rdtsc_x86.cpp 6.9 KB
Newer Older
卓昂 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "rdtsc_x86.hpp"
#include "runtime/thread.inline.hpp"
#include "vm_version_ext_x86.hpp"

// The following header contains the implementations of rdtsc()
#ifdef TARGET_OS_ARCH_linux_x86
#include "os_linux_x86.inline.hpp"
#endif

35 36 37 38 39 40 41 42
#ifdef TARGET_OS_ARCH_windows_x86
#include "os_windows_x86.inline.hpp"
#endif

#ifdef TARGET_OS_ARCH_bsd_x86
#include "os_bsd_x86.inline.hpp"
#endif

卓昂 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static jlong baseline_counter = 0;
static bool rdtsc_elapsed_counter_enabled = false;
static jlong tsc_frequency = 0;

static jlong set_baseline_counter() {
  assert(0 == baseline_counter, "invariant");
  baseline_counter = os::rdtsc();
  return baseline_counter;
}

// Base loop to estimate ticks frequency for tsc counter from user mode.
// Volatiles and sleep() are used to prevent compiler from applying optimizations.
static void do_time_measurements(volatile jlong& time_base,
                                 volatile jlong& time_fast,
                                 volatile jlong& time_base_elapsed,
                                 volatile jlong& time_fast_elapsed) {
  static const unsigned int FT_SLEEP_MILLISECS = 1;
  const unsigned int loopcount = 3;

  volatile jlong start = 0;
  volatile jlong fstart = 0;
  volatile jlong end = 0;
  volatile jlong fend = 0;

  // Figure out the difference between rdtsc and os provided timer.
  // base algorithm adopted from JRockit.
  for (unsigned int times = 0; times < loopcount; times++) {
    start = os::elapsed_counter();
    OrderAccess::fence();
    fstart = os::rdtsc();

    // use sleep to prevent compiler from optimizing
    os::sleep(Thread::current(), FT_SLEEP_MILLISECS, true);

    end = os::elapsed_counter();
    OrderAccess::fence();
    fend = os::rdtsc();

    time_base += end - start;
    time_fast += fend - fstart;

    // basis for calculating the os tick start
    // to fast time tick start offset
    time_base_elapsed += end;
    time_fast_elapsed += (fend - baseline_counter);
  }

  time_base /= loopcount;
  time_fast /= loopcount;
  time_base_elapsed /= loopcount;
  time_fast_elapsed /= loopcount;
}

static jlong initialize_frequency() {
  assert(0 == tsc_frequency, "invariant");
  assert(0 == baseline_counter, "invariant");
  jlong initial_counter = set_baseline_counter();
  if (initial_counter == 0) {
    return 0;
  }
  // os time frequency
  static double os_freq = (double)os::elapsed_frequency();
  assert(os_freq > 0, "os_elapsed frequency corruption!");

  double tsc_freq = .0;
  double os_to_tsc_conv_factor = 1.0;

  // if platform supports invariant tsc,
  // apply higher resolution and granularity for conversion calculations
  if (VM_Version_Ext::supports_tscinv_ext()) {
    // for invariant tsc platforms, take the maximum qualified cpu frequency
    tsc_freq = (double)VM_Version_Ext::maximum_qualified_cpu_frequency();
    os_to_tsc_conv_factor = tsc_freq / os_freq;
  } else {
    // for non-trusted platforms, use measurements to estimate
    // a conversion factor and the tsc frequency

    volatile jlong time_base = 0;
    volatile jlong time_fast = 0;
    volatile jlong time_base_elapsed = 0;
    volatile jlong time_fast_elapsed = 0;

    // do measurements to get base data
    // on os timer and fast ticks tsc time relation.
    do_time_measurements(time_base, time_fast, time_base_elapsed, time_fast_elapsed);

    // if invalid measurements, cannot proceed
    if (time_fast == 0 || time_base == 0) {
      return 0;
    }

    os_to_tsc_conv_factor = (double)time_fast / (double)time_base;
    if (os_to_tsc_conv_factor > 1) {
      // estimate on tsc counter frequency
      tsc_freq = os_to_tsc_conv_factor * os_freq;
    }
  }

  if ((tsc_freq < 0) || (tsc_freq > 0 && tsc_freq <= os_freq) || (os_to_tsc_conv_factor <= 1)) {
    // safer to run with normal os time
    tsc_freq = .0;
  }

  // frequency of the tsc_counter
  return (jlong)tsc_freq;
}

static bool initialize_elapsed_counter() {
  tsc_frequency = initialize_frequency();
  return tsc_frequency != 0 && baseline_counter != 0;
}

static bool ergonomics() {
  const bool invtsc_support = Rdtsc::is_supported();
  if (FLAG_IS_DEFAULT(UseFastUnorderedTimeStamps) && invtsc_support) {
    FLAG_SET_ERGO(bool, UseFastUnorderedTimeStamps, true);
  }

  bool ft_enabled = UseFastUnorderedTimeStamps && invtsc_support;

  if (!ft_enabled) {
    if (UseFastUnorderedTimeStamps && VM_Version::supports_tsc()) {
      warning("\nThe hardware does not support invariant tsc (INVTSC) register and/or cannot guarantee tsc synchronization between sockets at startup.\n"\
        "Values returned via rdtsc() are not guaranteed to be accurate, esp. when comparing values from cross sockets reads. Enabling UseFastUnorderedTimeStamps on non-invariant tsc hardware should be considered experimental.\n");
      ft_enabled = true;
    }
  }

  if (!ft_enabled) {
    // Warn if unable to support command-line flag
    if (UseFastUnorderedTimeStamps && !VM_Version::supports_tsc()) {
      warning("Ignoring UseFastUnorderedTimeStamps, hardware does not support normal tsc");
    }
  }

  return ft_enabled;
}

bool Rdtsc::is_supported() {
  return VM_Version_Ext::supports_tscinv_ext();
}

bool Rdtsc::is_elapsed_counter_enabled() {
  return rdtsc_elapsed_counter_enabled;
}

jlong Rdtsc::frequency() {
  return tsc_frequency;
}

jlong Rdtsc::elapsed_counter() {
  return os::rdtsc() - baseline_counter;
}

jlong Rdtsc::raw() {
  return os::rdtsc();
}

bool Rdtsc::initialize() {
  static bool initialized = false;
  if (!initialized) {
    assert(!rdtsc_elapsed_counter_enabled, "invariant");
    VM_Version_Ext::initialize();
    assert(0 == tsc_frequency, "invariant");
    assert(0 == baseline_counter, "invariant");
    bool result = initialize_elapsed_counter(); // init hw
    if (result) {
      result = ergonomics(); // check logical state
    }
    rdtsc_elapsed_counter_enabled = result;
    initialized = true;
  }
  return rdtsc_elapsed_counter_enabled;
}