c1_ValueStack.hpp 16.2 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1999, 2006, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
 *
 */

class ValueStack: public CompilationResourceObj {
 private:
  IRScope* _scope;                               // the enclosing scope
  bool     _lock_stack;                          // indicates that this ValueStack is for an exception site
  Values   _locals;                              // the locals
  Values   _stack;                               // the expression stack
  Values   _locks;                               // the monitor stack (holding the locked values)

  Value check(ValueTag tag, Value t) {
    assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond");
    return t;
  }

  Value check(ValueTag tag, Value t, Value h) {
    assert(h->as_HiWord()->lo_word() == t, "incorrect stack pair");
    return check(tag, t);
  }

  // helper routine
  static void apply(Values list, void f(Value*));

 public:
  // creation
  ValueStack(IRScope* scope, int locals_size, int max_stack_size);

  // merging
  ValueStack* copy();                            // returns a copy of this w/ cleared locals
  ValueStack* copy_locks();                      // returns a copy of this w/ cleared locals and stack
                                                 // Note that when inlining of methods with exception
                                                 // handlers is enabled, this stack may have a
                                                 // non-empty expression stack (size defined by
                                                 // scope()->lock_stack_size())
  bool is_same(ValueStack* s);                   // returns true if this & s's types match (w/o checking locals)
  bool is_same_across_scopes(ValueStack* s);     // same as is_same but returns true even if stacks are in different scopes (used for block merging w/inlining)

  // accessors
  IRScope* scope() const                         { return _scope; }
  bool is_lock_stack() const                     { return _lock_stack; }
  int locals_size() const                        { return _locals.length(); }
  int stack_size() const                         { return _stack.length(); }
  int locks_size() const                         { return _locks.length(); }
  int max_stack_size() const                     { return _stack.capacity(); }
  bool stack_is_empty() const                    { return _stack.is_empty(); }
  bool no_active_locks() const                   { return _locks.is_empty(); }
  ValueStack* caller_state() const;

  // locals access
  void clear_locals();                           // sets all locals to NULL;

  // Kill local i.  Also kill local i+1 if i was a long or double.
  void invalidate_local(int i) {
    Value x = _locals.at(i);
    if (x != NULL && x->type()->is_double_word()) {
      assert(_locals.at(i + 1)->as_HiWord()->lo_word() == x, "locals inconsistent");
      _locals.at_put(i + 1, NULL);
    }
    _locals.at_put(i, NULL);
  }


  Value load_local(int i) const {
    Value x = _locals.at(i);
    if (x != NULL && x->type()->is_illegal()) return NULL;
    assert(x == NULL || x->as_HiWord() == NULL, "index points to hi word");
    assert(x == NULL || x->type()->is_illegal() || x->type()->is_single_word() || x == _locals.at(i+1)->as_HiWord()->lo_word(), "locals inconsistent");
    return x;
  }

  Value local_at(int i) const { return _locals.at(i); }

  // Store x into local i.
  void store_local(int i, Value x) {
    // Kill the old value
    invalidate_local(i);
    _locals.at_put(i, x);

    // Writing a double word can kill other locals
    if (x != NULL && x->type()->is_double_word()) {
      // If x + i was the start of a double word local then kill i + 2.
      Value x2 = _locals.at(i + 1);
      if (x2 != NULL && x2->type()->is_double_word()) {
        _locals.at_put(i + 2, NULL);
      }

      // If x is a double word local, also update i + 1.
#ifdef ASSERT
      _locals.at_put(i + 1, x->hi_word());
#else
      _locals.at_put(i + 1, NULL);
#endif
    }
    // If x - 1 was the start of a double word local then kill i - 1.
    if (i > 0) {
      Value prev = _locals.at(i - 1);
      if (prev != NULL && prev->type()->is_double_word()) {
        _locals.at_put(i - 1, NULL);
      }
    }
  }

  void replace_locals(ValueStack* with);

  // stack access
  Value stack_at(int i) const {
    Value x = _stack.at(i);
    assert(x->as_HiWord() == NULL, "index points to hi word");
    assert(x->type()->is_single_word() ||
           x->subst() == _stack.at(i+1)->as_HiWord()->lo_word(), "stack inconsistent");
    return x;
  }

  Value stack_at_inc(int& i) const {
    Value x = stack_at(i);
    i += x->type()->size();
    return x;
  }

  // pinning support
  void pin_stack_for_linear_scan();

  // iteration
  void values_do(void f(Value*));

  // untyped manipulation (for dup_x1, etc.)
  void clear_stack()                             { _stack.clear(); }
  void truncate_stack(int size)                  { _stack.trunc_to(size); }
  void raw_push(Value t)                         { _stack.push(t); }
  Value raw_pop()                                { return _stack.pop(); }

  // typed manipulation
  void ipush(Value t)                            { _stack.push(check(intTag    , t)); }
  void fpush(Value t)                            { _stack.push(check(floatTag  , t)); }
  void apush(Value t)                            { _stack.push(check(objectTag , t)); }
  void rpush(Value t)                            { _stack.push(check(addressTag, t)); }
#ifdef ASSERT
  // in debug mode, use HiWord for 2-word values
  void lpush(Value t)                            { _stack.push(check(longTag   , t)); _stack.push(new HiWord(t)); }
  void dpush(Value t)                            { _stack.push(check(doubleTag , t)); _stack.push(new HiWord(t)); }
#else
  // in optimized mode, use NULL for 2-word values
  void lpush(Value t)                            { _stack.push(check(longTag   , t)); _stack.push(NULL); }
  void dpush(Value t)                            { _stack.push(check(doubleTag , t)); _stack.push(NULL); }
#endif // ASSERT

  void push(ValueType* type, Value t) {
    switch (type->tag()) {
      case intTag    : ipush(t); return;
      case longTag   : lpush(t); return;
      case floatTag  : fpush(t); return;
      case doubleTag : dpush(t); return;
      case objectTag : apush(t); return;
      case addressTag: rpush(t); return;
    }
    ShouldNotReachHere();
  }

  Value ipop()                                   { return check(intTag    , _stack.pop()); }
  Value fpop()                                   { return check(floatTag  , _stack.pop()); }
  Value apop()                                   { return check(objectTag , _stack.pop()); }
  Value rpop()                                   { return check(addressTag, _stack.pop()); }
#ifdef ASSERT
  // in debug mode, check for HiWord consistency
  Value lpop()                                   { Value h = _stack.pop(); return check(longTag  , _stack.pop(), h); }
  Value dpop()                                   { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); }
#else
  // in optimized mode, ignore HiWord since it is NULL
  Value lpop()                                   { _stack.pop(); return check(longTag  , _stack.pop()); }
  Value dpop()                                   { _stack.pop(); return check(doubleTag, _stack.pop()); }
#endif // ASSERT

  Value pop(ValueType* type) {
    switch (type->tag()) {
      case intTag    : return ipop();
      case longTag   : return lpop();
      case floatTag  : return fpop();
      case doubleTag : return dpop();
      case objectTag : return apop();
      case addressTag: return rpop();
    }
    ShouldNotReachHere();
    return NULL;
  }

  Values* pop_arguments(int argument_size);

  // locks access
  int lock  (IRScope* scope, Value obj);
  int unlock();
  Value lock_at(int i) const                     { return _locks.at(i); }

  // Inlining support
  ValueStack* push_scope(IRScope* scope);         // "Push" new scope, returning new resulting stack
                                                  // Preserves stack and locks, destroys locals
  ValueStack* pop_scope();                        // "Pop" topmost scope, returning new resulting stack
                                                  // Preserves stack and locks, destroys locals

  // SSA form IR support
  void setup_phi_for_stack(BlockBegin* b, int index);
  void setup_phi_for_local(BlockBegin* b, int index);

  // debugging
  void print()  PRODUCT_RETURN;
  void verify() PRODUCT_RETURN;
};



// Macro definitions for simple iteration of stack and local values of a ValueStack
// The macros can be used like a for-loop. All variables (state, index and value)
// must be defined before the loop.
// When states are nested because of inlining, the stack of the innermost state
// cumulates also the stack of the nested states. In contrast, the locals of all
// states must be iterated each.
// Use the following code pattern to iterate all stack values and all nested local values:
//
// ValueStack* state = ...   // state that is iterated
// int index;                // current loop index (overwritten in loop)
// Value value;              // value at current loop index (overwritten in loop)
//
// for_each_stack_value(state, index, value {
//   do something with value and index
// }
//
// for_each_state(state) {
//   for_each_local_value(state, index, value) {
//     do something with value and index
//   }
// }
// as an invariant, state is NULL now


// construct a unique variable name with the line number where the macro is used
#define temp_var3(x) temp__ ## x
#define temp_var2(x) temp_var3(x)
#define temp_var     temp_var2(__LINE__)

#define for_each_state(state)  \
  for (; state != NULL; state = state->caller_state())

#define for_each_local_value(state, index, value)                                              \
  int temp_var = state->locals_size();                                                         \
  for (index = 0;                                                                              \
       index < temp_var && (value = state->local_at(index), true);                             \
       index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size()))    \
    if (value != NULL)


#define for_each_stack_value(state, index, value)                                              \
  int temp_var = state->stack_size();                                                          \
  for (index = 0;                                                                              \
       index < temp_var && (value = state->stack_at(index), true);                             \
       index += value->type()->size())


#define for_each_lock_value(state, index, value)                                               \
  int temp_var = state->locks_size();                                                          \
  for (index = 0;                                                                              \
       index < temp_var && (value = state->lock_at(index), true);                              \
       index++)                                                                                \
    if (value != NULL)


// Macro definition for simple iteration of all state values of a ValueStack
// Because the code cannot be executed in a single loop, the code must be passed
// as a macro parameter.
// Use the following code pattern to iterate all stack values and all nested local values:
//
// ValueStack* state = ...   // state that is iterated
// for_each_state_value(state, value,
//   do something with value (note that this is a macro parameter)
// );

#define for_each_state_value(v_state, v_value, v_code)                                         \
{                                                                                              \
  int cur_index;                                                                               \
  ValueStack* cur_state = v_state;                                                             \
  Value v_value;                                                                                 \
  {                                                                                            \
    for_each_stack_value(cur_state, cur_index, v_value) {                                      \
      v_code;                                                                                  \
    }                                                                                          \
  }                                                                                            \
  for_each_state(cur_state) {                                                                  \
    for_each_local_value(cur_state, cur_index, v_value) {                                      \
      v_code;                                                                                  \
    }                                                                                          \
  }                                                                                            \
}


// Macro definition for simple iteration of all phif functions of a block, i.e all
// phi functions of the ValueStack where the block matches.
// Use the following code pattern to iterate all phi functions of a block:
//
// BlockBegin* block = ...   // block that is iterated
// for_each_phi_function(block, phi,
//   do something with the phi function phi (note that this is a macro parameter)
// );

#define for_each_phi_fun(v_block, v_phi, v_code)                                               \
{                                                                                              \
  int cur_index;                                                                               \
  ValueStack* cur_state = v_block->state();                                                    \
  Value value;                                                                                 \
  {                                                                                            \
    for_each_stack_value(cur_state, cur_index, value) {                                        \
      Phi* v_phi = value->as_Phi();                                                      \
      if (v_phi != NULL && v_phi->block() == v_block) {                                        \
        v_code;                                                                                \
      }                                                                                        \
    }                                                                                          \
  }                                                                                            \
  {                                                                                            \
    for_each_local_value(cur_state, cur_index, value) {                                        \
      Phi* v_phi = value->as_Phi();                                                      \
      if (v_phi != NULL && v_phi->block() == v_block) {                                        \
        v_code;                                                                                \
      }                                                                                        \
    }                                                                                          \
  }                                                                                            \
}