methodHandles_x86.cpp 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_methodHandles_x86.cpp.incl"

#define __ _masm->

address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
                                                address interpreted_entry) {
  // Just before the actual machine code entry point, allocate space
  // for a MethodHandleEntry::Data record, so that we can manage everything
  // from one base pointer.
  __ align(wordSize);
  address target = __ pc() + sizeof(Data);
  while (__ pc() < target) {
    __ nop();
    __ align(wordSize);
  }

  MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
  me->set_end_address(__ pc());         // set a temporary end_address
  me->set_from_interpreted_entry(interpreted_entry);
  me->set_type_checking_entry(NULL);

  return (address) me;
}

MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
                                                address start_addr) {
  MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
  assert(me->end_address() == start_addr, "valid ME");

  // Fill in the real end_address:
  __ align(wordSize);
  me->set_end_address(__ pc());

  return me;
}

#ifdef ASSERT
static void verify_argslot(MacroAssembler* _masm, Register rax_argslot,
                           const char* error_message) {
  // Verify that argslot lies within (rsp, rbp].
  Label L_ok, L_bad;
  __ cmpptr(rax_argslot, rbp);
68
  __ jccb(Assembler::above, L_bad);
69
  __ cmpptr(rsp, rax_argslot);
70
  __ jccb(Assembler::below, L_ok);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  __ bind(L_bad);
  __ stop(error_message);
  __ bind(L_ok);
}
#endif


// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
  // rbx: methodOop
  // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
  // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  // rdx: garbage temp, blown away

  Register rbx_method = rbx;
  Register rcx_recv   = rcx;
  Register rax_mtype  = rax;
  Register rdx_temp   = rdx;

  // emit WrongMethodType path first, to enable jccb back-branch from main path
  Label wrong_method_type;
  __ bind(wrong_method_type);
  __ push(rax_mtype);       // required mtype
  __ push(rcx_recv);        // bad mh (1st stacked argument)
  __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));

  // here's where control starts out:
  __ align(CodeEntryAlignment);
  address entry_point = __ pc();

  // fetch the MethodType from the method handle into rax (the 'check' register)
  {
    Register tem = rbx_method;
    for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
      __ movptr(rax_mtype, Address(tem, *pchase));
      tem = rax_mtype;          // in case there is another indirection
    }
  }
  Register rbx_temp = rbx_method; // done with incoming methodOop

  // given the MethodType, find out where the MH argument is buried
  __ movptr(rdx_temp, Address(rax_mtype,
                              __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rbx_temp)));
  __ movl(rdx_temp, Address(rdx_temp,
                            __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rbx_temp)));
  __ movptr(rcx_recv, __ argument_address(rdx_temp));

  __ check_method_handle_type(rax_mtype, rcx_recv, rdx_temp, wrong_method_type);
  __ jump_to_method_handle_entry(rcx_recv, rdx_temp);

  return entry_point;
}

// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and <= 0
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
                                     RegisterOrConstant arg_slots,
                                     int arg_mask,
                                     Register rax_argslot,
                                     Register rbx_temp, Register rdx_temp) {
  assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
                             (!arg_slots.is_register() ? rsp : arg_slots.as_register()));

#ifdef ASSERT
  verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
  if (arg_slots.is_register()) {
    Label L_ok, L_bad;
    __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
139
    __ jccb(Assembler::greater, L_bad);
140
    __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
141
    __ jccb(Assembler::zero, L_ok);
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    __ bind(L_bad);
    __ stop("assert arg_slots <= 0 and clear low bits");
    __ bind(L_ok);
  } else {
    assert(arg_slots.as_constant() <= 0, "");
    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
  }
#endif //ASSERT

#ifdef _LP64
  if (arg_slots.is_register()) {
    // clean high bits of stack motion register (was loaded as an int)
    __ movslq(arg_slots.as_register(), arg_slots.as_register());
  }
#endif

  // Make space on the stack for the inserted argument(s).
  // Then pull down everything shallower than rax_argslot.
  // The stacked return address gets pulled down with everything else.
  // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
  //   rsp -= size;
  //   for (rdx = rsp + size; rdx < argslot; rdx++)
  //     rdx[-size] = rdx[0]
  //   argslot -= size;
  __ mov(rdx_temp, rsp);                        // source pointer for copy
  __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
  {
    Label loop;
    __ bind(loop);
    // pull one word down each time through the loop
    __ movptr(rbx_temp, Address(rdx_temp, 0));
    __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
    __ addptr(rdx_temp, wordSize);
    __ cmpptr(rdx_temp, rax_argslot);
176
    __ jccb(Assembler::less, loop);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  }

  // Now move the argslot down, to point to the opened-up space.
  __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));

  if (TaggedStackInterpreter && arg_mask != _INSERT_NO_MASK) {
    // The caller has specified a bitmask of tags to put into the opened space.
    // This only works when the arg_slots value is an assembly-time constant.
    int constant_arg_slots = arg_slots.as_constant() / stack_move_unit();
    int tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
    for (int slot = 0; slot < constant_arg_slots; slot++) {
      BasicType slot_type   = ((arg_mask & (1 << slot)) == 0 ? T_OBJECT : T_INT);
      int       slot_offset = Interpreter::stackElementSize() * slot;
      Address   tag_addr(rax_argslot, slot_offset + tag_offset);
      __ movptr(tag_addr, frame::tag_for_basic_type(slot_type));
    }
    // Note that the new argument slots are tagged properly but contain
    // garbage at this point.  The value portions must be initialized
    // by the caller.  (Especially references!)
  }
}

// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and >= 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
                                    RegisterOrConstant arg_slots,
                                    Register rax_argslot,
                                    Register rbx_temp, Register rdx_temp) {
  assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
                             (!arg_slots.is_register() ? rsp : arg_slots.as_register()));

#ifdef ASSERT
  {
    // Verify that [argslot..argslot+size) lies within (rsp, rbp).
    Label L_ok, L_bad;
    __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
    __ cmpptr(rbx_temp, rbp);
214
    __ jccb(Assembler::above, L_bad);
215
    __ cmpptr(rsp, rax_argslot);
216
    __ jccb(Assembler::below, L_ok);
217 218 219 220 221 222 223
    __ bind(L_bad);
    __ stop("deleted argument(s) must fall within current frame");
    __ bind(L_ok);
  }
  if (arg_slots.is_register()) {
    Label L_ok, L_bad;
    __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
224
    __ jccb(Assembler::less, L_bad);
225
    __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
226
    __ jccb(Assembler::zero, L_ok);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    __ bind(L_bad);
    __ stop("assert arg_slots >= 0 and clear low bits");
    __ bind(L_ok);
  } else {
    assert(arg_slots.as_constant() >= 0, "");
    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
  }
#endif //ASSERT

#ifdef _LP64
  if (false) {                  // not needed, since register is positive
    // clean high bits of stack motion register (was loaded as an int)
    if (arg_slots.is_register())
      __ movslq(arg_slots.as_register(), arg_slots.as_register());
  }
#endif

  // Pull up everything shallower than rax_argslot.
  // Then remove the excess space on the stack.
  // The stacked return address gets pulled up with everything else.
  // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
  //   for (rdx = argslot-1; rdx >= rsp; --rdx)
  //     rdx[size] = rdx[0]
  //   argslot += size;
  //   rsp += size;
  __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
  {
    Label loop;
    __ bind(loop);
    // pull one word up each time through the loop
    __ movptr(rbx_temp, Address(rdx_temp, 0));
    __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
    __ addptr(rdx_temp, -wordSize);
    __ cmpptr(rdx_temp, rsp);
261
    __ jccb(Assembler::greaterEqual, loop);
262 263 264 265 266 267 268 269 270
  }

  // Now move the argslot up, to point to the just-copied block.
  __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
  // And adjust the argslot address to point at the deletion point.
  __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
}

#ifndef PRODUCT
271
extern "C" void print_method_handle(oop mh);
272
void trace_method_handle_stub(const char* adaptername,
273
                              oop mh,
274
                              intptr_t* entry_sp,
275 276
                              intptr_t* saved_sp,
                              intptr_t* saved_bp) {
277
  // called as a leaf from native code: do not block the JVM!
278 279 280 281 282 283
  intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
  intptr_t* base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
  printf("MH %s mh="INTPTR_FORMAT" sp=("INTPTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="INTPTR_FORMAT"\n",
         adaptername, (intptr_t)mh, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
  if (last_sp != saved_sp)
    printf("*** last_sp="INTPTR_FORMAT"\n", (intptr_t)last_sp);
284
  if (Verbose)  print_method_handle(mh);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
}
#endif //PRODUCT

// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  // Here is the register state during an interpreted call,
  // as set up by generate_method_handle_interpreter_entry():
  // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
  // - rcx: receiver method handle
  // - rax: method handle type (only used by the check_mtype entry point)
  // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  // - rdx: garbage temp, can blow away

  Register rcx_recv    = rcx;
  Register rax_argslot = rax;
  Register rbx_temp    = rbx;
  Register rdx_temp    = rdx;

304 305 306 307
  // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
  // and gen_c2i_adapter (from compiled calls):
  Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");

  // some handy addresses
  Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );

  Address rcx_mh_vmtarget(    rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
  Address rcx_dmh_vmindex(    rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );

  Address rcx_bmh_vmargslot(  rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_bmh_argument(   rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );

  Address rcx_amh_vmargslot(  rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_amh_argument(   rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
  Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
  Address vmarg;                // __ argument_address(vmargslot)

  int tag_offset = -1;
  if (TaggedStackInterpreter) {
    tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
    assert(tag_offset = wordSize, "stack grows as expected");
  }

330 331
  const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();

332 333 334 335 336 337 338 339 340 341 342 343 344
  if (have_entry(ek)) {
    __ nop();                   // empty stubs make SG sick
    return;
  }

  address interp_entry = __ pc();
  if (UseCompressedOops)  __ unimplemented("UseCompressedOops");

#ifndef PRODUCT
  if (TraceMethodHandles) {
    __ push(rax); __ push(rbx); __ push(rcx); __ push(rdx); __ push(rsi); __ push(rdi);
    __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
    // arguments:
345
    __ push(rbp);               // interpreter frame pointer
346 347 348 349 350
    __ push(rsi);               // saved_sp
    __ push(rax);               // entry_sp
    __ push(rcx);               // mh
    __ push(rcx);
    __ movptr(Address(rsp, 0), (intptr_t)entry_name(ek));
351
    __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 5);
352 353 354 355 356
    __ pop(rdi); __ pop(rsi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ pop(rax);
  }
#endif //PRODUCT

  switch ((int) ek) {
357
  case _raise_exception:
358
    {
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
      // Not a real MH entry, but rather shared code for raising an exception.
      // Extra local arguments are pushed on stack, as required type at TOS+8,
      // failing object (or NULL) at TOS+4, failing bytecode type at TOS.
      // Beyond those local arguments are the PC, of course.
      Register rdx_code = rdx_temp;
      Register rcx_fail = rcx_recv;
      Register rax_want = rax_argslot;
      Register rdi_pc   = rdi;
      __ pop(rdx_code);  // TOS+0
      __ pop(rcx_fail);  // TOS+4
      __ pop(rax_want);  // TOS+8
      __ pop(rdi_pc);    // caller PC

      __ mov(rsp, rsi);   // cut the stack back to where the caller started

      // Repush the arguments as if coming from the interpreter.
      if (TaggedStackInterpreter)  __ push(frame::tag_for_basic_type(T_INT));
      __ push(rdx_code);
      if (TaggedStackInterpreter)  __ push(frame::tag_for_basic_type(T_OBJECT));
      __ push(rcx_fail);
      if (TaggedStackInterpreter)  __ push(frame::tag_for_basic_type(T_OBJECT));
      __ push(rax_want);
381

382 383 384 385 386
      Register rbx_method = rbx_temp;
      Label no_method;
      // FIXME: fill in _raise_exception_method with a suitable sun.dyn method
      __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
      __ testptr(rbx_method, rbx_method);
387
      __ jccb(Assembler::zero, no_method);
388 389 390
      int jobject_oop_offset = 0;
      __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
      __ testptr(rbx_method, rbx_method);
391
      __ jccb(Assembler::zero, no_method);
392 393 394
      __ verify_oop(rbx_method);
      __ push(rdi_pc);          // and restore caller PC
      __ jmp(rbx_method_fie);
395

396 397 398 399 400 401 402 403
      // If we get here, the Java runtime did not do its job of creating the exception.
      // Do something that is at least causes a valid throw from the interpreter.
      __ bind(no_method);
      __ pop(rax_want);
      if (TaggedStackInterpreter)  __ pop(rcx_fail);
      __ pop(rcx_fail);
      __ push(rax_want);
      __ push(rcx_fail);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
      __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
    }
    break;

  case _invokestatic_mh:
  case _invokespecial_mh:
    {
      Register rbx_method = rbx_temp;
      __ movptr(rbx_method, rcx_mh_vmtarget); // target is a methodOop
      __ verify_oop(rbx_method);
      // same as TemplateTable::invokestatic or invokespecial,
      // minus the CP setup and profiling:
      if (ek == _invokespecial_mh) {
        // Must load & check the first argument before entering the target method.
        __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
        __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
        __ null_check(rcx_recv);
        __ verify_oop(rcx_recv);
      }
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokevirtual_mh:
    {
      // same as TemplateTable::invokevirtual,
      // minus the CP setup and profiling:

      // pick out the vtable index and receiver offset from the MH,
      // and then we can discard it:
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rbx_index = rbx_temp;
      __ movl(rbx_index, rcx_dmh_vmindex);
      // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

      // get target methodOop & entry point
      const int base = instanceKlass::vtable_start_offset() * wordSize;
      assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
      Address vtable_entry_addr(rax_klass,
                                rbx_index, Address::times_ptr,
                                base + vtableEntry::method_offset_in_bytes());
      Register rbx_method = rbx_temp;
453
      __ movptr(rbx_method, vtable_entry_addr);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokeinterface_mh:
    {
      // same as TemplateTable::invokeinterface,
      // minus the CP setup and profiling:

      // pick out the interface and itable index from the MH.
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rdx_intf  = rdx_temp;
      Register rbx_index = rbx_temp;
      __ movptr(rdx_intf,  rcx_mh_vmtarget);
      __ movl(rbx_index,   rcx_dmh_vmindex);
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

479
      Register rdi_temp   = rdi;
480 481 482 483 484 485 486 487
      Register rbx_method = rbx_index;

      // get interface klass
      Label no_such_interface;
      __ verify_oop(rdx_intf);
      __ lookup_interface_method(rax_klass, rdx_intf,
                                 // note: next two args must be the same:
                                 rbx_index, rbx_method,
488
                                 rdi_temp,
489 490 491 492 493 494 495 496 497
                                 no_such_interface);

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
      __ hlt();

      __ bind(no_such_interface);
      // Throw an exception.
      // For historical reasons, it will be IncompatibleClassChangeError.
498 499 500 501
      __ pushptr(Address(rdx_intf, java_mirror_offset));  // required interface
      __ push(rcx_recv);        // bad receiver
      __ push((int)Bytecodes::_invokeinterface);  // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    }
    break;

  case _bound_ref_mh:
  case _bound_int_mh:
  case _bound_long_mh:
  case _bound_ref_direct_mh:
  case _bound_int_direct_mh:
  case _bound_long_direct_mh:
    {
      bool direct_to_method = (ek >= _bound_ref_direct_mh);
      BasicType arg_type = T_ILLEGAL;
      if (ek == _bound_long_mh || ek == _bound_long_direct_mh) {
        arg_type = T_LONG;
      } else if (ek == _bound_int_mh || ek == _bound_int_direct_mh) {
        arg_type = T_INT;
      } else {
        assert(ek == _bound_ref_mh || ek == _bound_ref_direct_mh, "must be ref");
        arg_type = T_OBJECT;
      }
      int arg_slots = type2size[arg_type];
      int arg_mask  = (arg_type == T_OBJECT ? _INSERT_REF_MASK :
                       arg_slots == 1       ? _INSERT_INT_MASK :  _INSERT_LONG_MASK);

      // make room for the new argument:
      __ movl(rax_argslot, rcx_bmh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));
      insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
                       rax_argslot, rbx_temp, rdx_temp);

      // store bound argument into the new stack slot:
      __ movptr(rbx_temp, rcx_bmh_argument);
      Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
      if (arg_type == T_OBJECT) {
        __ movptr(Address(rax_argslot, 0), rbx_temp);
      } else {
538
        __ load_sized_value(rdx_temp, prim_value_addr,
539
                            type2aelembytes(arg_type), is_signed_subword_type(arg_type));
540
        __ movptr(Address(rax_argslot, 0), rdx_temp);
541 542
#ifndef _LP64
        if (arg_slots == 2) {
543 544
          __ movl(rdx_temp, prim_value_addr.plus_disp(wordSize));
          __ movl(Address(rax_argslot, Interpreter::stackElementSize()), rdx_temp);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        }
#endif //_LP64
      }

      if (direct_to_method) {
        Register rbx_method = rbx_temp;
        __ movptr(rbx_method, rcx_mh_vmtarget);
        __ verify_oop(rbx_method);
        __ jmp(rbx_method_fie);
      } else {
        __ movptr(rcx_recv, rcx_mh_vmtarget);
        __ verify_oop(rcx_recv);
        __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
      }
    }
    break;

  case _adapter_retype_only:
563
  case _adapter_retype_raw:
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    // immediately jump to the next MH layer:
    __ movptr(rcx_recv, rcx_mh_vmtarget);
    __ verify_oop(rcx_recv);
    __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    // This is OK when all parameter types widen.
    // It is also OK when a return type narrows.
    break;

  case _adapter_check_cast:
    {
      // temps:
      Register rbx_klass = rbx_temp; // interesting AMH data

      // check a reference argument before jumping to the next layer of MH:
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      // What class are we casting to?
      __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));

      Label done;
      __ movptr(rdx_temp, vmarg);
587
      __ testptr(rdx_temp, rdx_temp);
588
      __ jccb(Assembler::zero, done);         // no cast if null
589 590 591 592 593
      __ load_klass(rdx_temp, rdx_temp);

      // live at this point:
      // - rbx_klass:  klass required by the target method
      // - rdx_temp:   argument klass to test
594
      // - rcx_recv:   adapter method handle
595 596 597 598 599
      __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);

      // If we get here, the type check failed!
      // Call the wrong_method_type stub, passing the failing argument type in rax.
      Register rax_mtype = rax_argslot;
600 601 602 603 604 605 606
      __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
      __ movptr(rdx_temp, vmarg);

      __ pushptr(rcx_amh_argument); // required class
      __ push(rdx_temp);            // bad object
      __ push((int)Bytecodes::_checkcast);  // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
607 608

      __ bind(done);
609 610
      // get the new MH:
      __ movptr(rcx_recv, rcx_mh_vmtarget);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_prim:
  case _adapter_ref_to_prim:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place conversion to int or an int subword
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      switch (ek) {
      case _adapter_opt_i2i:
        __ movl(rdx_temp, vmarg);
        break;
      case _adapter_opt_l2i:
        {
          // just delete the extra slot; on a little-endian machine we keep the first
          __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
          remove_arg_slots(_masm, -stack_move_unit(),
                           rax_argslot, rbx_temp, rdx_temp);
          vmarg = Address(rax_argslot, -Interpreter::stackElementSize());
          __ movl(rdx_temp, vmarg);
        }
        break;
      case _adapter_opt_unboxi:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
            if (is_subword_type(BasicType(bt)))
              assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
          }
#endif
          __ null_check(rdx_temp, value_offset);
          __ movl(rdx_temp, Address(rdx_temp, value_offset));
          // We load this as a word.  Because we are little-endian,
          // the low bits will be correct, but the high bits may need cleaning.
          // The vminfo will guide us to clean those bits.
        }
        break;
      default:
        assert(false, "");
      }
      goto finish_int_conversion;
    }

  finish_int_conversion:
    {
      Register rbx_vminfo = rbx_temp;
      __ movl(rbx_vminfo, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");

      // get the new MH:
      __ movptr(rcx_recv, rcx_mh_vmtarget);
      // (now we are done with the old MH)

      // original 32-bit vmdata word must be of this form:
679 680
      //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
      __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
681 682 683
      __ shll(rdx_temp /*, rcx*/);
      Label zero_extend, done;
      __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
684
      __ jccb(Assembler::zero, zero_extend);
685 686 687

      // this path is taken for int->byte, int->short
      __ sarl(rdx_temp /*, rcx*/);
688
      __ jmpb(done);
689 690 691 692 693 694

      __ bind(zero_extend);
      // this is taken for int->char
      __ shrl(rdx_temp /*, rcx*/);

      __ bind(done);
695 696
      __ movl(vmarg, rdx_temp);
      __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place int-to-long or ref-to-long conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);

      // on a little-endian machine we keep the first slot and add another after
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                       rax_argslot, rbx_temp, rdx_temp);
      Address vmarg1(rax_argslot, -Interpreter::stackElementSize());
      Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize());

      switch (ek) {
      case _adapter_opt_i2l:
        {
          __ movl(rdx_temp, vmarg1);
          __ sarl(rdx_temp, 31);  // __ extend_sign()
          __ movl(vmarg2, rdx_temp); // store second word
        }
        break;
      case _adapter_opt_unboxl:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg1);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
          assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
          __ null_check(rdx_temp, value_offset);
          __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
          __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
          __ movl(vmarg1, rbx_temp);
          __ movl(vmarg2, rdx_temp);
        }
        break;
      default:
        assert(false, "");
      }

      __ movptr(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
    {
      // perform an in-place floating primitive conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      if (ek == _adapter_opt_f2d) {
        insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                         rax_argslot, rbx_temp, rdx_temp);
      }
      Address vmarg(rax_argslot, -Interpreter::stackElementSize());

#ifdef _LP64
      if (ek == _adapter_opt_f2d) {
        __ movflt(xmm0, vmarg);
        __ cvtss2sd(xmm0, xmm0);
        __ movdbl(vmarg, xmm0);
      } else {
        __ movdbl(xmm0, vmarg);
        __ cvtsd2ss(xmm0, xmm0);
        __ movflt(vmarg, xmm0);
      }
#else //_LP64
      if (ek == _adapter_opt_f2d) {
        __ fld_s(vmarg);        // load float to ST0
        __ fstp_s(vmarg);       // store single
      } else if (!TaggedStackInterpreter) {
        __ fld_d(vmarg);        // load double to ST0
        __ fstp_s(vmarg);       // store single
      } else {
        Address vmarg_tag = vmarg.plus_disp(tag_offset);
        Address vmarg2    = vmarg.plus_disp(Interpreter::stackElementSize());
        // vmarg2_tag does not participate in this code
        Register rbx_tag = rbx_temp;
        __ movl(rbx_tag, vmarg_tag); // preserve tag
        __ movl(rdx_temp, vmarg2); // get second word of double
        __ movl(vmarg_tag, rdx_temp); // align with first word
        __ fld_d(vmarg);        // load double to ST0
        __ movl(vmarg_tag, rbx_tag); // restore tag
        __ fstp_s(vmarg);       // store single
      }
#endif //_LP64

      if (ek == _adapter_opt_d2f) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

      __ movptr(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_ref:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_swap_args:
  case _adapter_rot_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_swap_1:
  case _adapter_opt_swap_2:
  case _adapter_opt_rot_1_up:
  case _adapter_opt_rot_1_down:
  case _adapter_opt_rot_2_up:
  case _adapter_opt_rot_2_down:
    {
      int rotate = 0, swap_slots = 0;
      switch ((int)ek) {
      case _adapter_opt_swap_1:     swap_slots = 1; break;
      case _adapter_opt_swap_2:     swap_slots = 2; break;
      case _adapter_opt_rot_1_up:   swap_slots = 1; rotate++; break;
      case _adapter_opt_rot_1_down: swap_slots = 1; rotate--; break;
      case _adapter_opt_rot_2_up:   swap_slots = 2; rotate++; break;
      case _adapter_opt_rot_2_down: swap_slots = 2; rotate--; break;
      default: assert(false, "");
      }

      // the real size of the move must be doubled if TaggedStackInterpreter:
      int swap_bytes = (int)( swap_slots * Interpreter::stackElementWords() * wordSize );

      // 'argslot' is the position of the first argument to swap
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'vminfo' is the second
      Register rbx_destslot = rbx_temp;
      __ movl(rbx_destslot, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");
      __ andl(rbx_destslot, CONV_VMINFO_MASK);
      __ lea(rbx_destslot, __ argument_address(rbx_destslot));
      DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));

      if (!rotate) {
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ movptr(rdx_temp, Address(rax_argslot , i));
          __ push(rdx_temp);
          __ movptr(rdx_temp, Address(rbx_destslot, i));
          __ movptr(Address(rax_argslot, i), rdx_temp);
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      } else {
        // push the first chunk, which is going to get overwritten
        for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
          __ movptr(rdx_temp, Address(rax_argslot, i));
          __ push(rdx_temp);
        }

        if (rotate > 0) {
          // rotate upward
          __ subptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot > destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
865
            __ jccb(Assembler::aboveEqual, L_ok);
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
            __ stop("source must be above destination (upward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot down to destslot, copying contiguous data upwards
          // pseudo-code:
          //   rax = src_addr - swap_bytes
          //   rbx = dest_addr
          //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
          __ addptr(rax_argslot, -wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
881
          __ jccb(Assembler::aboveEqual, loop);
882 883 884 885 886 887 888
        } else {
          __ addptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot < destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
889
            __ jccb(Assembler::belowEqual, L_ok);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
            __ stop("source must be below destination (downward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot up to destslot, copying contiguous data downwards
          // pseudo-code:
          //   rax = src_addr + swap_bytes
          //   rbx = dest_addr
          //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
          __ addptr(rax_argslot, wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
905
          __ jccb(Assembler::belowEqual, loop);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
        }

        // pop the original first chunk into the destination slot, now free
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      }

      __ movptr(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_dup_args:
    {
      // 'argslot' is the position of the first argument to duplicate
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'stack_move' is negative number of words to duplicate
      Register rdx_stack_move = rdx_temp;
      __ movl(rdx_stack_move, rcx_amh_conversion);
      __ sarl(rdx_stack_move, CONV_STACK_MOVE_SHIFT);

      int argslot0_num = 0;
      Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
      assert(argslot0.base() == rsp, "");
      int pre_arg_size = argslot0.disp();
      assert(pre_arg_size % wordSize == 0, "");
      assert(pre_arg_size > 0, "must include PC");

      // remember the old rsp+1 (argslot[0])
      Register rbx_oldarg = rbx_temp;
      __ lea(rbx_oldarg, argslot0);

      // move rsp down to make room for dups
      __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));

      // compute the new rsp+1 (argslot[0])
      Register rdx_newarg = rdx_temp;
      __ lea(rdx_newarg, argslot0);

      __ push(rdi);             // need a temp
      // (preceding push must be done after arg addresses are taken!)

      // pull down the pre_arg_size data (PC)
      for (int i = -pre_arg_size; i < 0; i += wordSize) {
        __ movptr(rdi, Address(rbx_oldarg, i));
        __ movptr(Address(rdx_newarg, i), rdi);
      }

      // copy from rax_argslot[0...] down to new_rsp[1...]
      // pseudo-code:
      //   rbx = old_rsp+1
      //   rdx = new_rsp+1
      //   rax = argslot
      //   while (rdx < rbx) *rdx++ = *rax++
      Label loop;
      __ bind(loop);
      __ movptr(rdi, Address(rax_argslot, 0));
      __ movptr(Address(rdx_newarg, 0), rdi);
      __ addptr(rax_argslot, wordSize);
      __ addptr(rdx_newarg, wordSize);
      __ cmpptr(rdx_newarg, rbx_oldarg);
971
      __ jccb(Assembler::less, loop);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

      __ pop(rdi);              // restore temp

      __ movptr(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_drop_args:
    {
      // 'argslot' is the position of the first argument to nuke
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      __ push(rdi);             // need a temp
      // (must do previous push after argslot address is taken)

      // 'stack_move' is number of words to drop
      Register rdi_stack_move = rdi;
      __ movl(rdi_stack_move, rcx_amh_conversion);
      __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
      remove_arg_slots(_masm, rdi_stack_move,
                       rax_argslot, rbx_temp, rdx_temp);

      __ pop(rdi);              // restore temp

      __ movptr(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_collect_args:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_spread_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_spread_0:
  case _adapter_opt_spread_1:
  case _adapter_opt_spread_more:
    {
      // spread an array out into a group of arguments
      int length_constant = -1;
      switch (ek) {
      case _adapter_opt_spread_0: length_constant = 0; break;
      case _adapter_opt_spread_1: length_constant = 1; break;
      }

      // find the address of the array argument
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // grab some temps
      { __ push(rsi); __ push(rdi); }
      // (preceding pushes must be done after argslot address is taken!)
#define UNPUSH_RSI_RDI \
      { __ pop(rdi); __ pop(rsi); }

      // arx_argslot points both to the array and to the first output arg
      vmarg = Address(rax_argslot, 0);

      // Get the array value.
      Register  rsi_array       = rsi;
      Register  rdx_array_klass = rdx_temp;
      BasicType elem_type       = T_OBJECT;
      int       length_offset   = arrayOopDesc::length_offset_in_bytes();
      int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
      __ movptr(rsi_array, vmarg);
      Label skip_array_check;
      if (length_constant == 0) {
        __ testptr(rsi_array, rsi_array);
        __ jcc(Assembler::zero, skip_array_check);
      }
      __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
      __ load_klass(rdx_array_klass, rsi_array);

      // Check the array type.
      Register rbx_klass = rbx_temp;
      __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));

      Label ok_array_klass, bad_array_klass, bad_array_length;
      __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
      // If we get here, the type check failed!
      __ jmp(bad_array_klass);
      __ bind(ok_array_klass);

      // Check length.
      if (length_constant >= 0) {
        __ cmpl(Address(rsi_array, length_offset), length_constant);
      } else {
        Register rbx_vminfo = rbx_temp;
        __ movl(rbx_vminfo, rcx_amh_conversion);
        assert(CONV_VMINFO_SHIFT == 0, "preshifted");
        __ andl(rbx_vminfo, CONV_VMINFO_MASK);
        __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
      }
      __ jcc(Assembler::notEqual, bad_array_length);

      Register rdx_argslot_limit = rdx_temp;

      // Array length checks out.  Now insert any required stack slots.
      if (length_constant == -1) {
        // Form a pointer to the end of the affected region.
        __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize()));
        // 'stack_move' is negative number of words to insert
        Register rdi_stack_move = rdi;
        __ movl(rdi_stack_move, rcx_amh_conversion);
        __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
        Register rsi_temp = rsi_array;  // spill this
        insert_arg_slots(_masm, rdi_stack_move, -1,
                         rax_argslot, rbx_temp, rsi_temp);
        // reload the array (since rsi was killed)
        __ movptr(rsi_array, vmarg);
      } else if (length_constant > 1) {
        int arg_mask = 0;
        int new_slots = (length_constant - 1);
        for (int i = 0; i < new_slots; i++) {
          arg_mask <<= 1;
          arg_mask |= _INSERT_REF_MASK;
        }
        insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
                         rax_argslot, rbx_temp, rdx_temp);
      } else if (length_constant == 1) {
        // no stack resizing required
      } else if (length_constant == 0) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

      // Copy from the array to the new slots.
      // Note: Stack change code preserves integrity of rax_argslot pointer.
      // So even after slot insertions, rax_argslot still points to first argument.
      if (length_constant == -1) {
        // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
        Register rsi_source = rsi_array;
        __ lea(rsi_source, Address(rsi_array, elem0_offset));
        Label loop;
        __ bind(loop);
        __ movptr(rbx_temp, Address(rsi_source, 0));
        __ movptr(Address(rax_argslot, 0), rbx_temp);
        __ addptr(rsi_source, type2aelembytes(elem_type));
        if (TaggedStackInterpreter) {
          __ movptr(Address(rax_argslot, tag_offset),
                    frame::tag_for_basic_type(elem_type));
        }
        __ addptr(rax_argslot, Interpreter::stackElementSize());
        __ cmpptr(rax_argslot, rdx_argslot_limit);
1123
        __ jccb(Assembler::less, loop);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
      } else if (length_constant == 0) {
        __ bind(skip_array_check);
        // nothing to copy
      } else {
        int elem_offset = elem0_offset;
        int slot_offset = 0;
        for (int index = 0; index < length_constant; index++) {
          __ movptr(rbx_temp, Address(rsi_array, elem_offset));
          __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
          elem_offset += type2aelembytes(elem_type);
          if (TaggedStackInterpreter) {
            __ movptr(Address(rax_argslot, slot_offset + tag_offset),
                      frame::tag_for_basic_type(elem_type));
          }
          slot_offset += Interpreter::stackElementSize();
        }
      }

      // Arguments are spread.  Move to next method handle.
      UNPUSH_RSI_RDI;
      __ movptr(rcx_recv, rcx_mh_vmtarget);
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);

      __ bind(bad_array_klass);
      UNPUSH_RSI_RDI;
1149 1150 1151 1152
      __ pushptr(Address(rdx_array_klass, java_mirror_offset)); // required type
      __ pushptr(vmarg);                // bad array
      __ push((int)Bytecodes::_aaload); // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1153 1154 1155

      __ bind(bad_array_length);
      UNPUSH_RSI_RDI;
1156 1157 1158 1159
      __ push(rcx_recv);        // AMH requiring a certain length
      __ pushptr(vmarg);        // bad array
      __ push((int)Bytecodes::_arraylength); // who is complaining?
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

#undef UNPUSH_RSI_RDI
    }
    break;

  case _adapter_flyby:
  case _adapter_ricochet:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  default:  ShouldNotReachHere();
  }
  __ hlt();

  address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  __ unimplemented(entry_name(ek)); // %%% FIXME: NYI

  init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}