdqu(Address(rsp,off++*16),xmm4);
    movdqu(Address(rsp,off++*16),xmm5);
    movdqu(Address(rsp,off++*16),xmm6);
    movdqu(Address(rsp,off++*16),xmm7);
#ifdef _LP64
    movdqu(Address(rsp,off++*16),xmm8);
    movdqu(Address(rsp,off++*16),xmm9);
    movdqu(Address(rsp,off++*16),xmm10);
    movdqu(Address(rsp,off++*16),xmm11);
    movdqu(Address(rsp,off++*16),xmm12);
    movdqu(Address(rsp,off++*16),xmm13);
    movdqu(Address(rsp,off++*16),xmm14);
    movdqu(Address(rsp,off++*16),xmm15);
#endif
  }

  // Preserve registers across runtime call
  int incoming_argument_and_return_value_offset = -1;
  if (num_fpu_regs_in_use > 1) {
    // Must preserve all other FPU regs (could alternatively convert
    // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
    // FPU state, but can not trust C compiler)
    NEEDS_CLEANUP;
    // NOTE that in this case we also push the incoming argument(s) to
    // the stack and restore it later; we also use this stack slot to
    // hold the return value from dsin, dcos etc.
    for (int i = 0; i < num_fpu_regs_in_use; i++) {
      subptr(rsp, sizeof(jdouble));
      fstp_d(Address(rsp, 0));
    }
    incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
    for (int i = nb_args-1; i >= 0; i--) {
      fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
    }
  }

  subptr(rsp, nb_args*sizeof(jdouble));
  for (int i = 0; i < nb_args; i++) {
    fstp_d(Address(rsp, i*sizeof(jdouble)));
  }

#ifdef _LP64
  if (nb_args > 0) {
    movdbl(xmm0, Address(rsp, 0));
  }
  if (nb_args > 1) {
    movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  }
  assert(nb_args <= 2, "unsupported number of args");
#endif // _LP64

  // NOTE: we must not use call_VM_leaf here because that requires a
  // complete interpreter frame in debug mode -- same bug as 4387334
  // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  // do proper 64bit abi

  NEEDS_CLEANUP;
  // Need to add stack banging before this runtime call if it needs to
  // be taken; however, there is no generic stack banging routine at
  // the MacroAssembler level

  MacroAssembler::call_VM_leaf_base(runtime_entry, 0);

#ifdef _LP64
  movsd(Address(rsp, 0), xmm0);
  fld_d(Address(rsp, 0));
#endif // _LP64
  addptr(rsp, sizeof(jdouble) * nb_args);
  if (num_fpu_regs_in_use > 1) {
    // Must save return value to stack and then restore entire FPU
    // stack except incoming arguments
    fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
    for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
      fld_d(Address(rsp, 0));
      addptr(rsp, sizeof(jdouble));
    }
    fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
    addptr(rsp, sizeof(jdouble) * nb_args);
  }

  off = 0;
  if (UseSSE == 1)  {
    movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
    movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
    movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
    movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
    movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
    movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
    movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
    movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
    addptr(rsp, sizeof(jdouble)*8);
  } else if (UseSSE >= 2)  {
    // Restore whole 128bit (16 bytes) XMM regiters
    movdqu(xmm0, Address(rsp,off++*16));
    movdqu(xmm1, Address(rsp,off++*16));
    movdqu(xmm2, Address(rsp,off++*16));
    movdqu(xmm3, Address(rsp,off++*16));
    movdqu(xmm4, Address(rsp,off++*16));
    movdqu(xmm5, Address(rsp,off++*16));
    movdqu(xmm6, Address(rsp,off++*16));
    movdqu(xmm7, Address(rsp,off++*16));
#ifdef _LP64
    movdqu(xmm8, Address(rsp,off++*16));
    movdqu(xmm9, Address(rsp,off++*16));
    movdqu(xmm10, Address(rsp,off++*16));
    movdqu(xmm11, Address(rsp,off++*16));
    movdqu(xmm12, Address(rsp,off++*16));
    movdqu(xmm13, Address(rsp,off++*16));
    movdqu(xmm14, Address(rsp,off++*16));
    movdqu(xmm15, Address(rsp,off++*16));
#endif
    addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
#ifdef COMPILER2
    if (MaxVectorSize > 16) {
      // Restore upper half of YMM registes.
      vinsertf128h(xmm0, Address(rsp,  0));
      vinsertf128h(xmm1, Address(rsp, 16));
      vinsertf128h(xmm2, Address(rsp, 32));
      vinsertf128h(xmm3, Address(rsp, 48));
      vinsertf128h(xmm4, Address(rsp, 64));
      vinsertf128h(xmm5, Address(rsp, 80));
      vinsertf128h(xmm6, Address(rsp, 96));
      vinsertf128h(xmm7, Address(rsp,112));
#ifdef _LP64
      vinsertf128h(xmm8, Address(rsp,128));
      vinsertf128h(xmm9, Address(rsp,144));
      vinsertf128h(xmm10, Address(rsp,160));
      vinsertf128h(xmm11, Address(rsp,176));
      vinsertf128h(xmm12, Address(rsp,192));
      vinsertf128h(xmm13, Address(rsp,208));
      vinsertf128h(xmm14, Address(rsp,224));
      vinsertf128h(xmm15, Address(rsp,240));
#endif
      addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
    }
#endif
  }
  popa();
}

static const double     pi_4 =  0.7853981633974483;

void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  // was attempted in this code; unfortunately it appears that the
  // switch to 80-bit precision and back causes this to be
  // unprofitable compared with simply performing a runtime call if
  // the argument is out of the (-pi/4, pi/4) range.

  Register tmp = noreg;
  if (!VM_Version::supports_cmov()) {
    // fcmp needs a temporary so preserve rbx,
    tmp = rbx;
    push(tmp);
  }

  Label slow_case, done;

  ExternalAddress pi4_adr = (address)&pi_4;
  if (reachable(pi4_adr)) {
    // x ?<= pi/4
    fld_d(pi4_adr);
    fld_s(1);                // Stack:  X  PI/4  X
    fabs();                  // Stack: |X| PI/4  X
    fcmp(tmp);
    jcc(Assembler::above, slow_case);

    // fastest case: -pi/4 <= x <= pi/4
    switch(trig) {
    case 's':
      fsin();
      break;
    case 'c':
      fcos();
      break;
    case 't':
      ftan();
      break;
    default:
      assert(false, "bad intrinsic");
      break;
    }
    jmp(done);
  }

  // slow case: runtime call
  bind(slow_case);

  switch(trig) {
  case 's':
    {
      fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
    }
    break;
  case 'c':
    {
      fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
    }
    break;
  case 't':
    {
      fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
    }
    break;
  default:
    assert(false, "bad intrinsic");
    break;
  }

  // Come here with result in F-TOS
  bind(done);

  if (tmp != noreg) {
    pop(tmp);
  }
}


// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
void MacroAssembler::lookup_interface_method(Register recv_klass,
                                             Register intf_klass,
                                             RegisterOrConstant itable_index,
                                             Register method_result,
                                             Register scan_temp,
                                             Label& L_no_such_interface) {
  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
         "caller must use same register for non-constant itable index as for method");

  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  int itentry_off = itableMethodEntry::method_offset_in_bytes();
  int scan_step   = itableOffsetEntry::size() * wordSize;
  int vte_size    = vtableEntry::size() * wordSize;
  Address::ScaleFactor times_vte_scale = Address::times_ptr;
  assert(vte_size == wordSize, "else adjust times_vte_scale");

  movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));

  // %%% Could store the aligned, prescaled offset in the klassoop.
  lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  if (HeapWordsPerLong > 1) {
    // Round up to align_object_offset boundary
    // see code for InstanceKlass::start_of_itable!
    round_to(scan_temp, BytesPerLong);
  }

  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));

  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  //   if (scan->interface() == intf) {
  //     result = (klass + scan->offset() + itable_index);
  //   }
  // }
  Label search, found_method;

  for (int peel = 1; peel >= 0; peel--) {
    movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
    cmpptr(intf_klass, method_result);

    if (peel) {
      jccb(Assembler::equal, found_method);
    } else {
      jccb(Assembler::notEqual, search);
      // (invert the test to fall through to found_method...)
    }

    if (!peel)  break;

    bind(search);

    // Check that the previous entry is non-null.  A null entry means that
    // the receiver class doesn't implement the interface, and wasn't the
    // same as when the caller was compiled.
    testptr(method_result, method_result);
    jcc(Assembler::zero, L_no_such_interface);
    addptr(scan_temp, scan_step);
  }

  bind(found_method);

  // Got a hit.
  movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
}


// virtual method calling
void MacroAssembler::lookup_virtual_method(Register recv_klass,
                                           RegisterOrConstant vtable_index,
                                           Register method_result) {
  const int base = InstanceKlass::vtable_start_offset() * wordSize;
  assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  Address vtable_entry_addr(recv_klass,
                            vtable_index, Address::times_ptr,
                            base + vtableEntry::method_offset_in_bytes());
  movptr(method_result, vtable_entry_addr);
}


void MacroAssembler::check_klass_subtype(Register sub_klass,
                           Register super_klass,
                           Register temp_reg,
                           Label& L_success) {
  Label L_failure;
  check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  bind(L_failure);
}


void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register temp_reg,
                                                   Label* L_success,
                                                   Label* L_failure,
                                                   Label* L_slow_path,
                                        RegisterOrConstant super_check_offset) {
  assert_different_registers(sub_klass, super_klass, temp_reg);
  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  if (super_check_offset.is_register()) {
    assert_different_registers(sub_klass, super_klass,
                               super_check_offset.as_register());
  } else if (must_load_sco) {
    assert(temp_reg != noreg, "supply either a temp or a register offset");
  }

  Label L_fallthrough;
  int label_nulls = 0;
  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  assert(label_nulls <= 1, "at most one NULL in the batch");

  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  int sco_offset = in_bytes(Klass::super_check_offset_offset());
  Address super_check_offset_addr(super_klass, sco_offset);

  // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  // range of a jccb.  If this routine grows larger, reconsider at
  // least some of these.
#define local_jcc(assembler_cond, label)                                \
  if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  else                             jcc( assembler_cond, label) /*omit semi*/

  // Hacked jmp, which may only be used just before L_fallthrough.
#define final_jmp(label)                                                \
  if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  else                            jmp(label)                /*omit semi*/

  // If the pointers are equal, we are done (e.g., String[] elements).
  // This self-check enables sharing of secondary supertype arrays among
  // non-primary types such as array-of-interface.  Otherwise, each such
  // type would need its own customized SSA.
  // We move this check to the front of the fast path because many
  // type checks are in fact trivially successful in this manner,
  // so we get a nicely predicted branch right at the start of the check.
  cmpptr(sub_klass, super_klass);
  local_jcc(Assembler::equal, *L_success);

  // Check the supertype display:
  if (must_load_sco) {
    // Positive movl does right thing on LP64.
    movl(temp_reg, super_check_offset_addr);
    super_check_offset = RegisterOrConstant(temp_reg);
  }
  Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  cmpptr(super_klass, super_check_addr); // load displayed supertype

  // This check has worked decisively for primary supers.
  // Secondary supers are sought in the super_cache ('super_cache_addr').
  // (Secondary supers are interfaces and very deeply nested subtypes.)
  // This works in the same check above because of a tricky aliasing
  // between the super_cache and the primary super display elements.
  // (The 'super_check_addr' can address either, as the case requires.)
  // Note that the cache is updated below if it does not help us find
  // what we need immediately.
  // So if it was a primary super, we can just fail immediately.
  // Otherwise, it's the slow path for us (no success at this point).

  if (super_check_offset.is_register()) {
    local_jcc(Assembler::equal, *L_success);
    cmpl(super_check_offset.as_register(), sc_offset);
    if (L_failure == &L_fallthrough) {
      local_jcc(Assembler::equal, *L_slow_path);
    } else {
      local_jcc(Assembler::notEqual, *L_failure);
      final_jmp(*L_slow_path);
    }
  } else if (super_check_offset.as_constant() == sc_offset) {
    // Need a slow path; fast failure is impossible.
    if (L_slow_path == &L_fallthrough) {
      local_jcc(Assembler::equal, *L_success);
    } else {
      local_jcc(Assembler::notEqual, *L_slow_path);
      final_jmp(*L_success);
    }
  } else {
    // No slow path; it's a fast decision.
    if (L_failure == &L_fallthrough) {
      local_jcc(Assembler::equal, *L_success);
    } else {
      local_jcc(Assembler::notEqual, *L_failure);
      final_jmp(*L_success);
    }
  }

  bind(L_fallthrough);

#undef local_jcc
#undef final_jmp
}


void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register temp_reg,
                                                   Register temp2_reg,
                                                   Label* L_success,
                                                   Label* L_failure,
                                                   bool set_cond_codes) {
  assert_different_registers(sub_klass, super_klass, temp_reg);
  if (temp2_reg != noreg)
    assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)

  Label L_fallthrough;
  int label_nulls = 0;
  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  assert(label_nulls <= 1, "at most one NULL in the batch");

  // a couple of useful fields in sub_klass:
  int ss_offset = in_bytes(Klass::secondary_supers_offset());
  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  Address secondary_supers_addr(sub_klass, ss_offset);
  Address super_cache_addr(     sub_klass, sc_offset);

  // Do a linear scan of the secondary super-klass chain.
  // This code is rarely used, so simplicity is a virtue here.
  // The repne_scan instruction uses fixed registers, which we must spill.
  // Don't worry too much about pre-existing connections with the input regs.

  assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)

  // Get super_klass value into rax (even if it was in rdi or rcx).
  bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  if (super_klass != rax || UseCompressedOops) {
    if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
    mov(rax, super_klass);
  }
  if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }

#ifndef PRODUCT
  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  ExternalAddress pst_counter_addr((address) pst_counter);
  NOT_LP64(  incrementl(pst_counter_addr) );
  LP64_ONLY( lea(rcx, pst_counter_addr) );
  LP64_ONLY( incrementl(Address(rcx, 0)) );
#endif //PRODUCT

  // We will consult the secondary-super array.
  movptr(rdi, secondary_supers_addr);
  // Load the array length.  (Positive movl does right thing on LP64.)
  movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  // Skip to start of data.
  addptr(rdi, Array<Klass*>::base_offset_in_bytes());

  // Scan RCX words at [RDI] for an occurrence of RAX.
  // Set NZ/Z based on last compare.
  // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  // not change flags (only scas instruction which is repeated sets flags).
  // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.

    testptr(rax,rax); // Set Z = 0
    repne_scan();

  // Unspill the temp. registers:
  if (pushed_rdi)  pop(rdi);
  if (pushed_rcx)  pop(rcx);
  if (pushed_rax)  pop(rax);

  if (set_cond_codes) {
    // Special hack for the AD files:  rdi is guaranteed non-zero.
    assert(!pushed_rdi, "rdi must be left non-NULL");
    // Also, the condition codes are properly set Z/NZ on succeed/failure.
  }

  if (L_failure == &L_fallthrough)
        jccb(Assembler::notEqual, *L_failure);
  else  jcc(Assembler::notEqual, *L_failure);

  // Success.  Cache the super we found and proceed in triumph.
  movptr(super_cache_addr, super_klass);

  if (L_success != &L_fallthrough) {
    jmp(*L_success);
  }

#undef IS_A_TEMP

  bind(L_fallthrough);
}


void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  if (VM_Version::supports_cmov()) {
    cmovl(cc, dst, src);
  } else {
    Label L;
    jccb(negate_condition(cc), L);
    movl(dst, src);
    bind(L);
  }
}

void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  if (VM_Version::supports_cmov()) {
    cmovl(cc, dst, src);
  } else {
    Label L;
    jccb(negate_condition(cc), L);
    movl(dst, src);
    bind(L);
  }
}

void MacroAssembler::verify_oop(Register reg, const char* s) {
  if (!VerifyOops) return;

  // Pass register number to verify_oop_subroutine
5152 5153 5154 5155 5156 5157 5158
  const char* b = NULL;
  {
    ResourceMark rm;
    stringStream ss;
    ss.print("verify_oop: %s: %s", reg->name(), s);
    b = code_string(ss.as_string());
  }
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
  BLOCK_COMMENT("verify_oop {");
#ifdef _LP64
  push(rscratch1);                    // save r10, trashed by movptr()
#endif
  push(rax);                          // save rax,
  push(reg);                          // pass register argument
  ExternalAddress buffer((address) b);
  // avoid using pushptr, as it modifies scratch registers
  // and our contract is not to modify anything
  movptr(rax, buffer.addr());
  push(rax);
  // call indirectly to solve generation ordering problem
  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  call(rax);
  // Caller pops the arguments (oop, message) and restores rax, r10
  BLOCK_COMMENT("} verify_oop");
}


RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
                                                      Register tmp,
                                                      int offset) {
  intptr_t value = *delayed_value_addr;
  if (value != 0)
    return RegisterOrConstant(value + offset);

  // load indirectly to solve generation ordering problem
  movptr(tmp, ExternalAddress((address) delayed_value_addr));

#ifdef ASSERT
  { Label L;
    testptr(tmp, tmp);
    if (WizardMode) {
5192 5193 5194 5195 5196 5197 5198
      const char* buf = NULL;
      {
        ResourceMark rm;
        stringStream ss;
        ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
        buf = code_string(ss.as_string());
      }
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
      jcc(Assembler::notZero, L);
      STOP(buf);
    } else {
      jccb(Assembler::notZero, L);
      hlt();
    }
    bind(L);
  }
#endif

  if (offset != 0)
    addptr(tmp, offset);

  return RegisterOrConstant(tmp);
}


Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
                                         int extra_slot_offset) {
  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  int stackElementSize = Interpreter::stackElementSize;
  int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
#ifdef ASSERT
  int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  assert(offset1 - offset == stackElementSize, "correct arithmetic");
#endif
  Register             scale_reg    = noreg;
  Address::ScaleFactor scale_factor = Address::no_scale;
  if (arg_slot.is_constant()) {
    offset += arg_slot.as_constant() * stackElementSize;
  } else {
    scale_reg    = arg_slot.as_register();
    scale_factor = Address::times(stackElementSize);
  }
  offset += wordSize;           // return PC is on stack
  return Address(rsp, scale_reg, scale_factor, offset);
}


void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  if (!VerifyOops) return;

  // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  // Pass register number to verify_oop_subroutine
5243 5244 5245 5246 5247 5248 5249
  const char* b = NULL;
  {
    ResourceMark rm;
    stringStream ss;
    ss.print("verify_oop_addr: %s", s);
    b = code_string(ss.as_string());
  }
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
#ifdef _LP64
  push(rscratch1);                    // save r10, trashed by movptr()
#endif
  push(rax);                          // save rax,
  // addr may contain rsp so we will have to adjust it based on the push
  // we just did (and on 64 bit we do two pushes)
  // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  // stores rax into addr which is backwards of what was intended.
  if (addr.uses(rsp)) {
    lea(rax, addr);
    pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  } else {
    pushptr(addr);
  }

  ExternalAddress buffer((address) b);
  // pass msg argument
  // avoid using pushptr, as it modifies scratch registers
  // and our contract is not to modify anything
  movptr(rax, buffer.addr());
  push(rax);

  // call indirectly to solve generation ordering problem
  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  call(rax);
  // Caller pops the arguments (addr, message) and restores rax, r10.
}

void MacroAssembler::verify_tlab() {
#ifdef ASSERT
  if (UseTLAB && VerifyOops) {
    Label next, ok;
    Register t1 = rsi;
    Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);

    push(t1);
    NOT_LP64(push(thread_reg));
    NOT_LP64(get_thread(thread_reg));

    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
    jcc(Assembler::aboveEqual, next);
    STOP("assert(top >= start)");
    should_not_reach_here();

    bind(next);
    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
    jcc(Assembler::aboveEqual, ok);
    STOP("assert(top <= end)");
    should_not_reach_here();

    bind(ok);
    NOT_LP64(pop(thread_reg));
    pop(t1);
  }
#endif
}

class ControlWord {
 public:
  int32_t _value;

  int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  int  precision_control() const       { return  (_value >>  8) & 3      ; }
  bool precision() const               { return ((_value >>  5) & 1) != 0; }
  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }

  void print() const {
    // rounding control
    const char* rc;
    switch (rounding_control()) {
      case 0: rc = "round near"; break;
      case 1: rc = "round down"; break;
      case 2: rc = "round up  "; break;
      case 3: rc = "chop      "; break;
    };
    // precision control
    const char* pc;
    switch (precision_control()) {
      case 0: pc = "24 bits "; break;
      case 1: pc = "reserved"; break;
      case 2: pc = "53 bits "; break;
      case 3: pc = "64 bits "; break;
    };
    // flags
    char f[9];
    f[0] = ' ';
    f[1] = ' ';
    f[2] = (precision   ()) ? 'P' : 'p';
    f[3] = (underflow   ()) ? 'U' : 'u';
    f[4] = (overflow    ()) ? 'O' : 'o';
    f[5] = (zero_divide ()) ? 'Z' : 'z';
    f[6] = (denormalized()) ? 'D' : 'd';
    f[7] = (invalid     ()) ? 'I' : 'i';
    f[8] = '\x0';
    // output
    printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  }

};

class StatusWord {
 public:
  int32_t _value;

  bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  int  top() const                     { return  (_value >> 11) & 7      ; }
  bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  bool precision() const               { return ((_value >>  5) & 1) != 0; }
  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }

  void print() const {
    // condition codes
    char c[5];
    c[0] = (C3()) ? '3' : '-';
    c[1] = (C2()) ? '2' : '-';
    c[2] = (C1()) ? '1' : '-';
    c[3] = (C0()) ? '0' : '-';
    c[4] = '\x0';
    // flags
    char f[9];
    f[0] = (error_status()) ? 'E' : '-';
    f[1] = (stack_fault ()) ? 'S' : '-';
    f[2] = (precision   ()) ? 'P' : '-';
    f[3] = (underflow   ()) ? 'U' : '-';
    f[4] = (overflow    ()) ? 'O' : '-';
    f[5] = (zero_divide ()) ? 'Z' : '-';
    f[6] = (denormalized()) ? 'D' : '-';
    f[7] = (invalid     ()) ? 'I' : '-';
    f[8] = '\x0';
    // output
    printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  }

};

class TagWord {
 public:
  int32_t _value;

  int tag_at(int i) const              { return (_value >> (i*2)) & 3; }

  void print() const {
    printf("%04x", _value & 0xFFFF);
  }

};

class FPU_Register {
 public:
  int32_t _m0;
  int32_t _m1;
  int16_t _ex;

  bool is_indefinite() const           {
    return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  }

  void print() const {
    char  sign = (_ex < 0) ? '-' : '+';
    const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
    printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  };

};

class FPU_State {
 public:
  enum {
    register_size       = 10,
    number_of_registers =  8,
    register_mask       =  7
  };

  ControlWord  _control_word;
  StatusWord   _status_word;
  TagWord      _tag_word;
  int32_t      _error_offset;
  int32_t      _error_selector;
  int32_t      _data_offset;
  int32_t      _data_selector;
  int8_t       _register[register_size * number_of_registers];

  int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }

  const char* tag_as_string(int tag) const {
    switch (tag) {
      case 0: return "valid";
      case 1: return "zero";
      case 2: return "special";
      case 3: return "empty";
    }
    ShouldNotReachHere();
    return NULL;
  }

  void print() const {
    // print computation registers
    { int t = _status_word.top();
      for (int i = 0; i < number_of_registers; i++) {
        int j = (i - t) & register_mask;
        printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
        st(j)->print();
        printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
      }
    }
    printf("\n");
    // print control registers
    printf("ctrl = "); _control_word.print(); printf("\n");
    printf("stat = "); _status_word .print(); printf("\n");
    printf("tags = "); _tag_word    .print(); printf("\n");
  }

};

class Flag_Register {
 public:
  int32_t _value;

  bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  bool direction() const               { return ((_value >> 10) & 1) != 0; }
  bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  bool carry() const                   { return ((_value >>  0) & 1) != 0; }

  void print() const {
    // flags
    char f[8];
    f[0] = (overflow       ()) ? 'O' : '-';
    f[1] = (direction      ()) ? 'D' : '-';
    f[2] = (sign           ()) ? 'S' : '-';
    f[3] = (zero           ()) ? 'Z' : '-';
    f[4] = (auxiliary_carry()) ? 'A' : '-';
    f[5] = (parity         ()) ? 'P' : '-';
    f[6] = (carry          ()) ? 'C' : '-';
    f[7] = '\x0';
    // output
    printf("%08x  flags = %s", _value, f);
  }

};

class IU_Register {
 public:
  int32_t _value;

  void print() const {
    printf("%08x  %11d", _value, _value);
  }

};

class IU_State {
 public:
  Flag_Register _eflags;
  IU_Register   _rdi;
  IU_Register   _rsi;
  IU_Register   _rbp;
  IU_Register   _rsp;
  IU_Register   _rbx;
  IU_Register   _rdx;
  IU_Register   _rcx;
  IU_Register   _rax;

  void print() const {
    // computation registers
    printf("rax,  = "); _rax.print(); printf("\n");
    printf("rbx,  = "); _rbx.print(); printf("\n");
    printf("rcx  = "); _rcx.print(); printf("\n");
    printf("rdx  = "); _rdx.print(); printf("\n");
    printf("rdi  = "); _rdi.print(); printf("\n");
    printf("rsi  = "); _rsi.print(); printf("\n");
    printf("rbp,  = "); _rbp.print(); printf("\n");
    printf("rsp  = "); _rsp.print(); printf("\n");
    printf("\n");
    // control registers
    printf("flgs = "); _eflags.print(); printf("\n");
  }
};


class CPU_State {
 public:
  FPU_State _fpu_state;
  IU_State  _iu_state;

  void print() const {
    printf("--------------------------------------------------\n");
    _iu_state .print();
    printf("\n");
    _fpu_state.print();
    printf("--------------------------------------------------\n");
  }

};


static void _print_CPU_state(CPU_State* state) {
  state->print();
};


void MacroAssembler::print_CPU_state() {
  push_CPU_state();
  push(rsp);                // pass CPU state
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  addptr(rsp, wordSize);       // discard argument
  pop_CPU_state();
}


static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  static int counter = 0;
  FPU_State* fs = &state->_fpu_state;
  counter++;
  // For leaf calls, only verify that the top few elements remain empty.
  // We only need 1 empty at the top for C2 code.
  if( stack_depth < 0 ) {
    if( fs->tag_for_st(7) != 3 ) {
      printf("FPR7 not empty\n");
      state->print();
      assert(false, "error");
      return false;
    }
    return true;                // All other stack states do not matter
  }

  assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
         "bad FPU control word");

  // compute stack depth
  int i = 0;
  while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  int d = i;
  while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  // verify findings
  if (i != FPU_State::number_of_registers) {
    // stack not contiguous
    printf("%s: stack not contiguous at ST%d\n", s, i);
    state->print();
    assert(false, "error");
    return false;
  }
  // check if computed stack depth corresponds to expected stack depth
  if (stack_depth < 0) {
    // expected stack depth is -stack_depth or less
    if (d > -stack_depth) {
      // too many elements on the stack
      printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
      state->print();
      assert(false, "error");
      return false;
    }
  } else {
    // expected stack depth is stack_depth
    if (d != stack_depth) {
      // wrong stack depth
      printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
      state->print();
      assert(false, "error");
      return false;
    }
  }
  // everything is cool
  return true;
}


void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  if (!VerifyFPU) return;
  push_CPU_state();
  push(rsp);                // pass CPU state
  ExternalAddress msg((address) s);
  // pass message string s
  pushptr(msg.addr());
  push(stack_depth);        // pass stack depth
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  addptr(rsp, 3 * wordSize);   // discard arguments
  // check for error
  { Label L;
    testl(rax, rax);
    jcc(Assembler::notZero, L);
    int3();                  // break if error condition
    bind(L);
  }
  pop_CPU_state();
}

5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
void MacroAssembler::restore_cpu_control_state_after_jni() {
  // Either restore the MXCSR register after returning from the JNI Call
  // or verify that it wasn't changed (with -Xcheck:jni flag).
  if (VM_Version::supports_sse()) {
    if (RestoreMXCSROnJNICalls) {
      ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
    } else if (CheckJNICalls) {
      call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
    }
  }
  if (VM_Version::supports_avx()) {
    // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
    vzeroupper();
  }

#ifndef _LP64
  // Either restore the x87 floating pointer control word after returning
  // from the JNI call or verify that it wasn't changed.
  if (CheckJNICalls) {
    call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  }
#endif // _LP64
}


5680 5681
void MacroAssembler::load_klass(Register dst, Register src) {
#ifdef _LP64
5682
  if (UseCompressedClassPointers) {
5683 5684 5685 5686 5687 5688 5689 5690
    movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
    decode_klass_not_null(dst);
  } else
#endif
    movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
}

void MacroAssembler::load_prototype_header(Register dst, Register src) {
5691 5692
  load_klass(dst, src);
  movptr(dst, Address(dst, Klass::prototype_header_offset()));
5693 5694 5695 5696
}

void MacroAssembler::store_klass(Register dst, Register src) {
#ifdef _LP64
5697
  if (UseCompressedClassPointers) {
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
    encode_klass_not_null(src);
    movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  } else
#endif
    movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
}

void MacroAssembler::load_heap_oop(Register dst, Address src) {
#ifdef _LP64
  // FIXME: Must change all places where we try to load the klass.
  if (UseCompressedOops) {
    movl(dst, src);
    decode_heap_oop(dst);
  } else
#endif
    movptr(dst, src);
}

// Doesn't do verfication, generates fixed size code
void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
#ifdef _LP64
  if (UseCompressedOops) {
    movl(dst, src);
    decode_heap_oop_not_null(dst);
  } else
#endif
    movptr(dst, src);
}

void MacroAssembler::store_heap_oop(Address dst, Register src) {
#ifdef _LP64
  if (UseCompressedOops) {
    assert(!dst.uses(src), "not enough registers");
    encode_heap_oop(src);
    movl(dst, src);
  } else
#endif
    movptr(dst, src);
}

void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  assert_different_registers(src1, tmp);
#ifdef _LP64
  if (UseCompressedOops) {
    bool did_push = false;
    if (tmp == noreg) {
      tmp = rax;
      push(tmp);
      did_push = true;
      assert(!src2.uses(rsp), "can't push");
    }
    load_heap_oop(tmp, src2);
    cmpptr(src1, tmp);
    if (did_push)  pop(tmp);
  } else
#endif
    cmpptr(src1, src2);
}

// Used for storing NULLs.
void MacroAssembler::store_heap_oop_null(Address dst) {
#ifdef _LP64
  if (UseCompressedOops) {
    movl(dst, (int32_t)NULL_WORD);
  } else {
    movslq(dst, (int32_t)NULL_WORD);
  }
#else
  movl(dst, (int32_t)NULL_WORD);
#endif
}

#ifdef _LP64
void MacroAssembler::store_klass_gap(Register dst, Register src) {
5772
  if (UseCompressedClassPointers) {
5773 5774 5775 5776 5777 5778 5779
    // Store to klass gap in destination
    movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  }
}

#ifdef ASSERT
void MacroAssembler::verify_heapbase(const char* msg) {
5780
  assert (UseCompressedOops, "should be compressed");
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
  assert (Universe::heap() != NULL, "java heap should be initialized");
  if (CheckCompressedOops) {
    Label ok;
    push(rscratch1); // cmpptr trashes rscratch1
    cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
    jcc(Assembler::equal, ok);
    STOP(msg);
    bind(ok);
    pop(rscratch1);
  }
}
#endif

// Algorithm must match oop.inline.hpp encode_heap_oop.
void MacroAssembler::encode_heap_oop(Register r) {
#ifdef ASSERT
  verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
#endif
  verify_oop(r, "broken oop in encode_heap_oop");
  if (Universe::narrow_oop_base() == NULL) {
    if (Universe::narrow_oop_shift() != 0) {
      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
      shrq(r, LogMinObjAlignmentInBytes);
    }
    return;
  }
  testq(r, r);
  cmovq(Assembler::equal, r, r12_heapbase);
  subq(r, r12_heapbase);
  shrq(r, LogMinObjAlignmentInBytes);
}

void MacroAssembler::encode_heap_oop_not_null(Register r) {
#ifdef ASSERT
  verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  if (CheckCompressedOops) {
    Label ok;
    testq(r, r);
    jcc(Assembler::notEqual, ok);
    STOP("null oop passed to encode_heap_oop_not_null");
    bind(ok);
  }
#endif
  verify_oop(r, "broken oop in encode_heap_oop_not_null");
  if (Universe::narrow_oop_base() != NULL) {
    subq(r, r12_heapbase);
  }
  if (Universe::narrow_oop_shift() != 0) {
    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    shrq(r, LogMinObjAlignmentInBytes);
  }
}

void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
#ifdef ASSERT
  verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  if (CheckCompressedOops) {
    Label ok;
    testq(src, src);
    jcc(Assembler::notEqual, ok);
    STOP("null oop passed to encode_heap_oop_not_null2");
    bind(ok);
  }
#endif
  verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  if (dst != src) {
    movq(dst, src);
  }
  if (Universe::narrow_oop_base() != NULL) {
    subq(dst, r12_heapbase);
  }
  if (Universe::narrow_oop_shift() != 0) {
    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    shrq(dst, LogMinObjAlignmentInBytes);
  }
}

void  MacroAssembler::decode_heap_oop(Register r) {
#ifdef ASSERT
  verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
#endif
  if (Universe::narrow_oop_base() == NULL) {
    if (Universe::narrow_oop_shift() != 0) {
      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
      shlq(r, LogMinObjAlignmentInBytes);
    }
  } else {
    Label done;
    shlq(r, LogMinObjAlignmentInBytes);
    jccb(Assembler::equal, done);
    addq(r, r12_heapbase);
    bind(done);
  }
  verify_oop(r, "broken oop in decode_heap_oop");
}

void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  // Note: it will change flags
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  // Cannot assert, unverified entry point counts instructions (see .ad file)
  // vtableStubs also counts instructions in pd_code_size_limit.
  // Also do not verify_oop as this is called by verify_oop.
  if (Universe::narrow_oop_shift() != 0) {
    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    shlq(r, LogMinObjAlignmentInBytes);
    if (Universe::narrow_oop_base() != NULL) {
      addq(r, r12_heapbase);
    }
  } else {
    assert (Universe::narrow_oop_base() == NULL, "sanity");
  }
}

void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  // Note: it will change flags
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  // Cannot assert, unverified entry point counts instructions (see .ad file)
  // vtableStubs also counts instructions in pd_code_size_limit.
  // Also do not verify_oop as this is called by verify_oop.
  if (Universe::narrow_oop_shift() != 0) {
    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    if (LogMinObjAlignmentInBytes == Address::times_8) {
      leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
    } else {
      if (dst != src) {
        movq(dst, src);
      }
      shlq(dst, LogMinObjAlignmentInBytes);
      if (Universe::narrow_oop_base() != NULL) {
        addq(dst, r12_heapbase);
      }
    }
  } else {
    assert (Universe::narrow_oop_base() == NULL, "sanity");
    if (dst != src) {
      movq(dst, src);
    }
  }
}

void MacroAssembler::encode_klass_not_null(Register r) {
5924 5925 5926 5927 5928 5929
  if (Universe::narrow_klass_base() != NULL) {
    // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
    assert(r != r12_heapbase, "Encoding a klass in r12");
    mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
    subq(r, r12_heapbase);
  }
5930 5931 5932 5933
  if (Universe::narrow_klass_shift() != 0) {
    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
    shrq(r, LogKlassAlignmentInBytes);
  }
5934 5935 5936
  if (Universe::narrow_klass_base() != NULL) {
    reinit_heapbase();
  }
5937 5938 5939
}

void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5940 5941 5942
  if (dst == src) {
    encode_klass_not_null(src);
  } else {
5943 5944 5945 5946 5947 5948 5949
    if (Universe::narrow_klass_base() != NULL) {
      mov64(dst, (int64_t)Universe::narrow_klass_base());
      negq(dst);
      addq(dst, src);
    } else {
      movptr(dst, src);
    }
5950 5951 5952 5953
    if (Universe::narrow_klass_shift() != 0) {
      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
      shrq(dst, LogKlassAlignmentInBytes);
    }
5954 5955 5956
  }
}

5957 5958 5959 5960 5961
// Function instr_size_for_decode_klass_not_null() counts the instructions
// generated by decode_klass_not_null(register r) and reinit_heapbase(),
// when (Universe::heap() != NULL).  Hence, if the instructions they
// generate change, then this method needs to be updated.
int MacroAssembler::instr_size_for_decode_klass_not_null() {
5962
  assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5963 5964 5965 5966 5967 5968 5969
  if (Universe::narrow_klass_base() != NULL) {
    // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
    return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
  } else {
    // longest load decode klass function, mov64, leaq
    return 16;
  }
5970 5971 5972 5973
}

// !!! If the instructions that get generated here change then function
// instr_size_for_decode_klass_not_null() needs to get updated.
5974 5975
void  MacroAssembler::decode_klass_not_null(Register r) {
  // Note: it will change flags
5976
  assert (UseCompressedClassPointers, "should only be used for compressed headers");
5977
  assert(r != r12_heapbase, "Decoding a klass in r12");
5978 5979 5980 5981 5982 5983 5984
  // Cannot assert, unverified entry point counts instructions (see .ad file)
  // vtableStubs also counts instructions in pd_code_size_limit.
  // Also do not verify_oop as this is called by verify_oop.
  if (Universe::narrow_klass_shift() != 0) {
    assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
    shlq(r, LogKlassAlignmentInBytes);
  }
5985
  // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5986 5987 5988 5989 5990
  if (Universe::narrow_klass_base() != NULL) {
    mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
    addq(r, r12_heapbase);
    reinit_heapbase();
  }
5991 5992 5993 5994
}

void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  // Note: it will change flags
5995
  assert (UseCompressedClassPointers, "should only be used for compressed headers");
5996 5997
  if (dst == src) {
    decode_klass_not_null(dst);
5998
  } else {
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
    // Cannot assert, unverified entry point counts instructions (see .ad file)
    // vtableStubs also counts instructions in pd_code_size_limit.
    // Also do not verify_oop as this is called by verify_oop.
    mov64(dst, (int64_t)Universe::narrow_klass_base());
    if (Universe::narrow_klass_shift() != 0) {
      assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
      assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
      leaq(dst, Address(dst, src, Address::times_8, 0));
    } else {
      addq(dst, src);
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
    }
  }
}

void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  mov_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  mov_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6032
  assert (UseCompressedClassPointers, "should only be used for compressed headers");
6033 6034 6035
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int klass_index = oop_recorder()->find_index(k);
  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6036
  mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6037 6038 6039
}

void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6040
  assert (UseCompressedClassPointers, "should only be used for compressed headers");
6041 6042 6043
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int klass_index = oop_recorder()->find_index(k);
  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6044
  mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
}

void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6066
  assert (UseCompressedClassPointers, "should only be used for compressed headers");
6067 6068 6069
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int klass_index = oop_recorder()->find_index(k);
  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6070
  Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6071 6072 6073
}

void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6074
  assert (UseCompressedClassPointers, "should only be used for compressed headers");
6075 6076 6077
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int klass_index = oop_recorder()->find_index(k);
  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6078
  Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6079 6080 6081
}

void MacroAssembler::reinit_heapbase() {
6082
  if (UseCompressedOops || UseCompressedClassPointers) {
6083 6084 6085 6086 6087 6088 6089 6090 6091
    if (Universe::heap() != NULL) {
      if (Universe::narrow_oop_base() == NULL) {
        MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
      } else {
        mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
      }
    } else {
      movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
    }
6092 6093
  }
}
6094

6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
#endif // _LP64


// C2 compiled method's prolog code.
void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {

  // WARNING: Initial instruction MUST be 5 bytes or longer so that
  // NativeJump::patch_verified_entry will be able to patch out the entry
  // code safely. The push to verify stack depth is ok at 5 bytes,
  // the frame allocation can be either 3 or 6 bytes. So if we don't do
  // stack bang then we must use the 6 byte frame allocation even if
  // we have no frame. :-(

  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  // Remove word for return addr
  framesize -= wordSize;

  // Calls to C2R adapters often do not accept exceptional returns.
  // We require that their callers must bang for them.  But be careful, because
  // some VM calls (such as call site linkage) can use several kilobytes of
  // stack.  But the stack safety zone should account for that.
  // See bugs 4446381, 4468289, 4497237.
  if (stack_bang) {
    generate_stack_overflow_check(framesize);

    // We always push rbp, so that on return to interpreter rbp, will be
    // restored correctly and we can correct the stack.
    push(rbp);
    // Remove word for ebp
    framesize -= wordSize;

    // Create frame
    if (framesize) {
      subptr(rsp, framesize);
    }
  } else {
    // Create frame (force generation of a 4 byte immediate value)
    subptr_imm32(rsp, framesize);

    // Save RBP register now.
    framesize -= wordSize;
    movptr(Address(rsp, framesize), rbp);
  }

  if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
    framesize -= wordSize;
    movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  }

#ifndef _LP64
  // If method sets FPU control word do it now
  if (fp_mode_24b) {
    fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  }
  if (UseSSE >= 2 && VerifyFPU) {
    verify_FPU(0, "FPU stack must be clean on entry");
  }
#endif

#ifdef ASSERT
  if (VerifyStackAtCalls) {
    Label L;
    push(rax);
    mov(rax, rsp);
    andptr(rax, StackAlignmentInBytes-1);
    cmpptr(rax, StackAlignmentInBytes-wordSize);
    pop(rax);
    jcc(Assembler::equal, L);
    STOP("Stack is not properly aligned!");
    bind(L);
  }
#endif

}

6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
  // cnt - number of qwords (8-byte words).
  // base - start address, qword aligned.
  assert(base==rdi, "base register must be edi for rep stos");
  assert(tmp==rax,   "tmp register must be eax for rep stos");
  assert(cnt==rcx,   "cnt register must be ecx for rep stos");

  xorptr(tmp, tmp);
  if (UseFastStosb) {
    shlptr(cnt,3); // convert to number of bytes
    rep_stosb();
  } else {
    NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
    rep_stos();
  }
}
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620

// IndexOf for constant substrings with size >= 8 chars
// which don't need to be loaded through stack.
void MacroAssembler::string_indexofC8(Register str1, Register str2,
                                      Register cnt1, Register cnt2,
                                      int int_cnt2,  Register result,
                                      XMMRegister vec, Register tmp) {
  ShortBranchVerifier sbv(this);
  assert(UseSSE42Intrinsics, "SSE4.2 is required");

  // This method uses pcmpestri inxtruction with bound registers
  //   inputs:
  //     xmm - substring
  //     rax - substring length (elements count)
  //     mem - scanned string
  //     rdx - string length (elements count)
  //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  //   outputs:
  //     rcx - matched index in string
  assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");

  Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
        RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
        MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;

  // Note, inline_string_indexOf() generates checks:
  // if (substr.count > string.count) return -1;
  // if (substr.count == 0) return 0;
  assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");

  // Load substring.
  movdqu(vec, Address(str2, 0));
  movl(cnt2, int_cnt2);
  movptr(result, str1); // string addr

  if (int_cnt2 > 8) {
    jmpb(SCAN_TO_SUBSTR);

    // Reload substr for rescan, this code
    // is executed only for large substrings (> 8 chars)
    bind(RELOAD_SUBSTR);
    movdqu(vec, Address(str2, 0));
    negptr(cnt2); // Jumped here with negative cnt2, convert to positive

    bind(RELOAD_STR);
    // We came here after the beginning of the substring was
    // matched but the rest of it was not so we need to search
    // again. Start from the next element after the previous match.

    // cnt2 is number of substring reminding elements and
    // cnt1 is number of string reminding elements when cmp failed.
    // Restored cnt1 = cnt1 - cnt2 + int_cnt2
    subl(cnt1, cnt2);
    addl(cnt1, int_cnt2);
    movl(cnt2, int_cnt2); // Now restore cnt2

    decrementl(cnt1);     // Shift to next element
    cmpl(cnt1, cnt2);
    jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring

    addptr(result, 2);

  } // (int_cnt2 > 8)

  // Scan string for start of substr in 16-byte vectors
  bind(SCAN_TO_SUBSTR);
  pcmpestri(vec, Address(result, 0), 0x0d);
  jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  subl(cnt1, 8);
  jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  cmpl(cnt1, cnt2);
  jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  addptr(result, 16);
  jmpb(SCAN_TO_SUBSTR);

  // Found a potential substr
  bind(FOUND_CANDIDATE);
  // Matched whole vector if first element matched (tmp(rcx) == 0).
  if (int_cnt2 == 8) {
    jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  } else { // int_cnt2 > 8
    jccb(Assembler::overflow, FOUND_SUBSTR);
  }
  // After pcmpestri tmp(rcx) contains matched element index
  // Compute start addr of substr
  lea(result, Address(result, tmp, Address::times_2));

  // Make sure string is still long enough
  subl(cnt1, tmp);
  cmpl(cnt1, cnt2);
  if (int_cnt2 == 8) {
    jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  } else { // int_cnt2 > 8
    jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  }
  // Left less then substring.

  bind(RET_NOT_FOUND);
  movl(result, -1);
  jmpb(EXIT);

  if (int_cnt2 > 8) {
    // This code is optimized for the case when whole substring
    // is matched if its head is matched.
    bind(MATCH_SUBSTR_HEAD);
    pcmpestri(vec, Address(result, 0), 0x0d);
    // Reload only string if does not match
    jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0

    Label CONT_SCAN_SUBSTR;
    // Compare the rest of substring (> 8 chars).
    bind(FOUND_SUBSTR);
    // First 8 chars are already matched.
    negptr(cnt2);
    addptr(cnt2, 8);

    bind(SCAN_SUBSTR);
    subl(cnt1, 8);
    cmpl(cnt2, -8); // Do not read beyond substring
    jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
    // Back-up strings to avoid reading beyond substring:
    // cnt1 = cnt1 - cnt2 + 8
    addl(cnt1, cnt2); // cnt2 is negative
    addl(cnt1, 8);
    movl(cnt2, 8); negptr(cnt2);
    bind(CONT_SCAN_SUBSTR);
    if (int_cnt2 < (int)G) {
      movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
      pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
    } else {
      // calculate index in register to avoid integer overflow (int_cnt2*2)
      movl(tmp, int_cnt2);
      addptr(tmp, cnt2);
      movdqu(vec, Address(str2, tmp, Address::times_2, 0));
      pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
    }
    // Need to reload strings pointers if not matched whole vector
    jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
    addptr(cnt2, 8);
    jcc(Assembler::negative, SCAN_SUBSTR);
    // Fall through if found full substring

  } // (int_cnt2 > 8)

  bind(RET_FOUND);
  // Found result if we matched full small substring.
  // Compute substr offset
  subptr(result, str1);
  shrl(result, 1); // index
  bind(EXIT);

} // string_indexofC8

// Small strings are loaded through stack if they cross page boundary.
void MacroAssembler::string_indexof(Register str1, Register str2,
                                    Register cnt1, Register cnt2,
                                    int int_cnt2,  Register result,
                                    XMMRegister vec, Register tmp) {
  ShortBranchVerifier sbv(this);
  assert(UseSSE42Intrinsics, "SSE4.2 is required");
  //
  // int_cnt2 is length of small (< 8 chars) constant substring
  // or (-1) for non constant substring in which case its length
  // is in cnt2 register.
  //
  // Note, inline_string_indexOf() generates checks:
  // if (substr.count > string.count) return -1;
  // if (substr.count == 0) return 0;
  //
  assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");

  // This method uses pcmpestri inxtruction with bound registers
  //   inputs:
  //     xmm - substring
  //     rax - substring length (elements count)
  //     mem - scanned string
  //     rdx - string length (elements count)
  //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  //   outputs:
  //     rcx - matched index in string
  assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");

  Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
        RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
        FOUND_CANDIDATE;

  { //========================================================
    // We don't know where these strings are located
    // and we can't read beyond them. Load them through stack.
    Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;

    movptr(tmp, rsp); // save old SP

    if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
      if (int_cnt2 == 1) {  // One char
        load_unsigned_short(result, Address(str2, 0));
        movdl(vec, result); // move 32 bits
      } else if (int_cnt2 == 2) { // Two chars
        movdl(vec, Address(str2, 0)); // move 32 bits
      } else if (int_cnt2 == 4) { // Four chars
        movq(vec, Address(str2, 0));  // move 64 bits
      } else { // cnt2 = { 3, 5, 6, 7 }
        // Array header size is 12 bytes in 32-bit VM
        // + 6 bytes for 3 chars == 18 bytes,
        // enough space to load vec and shift.
        assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
        movdqu(vec, Address(str2, (int_cnt2*2)-16));
        psrldq(vec, 16-(int_cnt2*2));
      }
    } else { // not constant substring
      cmpl(cnt2, 8);
      jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough

      // We can read beyond string if srt+16 does not cross page boundary
      // since heaps are aligned and mapped by pages.
      assert(os::vm_page_size() < (int)G, "default page should be small");
      movl(result, str2); // We need only low 32 bits
      andl(result, (os::vm_page_size()-1));
      cmpl(result, (os::vm_page_size()-16));
      jccb(Assembler::belowEqual, CHECK_STR);

      // Move small strings to stack to allow load 16 bytes into vec.
      subptr(rsp, 16);
      int stk_offset = wordSize-2;
      push(cnt2);

      bind(COPY_SUBSTR);
      load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
      movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
      decrement(cnt2);
      jccb(Assembler::notZero, COPY_SUBSTR);

      pop(cnt2);
      movptr(str2, rsp);  // New substring address
    } // non constant

    bind(CHECK_STR);
    cmpl(cnt1, 8);
    jccb(Assembler::aboveEqual, BIG_STRINGS);

    // Check cross page boundary.
    movl(result, str1); // We need only low 32 bits
    andl(result, (os::vm_page_size()-1));
    cmpl(result, (os::vm_page_size()-16));
    jccb(Assembler::belowEqual, BIG_STRINGS);

    subptr(rsp, 16);
    int stk_offset = -2;
    if (int_cnt2 < 0) { // not constant
      push(cnt2);
      stk_offset += wordSize;
    }
    movl(cnt2, cnt1);

    bind(COPY_STR);
    load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
    movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
    decrement(cnt2);
    jccb(Assembler::notZero, COPY_STR);

    if (int_cnt2 < 0) { // not constant
      pop(cnt2);
    }
    movptr(str1, rsp);  // New string address

    bind(BIG_STRINGS);
    // Load substring.
    if (int_cnt2 < 0) { // -1
      movdqu(vec, Address(str2, 0));
      push(cnt2);       // substr count
      push(str2);       // substr addr
      push(str1);       // string addr
    } else {
      // Small (< 8 chars) constant substrings are loaded already.
      movl(cnt2, int_cnt2);
    }
    push(tmp);  // original SP

  } // Finished loading

  //========================================================
  // Start search
  //

  movptr(result, str1); // string addr

  if (int_cnt2  < 0) {  // Only for non constant substring
    jmpb(SCAN_TO_SUBSTR);

    // SP saved at sp+0
    // String saved at sp+1*wordSize
    // Substr saved at sp+2*wordSize
    // Substr count saved at sp+3*wordSize

    // Reload substr for rescan, this code
    // is executed only for large substrings (> 8 chars)
    bind(RELOAD_SUBSTR);
    movptr(str2, Address(rsp, 2*wordSize));
    movl(cnt2, Address(rsp, 3*wordSize));
    movdqu(vec, Address(str2, 0));
    // We came here after the beginning of the substring was
    // matched but the rest of it was not so we need to search
    // again. Start from the next element after the previous match.
    subptr(str1, result); // Restore counter
    shrl(str1, 1);
    addl(cnt1, str1);
    decrementl(cnt1);   // Shift to next element
    cmpl(cnt1, cnt2);
    jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring

    addptr(result, 2);
  } // non constant

  // Scan string for start of substr in 16-byte vectors
  bind(SCAN_TO_SUBSTR);
  assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  pcmpestri(vec, Address(result, 0), 0x0d);
  jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  subl(cnt1, 8);
  jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  cmpl(cnt1, cnt2);
  jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  addptr(result, 16);

  bind(ADJUST_STR);
  cmpl(cnt1, 8); // Do not read beyond string
  jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  // Back-up string to avoid reading beyond string.
  lea(result, Address(result, cnt1, Address::times_2, -16));
  movl(cnt1, 8);
  jmpb(SCAN_TO_SUBSTR);

  // Found a potential substr
  bind(FOUND_CANDIDATE);
  // After pcmpestri tmp(rcx) contains matched element index

  // Make sure string is still long enough
  subl(cnt1, tmp);
  cmpl(cnt1, cnt2);
  jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  // Left less then substring.

  bind(RET_NOT_FOUND);
  movl(result, -1);
  jmpb(CLEANUP);

  bind(FOUND_SUBSTR);
  // Compute start addr of substr
  lea(result, Address(result, tmp, Address::times_2));

  if (int_cnt2 > 0) { // Constant substring
    // Repeat search for small substring (< 8 chars)
    // from new point without reloading substring.
    // Have to check that we don't read beyond string.
    cmpl(tmp, 8-int_cnt2);
    jccb(Assembler::greater, ADJUST_STR);
    // Fall through if matched whole substring.
  } else { // non constant
    assert(int_cnt2 == -1, "should be != 0");

    addl(tmp, cnt2);
    // Found result if we matched whole substring.
    cmpl(tmp, 8);
    jccb(Assembler::lessEqual, RET_FOUND);

    // Repeat search for small substring (<= 8 chars)
    // from new point 'str1' without reloading substring.
    cmpl(cnt2, 8);
    // Have to check that we don't read beyond string.
    jccb(Assembler::lessEqual, ADJUST_STR);

    Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
    // Compare the rest of substring (> 8 chars).
    movptr(str1, result);

    cmpl(tmp, cnt2);
    // First 8 chars are already matched.
    jccb(Assembler::equal, CHECK_NEXT);

    bind(SCAN_SUBSTR);
    pcmpestri(vec, Address(str1, 0), 0x0d);
    // Need to reload strings pointers if not matched whole vector
    jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0

    bind(CHECK_NEXT);
    subl(cnt2, 8);
    jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
    addptr(str1, 16);
    addptr(str2, 16);
    subl(cnt1, 8);
    cmpl(cnt2, 8); // Do not read beyond substring
    jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
    // Back-up strings to avoid reading beyond substring.
    lea(str2, Address(str2, cnt2, Address::times_2, -16));
    lea(str1, Address(str1, cnt2, Address::times_2, -16));
    subl(cnt1, cnt2);
    movl(cnt2, 8);
    addl(cnt1, 8);
    bind(CONT_SCAN_SUBSTR);
    movdqu(vec, Address(str2, 0));
    jmpb(SCAN_SUBSTR);

    bind(RET_FOUND_LONG);
    movptr(str1, Address(rsp, wordSize));
  } // non constant

  bind(RET_FOUND);
  // Compute substr offset
  subptr(result, str1);
  shrl(result, 1); // index

  bind(CLEANUP);
  pop(rsp); // restore SP

} // string_indexof

// Compare strings.
void MacroAssembler::string_compare(Register str1, Register str2,
                                    Register cnt1, Register cnt2, Register result,
                                    XMMRegister vec1) {
  ShortBranchVerifier sbv(this);
  Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;

  // Compute the minimum of the string lengths and the
  // difference of the string lengths (stack).
  // Do the conditional move stuff
  movl(result, cnt1);
  subl(cnt1, cnt2);
  push(cnt1);
  cmov32(Assembler::lessEqual, cnt2, result);

  // Is the minimum length zero?
  testl(cnt2, cnt2);
  jcc(Assembler::zero, LENGTH_DIFF_LABEL);

6621
  // Compare first characters
6622 6623 6624 6625
  load_unsigned_short(result, Address(str1, 0));
  load_unsigned_short(cnt1, Address(str2, 0));
  subl(result, cnt1);
  jcc(Assembler::notZero,  POP_LABEL);
6626 6627
  cmpl(cnt2, 1);
  jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6628

6629 6630 6631
  // Check if the strings start at the same location.
  cmpptr(str1, str2);
  jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6632 6633 6634 6635

  Address::ScaleFactor scale = Address::times_2;
  int stride = 8;

6636
  if (UseAVX >= 2 && UseSSE42Intrinsics) {
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
    Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
    Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
    Label COMPARE_TAIL_LONG;
    int pcmpmask = 0x19;

    // Setup to compare 16-chars (32-bytes) vectors,
    // start from first character again because it has aligned address.
    int stride2 = 16;
    int adr_stride  = stride  << scale;
    int adr_stride2 = stride2 << scale;

    assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
    // rax and rdx are used by pcmpestri as elements counters
    movl(result, cnt2);
    andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
    jcc(Assembler::zero, COMPARE_TAIL_LONG);

    // fast path : compare first 2 8-char vectors.
    bind(COMPARE_16_CHARS);
    movdqu(vec1, Address(str1, 0));
    pcmpestri(vec1, Address(str2, 0), pcmpmask);
    jccb(Assembler::below, COMPARE_INDEX_CHAR);

    movdqu(vec1, Address(str1, adr_stride));
    pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
    jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
    addl(cnt1, stride);

    // Compare the characters at index in cnt1
    bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
    load_unsigned_short(result, Address(str1, cnt1, scale));
    load_unsigned_short(cnt2, Address(str2, cnt1, scale));
    subl(result, cnt2);
    jmp(POP_LABEL);

    // Setup the registers to start vector comparison loop
    bind(COMPARE_WIDE_VECTORS);
    lea(str1, Address(str1, result, scale));
    lea(str2, Address(str2, result, scale));
    subl(result, stride2);
    subl(cnt2, stride2);
    jccb(Assembler::zero, COMPARE_WIDE_TAIL);
    negptr(result);

    //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
    bind(COMPARE_WIDE_VECTORS_LOOP);
    vmovdqu(vec1, Address(str1, result, scale));
    vpxor(vec1, Address(str2, result, scale));
    vptest(vec1, vec1);
    jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
    addptr(result, stride2);
    subl(cnt2, stride2);
    jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6690 6691
    // clean upper bits of YMM registers
    vzeroupper();
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704

    // compare wide vectors tail
    bind(COMPARE_WIDE_TAIL);
    testptr(result, result);
    jccb(Assembler::zero, LENGTH_DIFF_LABEL);

    movl(result, stride2);
    movl(cnt2, result);
    negptr(result);
    jmpb(COMPARE_WIDE_VECTORS_LOOP);

    // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
    bind(VECTOR_NOT_EQUAL);
6705 6706
    // clean upper bits of YMM registers
    vzeroupper();
6707 6708 6709 6710 6711 6712 6713 6714 6715
    lea(str1, Address(str1, result, scale));
    lea(str2, Address(str2, result, scale));
    jmp(COMPARE_16_CHARS);

    // Compare tail chars, length between 1 to 15 chars
    bind(COMPARE_TAIL_LONG);
    movl(cnt2, result);
    cmpl(cnt2, stride);
    jccb(Assembler::less, COMPARE_SMALL_STR);
6716

6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
    movdqu(vec1, Address(str1, 0));
    pcmpestri(vec1, Address(str2, 0), pcmpmask);
    jcc(Assembler::below, COMPARE_INDEX_CHAR);
    subptr(cnt2, stride);
    jccb(Assembler::zero, LENGTH_DIFF_LABEL);
    lea(str1, Address(str1, result, scale));
    lea(str2, Address(str2, result, scale));
    negptr(cnt2);
    jmpb(WHILE_HEAD_LABEL);

    bind(COMPARE_SMALL_STR);
  } else if (UseSSE42Intrinsics) {
6729 6730
    Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
    int pcmpmask = 0x19;
6731 6732
    // Setup to compare 8-char (16-byte) vectors,
    // start from first character again because it has aligned address.
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
    movl(result, cnt2);
    andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
    jccb(Assembler::zero, COMPARE_TAIL);

    lea(str1, Address(str1, result, scale));
    lea(str2, Address(str2, result, scale));
    negptr(result);

    // pcmpestri
    //   inputs:
    //     vec1- substring
    //     rax - negative string length (elements count)
    //     mem - scaned string
    //     rdx - string length (elements count)
    //     pcmpmask - cmp mode: 11000 (string compare with negated result)
    //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
    //   outputs:
    //     rcx - first mismatched element index
    assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");

    bind(COMPARE_WIDE_VECTORS);
    movdqu(vec1, Address(str1, result, scale));
    pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
    // After pcmpestri cnt1(rcx) contains mismatched element index

    jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
    addptr(result, stride);
    subptr(cnt2, stride);
    jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);

    // compare wide vectors tail
6764
    testptr(result, result);
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
    jccb(Assembler::zero, LENGTH_DIFF_LABEL);

    movl(cnt2, stride);
    movl(result, stride);
    negptr(result);
    movdqu(vec1, Address(str1, result, scale));
    pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
    jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);

    // Mismatched characters in the vectors
    bind(VECTOR_NOT_EQUAL);
6776 6777 6778 6779
    addptr(cnt1, result);
    load_unsigned_short(result, Address(str1, cnt1, scale));
    load_unsigned_short(cnt2, Address(str2, cnt1, scale));
    subl(result, cnt2);
6780 6781 6782 6783 6784 6785 6786
    jmpb(POP_LABEL);

    bind(COMPARE_TAIL); // limit is zero
    movl(cnt2, result);
    // Fallthru to tail compare
  }
  // Shift str2 and str1 to the end of the arrays, negate min
6787 6788 6789
  lea(str1, Address(str1, cnt2, scale));
  lea(str2, Address(str2, cnt2, scale));
  decrementl(cnt2);  // first character was compared already
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
  negptr(cnt2);

  // Compare the rest of the elements
  bind(WHILE_HEAD_LABEL);
  load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  subl(result, cnt1);
  jccb(Assembler::notZero, POP_LABEL);
  increment(cnt2);
  jccb(Assembler::notZero, WHILE_HEAD_LABEL);

  // Strings are equal up to min length.  Return the length difference.
  bind(LENGTH_DIFF_LABEL);
  pop(result);
  jmpb(DONE_LABEL);

  // Discard the stored length difference
  bind(POP_LABEL);
  pop(cnt1);

  // That's it
  bind(DONE_LABEL);
}

// Compare char[] arrays aligned to 4 bytes or substrings.
void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
                                        Register limit, Register result, Register chr,
                                        XMMRegister vec1, XMMRegister vec2) {
  ShortBranchVerifier sbv(this);
  Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;

  int length_offset  = arrayOopDesc::length_offset_in_bytes();
  int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);

  // Check the input args
  cmpptr(ary1, ary2);
  jcc(Assembler::equal, TRUE_LABEL);

  if (is_array_equ) {
    // Need additional checks for arrays_equals.
    testptr(ary1, ary1);
    jcc(Assembler::zero, FALSE_LABEL);
    testptr(ary2, ary2);
    jcc(Assembler::zero, FALSE_LABEL);

    // Check the lengths
    movl(limit, Address(ary1, length_offset));
    cmpl(limit, Address(ary2, length_offset));
    jcc(Assembler::notEqual, FALSE_LABEL);
  }

  // count == 0
  testl(limit, limit);
  jcc(Assembler::zero, TRUE_LABEL);

  if (is_array_equ) {
    // Load array address
    lea(ary1, Address(ary1, base_offset));
    lea(ary2, Address(ary2, base_offset));
  }

  shll(limit, 1);      // byte count != 0
  movl(result, limit); // copy

6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
  if (UseAVX >= 2) {
    // With AVX2, use 32-byte vector compare
    Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;

    // Compare 32-byte vectors
    andl(result, 0x0000001e);  //   tail count (in bytes)
    andl(limit, 0xffffffe0);   // vector count (in bytes)
    jccb(Assembler::zero, COMPARE_TAIL);

    lea(ary1, Address(ary1, limit, Address::times_1));
    lea(ary2, Address(ary2, limit, Address::times_1));
    negptr(limit);

    bind(COMPARE_WIDE_VECTORS);
    vmovdqu(vec1, Address(ary1, limit, Address::times_1));
    vmovdqu(vec2, Address(ary2, limit, Address::times_1));
    vpxor(vec1, vec2);

    vptest(vec1, vec1);
    jccb(Assembler::notZero, FALSE_LABEL);
    addptr(limit, 32);
    jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);

    testl(result, result);
    jccb(Assembler::zero, TRUE_LABEL);

    vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
    vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
    vpxor(vec1, vec2);

    vptest(vec1, vec1);
    jccb(Assembler::notZero, FALSE_LABEL);
    jmpb(TRUE_LABEL);

    bind(COMPARE_TAIL); // limit is zero
    movl(limit, result);
    // Fallthru to tail compare
  } else if (UseSSE42Intrinsics) {
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
    // With SSE4.2, use double quad vector compare
    Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;

    // Compare 16-byte vectors
    andl(result, 0x0000000e);  //   tail count (in bytes)
    andl(limit, 0xfffffff0);   // vector count (in bytes)
    jccb(Assembler::zero, COMPARE_TAIL);

    lea(ary1, Address(ary1, limit, Address::times_1));
    lea(ary2, Address(ary2, limit, Address::times_1));
    negptr(limit);

    bind(COMPARE_WIDE_VECTORS);
    movdqu(vec1, Address(ary1, limit, Address::times_1));
    movdqu(vec2, Address(ary2, limit, Address::times_1));
    pxor(vec1, vec2);

    ptest(vec1, vec1);
    jccb(Assembler::notZero, FALSE_LABEL);
    addptr(limit, 16);
    jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);

    testl(result, result);
    jccb(Assembler::zero, TRUE_LABEL);

    movdqu(vec1, Address(ary1, result, Address::times_1, -16));
    movdqu(vec2, Address(ary2, result, Address::times_1, -16));
    pxor(vec1, vec2);

    ptest(vec1, vec1);
    jccb(Assembler::notZero, FALSE_LABEL);
    jmpb(TRUE_LABEL);

    bind(COMPARE_TAIL); // limit is zero
    movl(limit, result);
    // Fallthru to tail compare
  }

  // Compare 4-byte vectors
  andl(limit, 0xfffffffc); // vector count (in bytes)
  jccb(Assembler::zero, COMPARE_CHAR);

  lea(ary1, Address(ary1, limit, Address::times_1));
  lea(ary2, Address(ary2, limit, Address::times_1));
  negptr(limit);

  bind(COMPARE_VECTORS);
  movl(chr, Address(ary1, limit, Address::times_1));
  cmpl(chr, Address(ary2, limit, Address::times_1));
  jccb(Assembler::notEqual, FALSE_LABEL);
  addptr(limit, 4);
  jcc(Assembler::notZero, COMPARE_VECTORS);

  // Compare trailing char (final 2 bytes), if any
  bind(COMPARE_CHAR);
  testl(result, 0x2);   // tail  char
  jccb(Assembler::zero, TRUE_LABEL);
  load_unsigned_short(chr, Address(ary1, 0));
  load_unsigned_short(limit, Address(ary2, 0));
  cmpl(chr, limit);
  jccb(Assembler::notEqual, FALSE_LABEL);

  bind(TRUE_LABEL);
  movl(result, 1);   // return true
  jmpb(DONE);

  bind(FALSE_LABEL);
  xorl(result, result); // return false

  // That's it
  bind(DONE);
6963 6964 6965 6966
  if (UseAVX >= 2) {
    // clean upper bits of YMM registers
    vzeroupper();
  }
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
}

void MacroAssembler::generate_fill(BasicType t, bool aligned,
                                   Register to, Register value, Register count,
                                   Register rtmp, XMMRegister xtmp) {
  ShortBranchVerifier sbv(this);
  assert_different_registers(to, value, count, rtmp);
  Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  Label L_fill_2_bytes, L_fill_4_bytes;

  int shift = -1;
  switch (t) {
    case T_BYTE:
      shift = 2;
      break;
    case T_SHORT:
      shift = 1;
      break;
    case T_INT:
      shift = 0;
      break;
    default: ShouldNotReachHere();
  }

  if (t == T_BYTE) {
    andl(value, 0xff);
    movl(rtmp, value);
    shll(rtmp, 8);
    orl(value, rtmp);
  }
  if (t == T_SHORT) {
    andl(value, 0xffff);
  }
  if (t == T_BYTE || t == T_SHORT) {
    movl(rtmp, value);
    shll(rtmp, 16);
    orl(value, rtmp);
  }

  cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
    // align source address at 4 bytes address boundary
    if (t == T_BYTE) {
      // One byte misalignment happens only for byte arrays
      testptr(to, 1);
      jccb(Assembler::zero, L_skip_align1);
      movb(Address(to, 0), value);
      increment(to);
      decrement(count);
      BIND(L_skip_align1);
    }
    // Two bytes misalignment happens only for byte and short (char) arrays
    testptr(to, 2);
    jccb(Assembler::zero, L_skip_align2);
    movw(Address(to, 0), value);
    addptr(to, 2);
    subl(count, 1<<(shift-1));
    BIND(L_skip_align2);
  }
  if (UseSSE < 2) {
    Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
    // Fill 32-byte chunks
    subl(count, 8 << shift);
    jcc(Assembler::less, L_check_fill_8_bytes);
    align(16);

    BIND(L_fill_32_bytes_loop);

    for (int i = 0; i < 32; i += 4) {
      movl(Address(to, i), value);
    }

    addptr(to, 32);
    subl(count, 8 << shift);
    jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
    BIND(L_check_fill_8_bytes);
    addl(count, 8 << shift);
    jccb(Assembler::zero, L_exit);
    jmpb(L_fill_8_bytes);

    //
    // length is too short, just fill qwords
    //
    BIND(L_fill_8_bytes_loop);
    movl(Address(to, 0), value);
    movl(Address(to, 4), value);
    addptr(to, 8);
    BIND(L_fill_8_bytes);
    subl(count, 1 << (shift + 1));
    jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
    // fall through to fill 4 bytes
  } else {
    Label L_fill_32_bytes;
    if (!UseUnalignedLoadStores) {
      // align to 8 bytes, we know we are 4 byte aligned to start
      testptr(to, 4);
      jccb(Assembler::zero, L_fill_32_bytes);
      movl(Address(to, 0), value);
      addptr(to, 4);
      subl(count, 1<<shift);
    }
    BIND(L_fill_32_bytes);
    {
      assert( UseSSE >= 2, "supported cpu only" );
      Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
      movdl(xtmp, value);
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
      if (UseAVX >= 2 && UseUnalignedLoadStores) {
        // Fill 64-byte chunks
        Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
        vpbroadcastd(xtmp, xtmp);

        subl(count, 16 << shift);
        jcc(Assembler::less, L_check_fill_32_bytes);
        align(16);

        BIND(L_fill_64_bytes_loop);
        vmovdqu(Address(to, 0), xtmp);
        vmovdqu(Address(to, 32), xtmp);
        addptr(to, 64);
        subl(count, 16 << shift);
        jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);

        BIND(L_check_fill_32_bytes);
        addl(count, 8 << shift);
        jccb(Assembler::less, L_check_fill_8_bytes);
        vmovdqu(Address(to, 0), xtmp);
        addptr(to, 32);
        subl(count, 8 << shift);
7096 7097 7098 7099

        BIND(L_check_fill_8_bytes);
        // clean upper bits of YMM registers
        vzeroupper();
7100
      } else {
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
        // Fill 32-byte chunks
        pshufd(xtmp, xtmp, 0);

        subl(count, 8 << shift);
        jcc(Assembler::less, L_check_fill_8_bytes);
        align(16);

        BIND(L_fill_32_bytes_loop);

        if (UseUnalignedLoadStores) {
          movdqu(Address(to, 0), xtmp);
          movdqu(Address(to, 16), xtmp);
        } else {
          movq(Address(to, 0), xtmp);
          movq(Address(to, 8), xtmp);
          movq(Address(to, 16), xtmp);
          movq(Address(to, 24), xtmp);
        }

        addptr(to, 32);
        subl(count, 8 << shift);
        jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7123 7124

        BIND(L_check_fill_8_bytes);
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
      }
      addl(count, 8 << shift);
      jccb(Assembler::zero, L_exit);
      jmpb(L_fill_8_bytes);

      //
      // length is too short, just fill qwords
      //
      BIND(L_fill_8_bytes_loop);
      movq(Address(to, 0), xtmp);
      addptr(to, 8);
      BIND(L_fill_8_bytes);
      subl(count, 1 << (shift + 1));
      jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
    }
  }
  // fill trailing 4 bytes
  BIND(L_fill_4_bytes);
  testl(count, 1<<shift);
  jccb(Assembler::zero, L_fill_2_bytes);
  movl(Address(to, 0), value);
  if (t == T_BYTE || t == T_SHORT) {
    addptr(to, 4);
    BIND(L_fill_2_bytes);
    // fill trailing 2 bytes
    testl(count, 1<<(shift-1));
    jccb(Assembler::zero, L_fill_byte);
    movw(Address(to, 0), value);
    if (t == T_BYTE) {
      addptr(to, 2);
      BIND(L_fill_byte);
      // fill trailing byte
      testl(count, 1);
      jccb(Assembler::zero, L_exit);
      movb(Address(to, 0), value);
    } else {
      BIND(L_fill_byte);
    }
  } else {
    BIND(L_fill_2_bytes);
  }
  BIND(L_exit);
}
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259

// encode char[] to byte[] in ISO_8859_1
void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
                                      XMMRegister tmp1Reg, XMMRegister tmp2Reg,
                                      XMMRegister tmp3Reg, XMMRegister tmp4Reg,
                                      Register tmp5, Register result) {
  // rsi: src
  // rdi: dst
  // rdx: len
  // rcx: tmp5
  // rax: result
  ShortBranchVerifier sbv(this);
  assert_different_registers(src, dst, len, tmp5, result);
  Label L_done, L_copy_1_char, L_copy_1_char_exit;

  // set result
  xorl(result, result);
  // check for zero length
  testl(len, len);
  jcc(Assembler::zero, L_done);
  movl(result, len);

  // Setup pointers
  lea(src, Address(src, len, Address::times_2)); // char[]
  lea(dst, Address(dst, len, Address::times_1)); // byte[]
  negptr(len);

  if (UseSSE42Intrinsics || UseAVX >= 2) {
    Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
    Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;

    if (UseAVX >= 2) {
      Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
      movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
      movdl(tmp1Reg, tmp5);
      vpbroadcastd(tmp1Reg, tmp1Reg);
      jmpb(L_chars_32_check);

      bind(L_copy_32_chars);
      vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
      vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
      vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
      vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
      jccb(Assembler::notZero, L_copy_32_chars_exit);
      vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
      vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
      vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);

      bind(L_chars_32_check);
      addptr(len, 32);
      jccb(Assembler::lessEqual, L_copy_32_chars);

      bind(L_copy_32_chars_exit);
      subptr(len, 16);
      jccb(Assembler::greater, L_copy_16_chars_exit);

    } else if (UseSSE42Intrinsics) {
      movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
      movdl(tmp1Reg, tmp5);
      pshufd(tmp1Reg, tmp1Reg, 0);
      jmpb(L_chars_16_check);
    }

    bind(L_copy_16_chars);
    if (UseAVX >= 2) {
      vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
      vptest(tmp2Reg, tmp1Reg);
      jccb(Assembler::notZero, L_copy_16_chars_exit);
      vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
      vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
    } else {
      if (UseAVX > 0) {
        movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
        movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
        vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
      } else {
        movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
        por(tmp2Reg, tmp3Reg);
        movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
        por(tmp2Reg, tmp4Reg);
      }
      ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
      jccb(Assembler::notZero, L_copy_16_chars_exit);
      packuswb(tmp3Reg, tmp4Reg);
    }
    movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);

    bind(L_chars_16_check);
    addptr(len, 16);
    jccb(Assembler::lessEqual, L_copy_16_chars);

    bind(L_copy_16_chars_exit);
7260 7261 7262 7263
    if (UseAVX >= 2) {
      // clean upper bits of YMM registers
      vzeroupper();
    }
7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
    subptr(len, 8);
    jccb(Assembler::greater, L_copy_8_chars_exit);

    bind(L_copy_8_chars);
    movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
    ptest(tmp3Reg, tmp1Reg);
    jccb(Assembler::notZero, L_copy_8_chars_exit);
    packuswb(tmp3Reg, tmp1Reg);
    movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
    addptr(len, 8);
    jccb(Assembler::lessEqual, L_copy_8_chars);

    bind(L_copy_8_chars_exit);
    subptr(len, 8);
    jccb(Assembler::zero, L_done);
  }

  bind(L_copy_1_char);
  load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
  testl(tmp5, 0xff00);      // check if Unicode char
  jccb(Assembler::notZero, L_copy_1_char_exit);
  movb(Address(dst, len, Address::times_1, 0), tmp5);
  addptr(len, 1);
  jccb(Assembler::less, L_copy_1_char);

  bind(L_copy_1_char_exit);
  addptr(result, len); // len is negative count of not processed elements
  bind(L_done);
}

7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480
/**
 * Emits code to update CRC-32 with a byte value according to constants in table
 *
 * @param [in,out]crc   Register containing the crc.
 * @param [in]val       Register containing the byte to fold into the CRC.
 * @param [in]table     Register containing the table of crc constants.
 *
 * uint32_t crc;
 * val = crc_table[(val ^ crc) & 0xFF];
 * crc = val ^ (crc >> 8);
 *
 */
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
  xorl(val, crc);
  andl(val, 0xFF);
  shrl(crc, 8); // unsigned shift
  xorl(crc, Address(table, val, Address::times_4, 0));
}

/**
 * Fold 128-bit data chunk
 */
void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
  vpclmulhdq(xtmp, xK, xcrc); // [123:64]
  vpclmulldq(xcrc, xK, xcrc); // [63:0]
  vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
  pxor(xcrc, xtmp);
}

void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
  vpclmulhdq(xtmp, xK, xcrc);
  vpclmulldq(xcrc, xK, xcrc);
  pxor(xcrc, xbuf);
  pxor(xcrc, xtmp);
}

/**
 * 8-bit folds to compute 32-bit CRC
 *
 * uint64_t xcrc;
 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
 */
void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
  movdl(tmp, xcrc);
  andl(tmp, 0xFF);
  movdl(xtmp, Address(table, tmp, Address::times_4, 0));
  psrldq(xcrc, 1); // unsigned shift one byte
  pxor(xcrc, xtmp);
}

/**
 * uint32_t crc;
 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
 */
void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
  movl(tmp, crc);
  andl(tmp, 0xFF);
  shrl(crc, 8);
  xorl(crc, Address(table, tmp, Address::times_4, 0));
}

/**
 * @param crc   register containing existing CRC (32-bit)
 * @param buf   register pointing to input byte buffer (byte*)
 * @param len   register containing number of bytes
 * @param table register that will contain address of CRC table
 * @param tmp   scratch register
 */
void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
  assert_different_registers(crc, buf, len, table, tmp, rax);

  Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
  Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;

  lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
  notl(crc); // ~crc
  cmpl(len, 16);
  jcc(Assembler::less, L_tail);

  // Align buffer to 16 bytes
  movl(tmp, buf);
  andl(tmp, 0xF);
  jccb(Assembler::zero, L_aligned);
  subl(tmp,  16);
  addl(len, tmp);

  align(4);
  BIND(L_align_loop);
  movsbl(rax, Address(buf, 0)); // load byte with sign extension
  update_byte_crc32(crc, rax, table);
  increment(buf);
  incrementl(tmp);
  jccb(Assembler::less, L_align_loop);

  BIND(L_aligned);
  movl(tmp, len); // save
  shrl(len, 4);
  jcc(Assembler::zero, L_tail_restore);

  // Fold crc into first bytes of vector
  movdqa(xmm1, Address(buf, 0));
  movdl(rax, xmm1);
  xorl(crc, rax);
  pinsrd(xmm1, crc, 0);
  addptr(buf, 16);
  subl(len, 4); // len > 0
  jcc(Assembler::less, L_fold_tail);

  movdqa(xmm2, Address(buf,  0));
  movdqa(xmm3, Address(buf, 16));
  movdqa(xmm4, Address(buf, 32));
  addptr(buf, 48);
  subl(len, 3);
  jcc(Assembler::lessEqual, L_fold_512b);

  // Fold total 512 bits of polynomial on each iteration,
  // 128 bits per each of 4 parallel streams.
  movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));

  align(32);
  BIND(L_fold_512b_loop);
  fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
  fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
  fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
  addptr(buf, 64);
  subl(len, 4);
  jcc(Assembler::greater, L_fold_512b_loop);

  // Fold 512 bits to 128 bits.
  BIND(L_fold_512b);
  movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
  fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
  fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);

  // Fold the rest of 128 bits data chunks
  BIND(L_fold_tail);
  addl(len, 3);
  jccb(Assembler::lessEqual, L_fold_128b);
  movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));

  BIND(L_fold_tail_loop);
  fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  addptr(buf, 16);
  decrementl(len);
  jccb(Assembler::greater, L_fold_tail_loop);

  // Fold 128 bits in xmm1 down into 32 bits in crc register.
  BIND(L_fold_128b);
  movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
  vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
  vpand(xmm3, xmm0, xmm2, false /* vector256 */);
  vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
  psrldq(xmm1, 8);
  psrldq(xmm2, 4);
  pxor(xmm0, xmm1);
  pxor(xmm0, xmm2);

  // 8 8-bit folds to compute 32-bit CRC.
  for (int j = 0; j < 4; j++) {
    fold_8bit_crc32(xmm0, table, xmm1, rax);
  }
  movdl(crc, xmm0); // mov 32 bits to general register
  for (int j = 0; j < 4; j++) {
    fold_8bit_crc32(crc, table, rax);
  }

  BIND(L_tail_restore);
  movl(len, tmp); // restore
  BIND(L_tail);
  andl(len, 0xf);
  jccb(Assembler::zero, L_exit);

  // Fold the rest of bytes
  align(4);
  BIND(L_tail_loop);
  movsbl(rax, Address(buf, 0)); // load byte with sign extension
  update_byte_crc32(crc, rax, table);
  increment(buf);
  decrementl(len);
  jccb(Assembler::greater, L_tail_loop);

  BIND(L_exit);
  notl(crc); // ~c
}

7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
#undef BIND
#undef BLOCK_COMMENT


Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  switch (cond) {
    // Note some conditions are synonyms for others
    case Assembler::zero:         return Assembler::notZero;
    case Assembler::notZero:      return Assembler::zero;
    case Assembler::less:         return Assembler::greaterEqual;
    case Assembler::lessEqual:    return Assembler::greater;
    case Assembler::greater:      return Assembler::lessEqual;
    case Assembler::greaterEqual: return Assembler::less;
    case Assembler::below:        return Assembler::aboveEqual;
    case Assembler::belowEqual:   return Assembler::above;
    case Assembler::above:        return Assembler::belowEqual;
    case Assembler::aboveEqual:   return Assembler::below;
    case Assembler::overflow:     return Assembler::noOverflow;
    case Assembler::noOverflow:   return Assembler::overflow;
    case Assembler::negative:     return Assembler::positive;
    case Assembler::positive:     return Assembler::negative;
    case Assembler::parity:       return Assembler::noParity;
    case Assembler::noParity:     return Assembler::parity;
  }
  ShouldNotReachHere(); return Assembler::overflow;
}

SkipIfEqual::SkipIfEqual(
    MacroAssembler* masm, const bool* flag_addr, bool value) {
  _masm = masm;
  _masm->cmp8(ExternalAddress((address)flag_addr), value);
  _masm->jcc(Assembler::equal, _label);
}

SkipIfEqual::~SkipIfEqual() {
  _masm->bind(_label);
}