callnode.cpp 44.5 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/*
 * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

#include "incls/_precompiled.incl"
#include "incls/_callnode.cpp.incl"

//=============================================================================
uint StartNode::size_of() const { return sizeof(*this); }
uint StartNode::cmp( const Node &n ) const
{ return _domain == ((StartNode&)n)._domain; }
const Type *StartNode::bottom_type() const { return _domain; }
const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
#ifndef PRODUCT
void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
#endif

//------------------------------Ideal------------------------------------------
Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  return remove_dead_region(phase, can_reshape) ? this : NULL;
}

//------------------------------calling_convention-----------------------------
void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
}

//------------------------------Registers--------------------------------------
const RegMask &StartNode::in_RegMask(uint) const {
  return RegMask::Empty;
}

//------------------------------match------------------------------------------
// Construct projections for incoming parameters, and their RegMask info
Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  switch (proj->_con) {
  case TypeFunc::Control:
  case TypeFunc::I_O:
  case TypeFunc::Memory:
    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  case TypeFunc::FramePtr:
    return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  case TypeFunc::ReturnAdr:
    return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  case TypeFunc::Parms:
  default: {
      uint parm_num = proj->_con - TypeFunc::Parms;
      const Type *t = _domain->field_at(proj->_con);
      if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
        return new (match->C, 1) ConNode(Type::TOP);
      uint ideal_reg = Matcher::base2reg[t->base()];
      RegMask &rm = match->_calling_convention_mask[parm_num];
      return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
    }
  }
  return NULL;
}

//------------------------------StartOSRNode----------------------------------
// The method start node for an on stack replacement adapter

//------------------------------osr_domain-----------------------------
const TypeTuple *StartOSRNode::osr_domain() {
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer

  return TypeTuple::make(TypeFunc::Parms+1, fields);
}

//=============================================================================
const char * const ParmNode::names[TypeFunc::Parms+1] = {
  "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
};

#ifndef PRODUCT
void ParmNode::dump_spec(outputStream *st) const {
  if( _con < TypeFunc::Parms ) {
    st->print(names[_con]);
  } else {
    st->print("Parm%d: ",_con-TypeFunc::Parms);
    // Verbose and WizardMode dump bottom_type for all nodes
    if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
  }
}
#endif

uint ParmNode::ideal_reg() const {
  switch( _con ) {
  case TypeFunc::Control  : // fall through
  case TypeFunc::I_O      : // fall through
  case TypeFunc::Memory   : return 0;
  case TypeFunc::FramePtr : // fall through
  case TypeFunc::ReturnAdr: return Op_RegP;
  default                 : assert( _con > TypeFunc::Parms, "" );
    // fall through
  case TypeFunc::Parms    : {
    // Type of argument being passed
    const Type *t = in(0)->as_Start()->_domain->field_at(_con);
    return Matcher::base2reg[t->base()];
  }
  }
  ShouldNotReachHere();
  return 0;
}

//=============================================================================
ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
  init_req(TypeFunc::Control,cntrl);
  init_req(TypeFunc::I_O,i_o);
  init_req(TypeFunc::Memory,memory);
  init_req(TypeFunc::FramePtr,frameptr);
  init_req(TypeFunc::ReturnAdr,retadr);
}

Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
  return remove_dead_region(phase, can_reshape) ? this : NULL;
}

const Type *ReturnNode::Value( PhaseTransform *phase ) const {
  return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
    ? Type::TOP
    : Type::BOTTOM;
}

// Do we Match on this edge index or not?  No edges on return nodes
uint ReturnNode::match_edge(uint idx) const {
  return 0;
}


#ifndef PRODUCT
void ReturnNode::dump_req() const {
  // Dump the required inputs, enclosed in '(' and ')'
  uint i;                       // Exit value of loop
  for( i=0; i<req(); i++ ) {    // For all required inputs
    if( i == TypeFunc::Parms ) tty->print("returns");
    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
    else tty->print("_ ");
  }
}
#endif

//=============================================================================
RethrowNode::RethrowNode(
  Node* cntrl,
  Node* i_o,
  Node* memory,
  Node* frameptr,
  Node* ret_adr,
  Node* exception
) : Node(TypeFunc::Parms + 1) {
  init_req(TypeFunc::Control  , cntrl    );
  init_req(TypeFunc::I_O      , i_o      );
  init_req(TypeFunc::Memory   , memory   );
  init_req(TypeFunc::FramePtr , frameptr );
  init_req(TypeFunc::ReturnAdr, ret_adr);
  init_req(TypeFunc::Parms    , exception);
}

Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
  return remove_dead_region(phase, can_reshape) ? this : NULL;
}

const Type *RethrowNode::Value( PhaseTransform *phase ) const {
  return (phase->type(in(TypeFunc::Control)) == Type::TOP)
    ? Type::TOP
    : Type::BOTTOM;
}

uint RethrowNode::match_edge(uint idx) const {
  return 0;
}

#ifndef PRODUCT
void RethrowNode::dump_req() const {
  // Dump the required inputs, enclosed in '(' and ')'
  uint i;                       // Exit value of loop
  for( i=0; i<req(); i++ ) {    // For all required inputs
    if( i == TypeFunc::Parms ) tty->print("exception");
    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
    else tty->print("_ ");
  }
}
#endif

//=============================================================================
// Do we Match on this edge index or not?  Match only target address & method
uint TailCallNode::match_edge(uint idx) const {
  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
}

//=============================================================================
// Do we Match on this edge index or not?  Match only target address & oop
uint TailJumpNode::match_edge(uint idx) const {
  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
}

//=============================================================================
JVMState::JVMState(ciMethod* method, JVMState* caller) {
  assert(method != NULL, "must be valid call site");
  _method = method;
  debug_only(_bci = -99);  // random garbage value
  debug_only(_map = (SafePointNode*)-1);
  _caller = caller;
  _depth  = 1 + (caller == NULL ? 0 : caller->depth());
  _locoff = TypeFunc::Parms;
  _stkoff = _locoff + _method->max_locals();
  _monoff = _stkoff + _method->max_stack();
  _endoff = _monoff;
  _sp = 0;
}
JVMState::JVMState(int stack_size) {
  _method = NULL;
  _bci = InvocationEntryBci;
  debug_only(_map = (SafePointNode*)-1);
  _caller = NULL;
  _depth  = 1;
  _locoff = TypeFunc::Parms;
  _stkoff = _locoff;
  _monoff = _stkoff + stack_size;
  _endoff = _monoff;
  _sp = 0;
}

//--------------------------------of_depth-------------------------------------
JVMState* JVMState::of_depth(int d) const {
  const JVMState* jvmp = this;
  assert(0 < d && (uint)d <= depth(), "oob");
  for (int skip = depth() - d; skip > 0; skip--) {
    jvmp = jvmp->caller();
  }
  assert(jvmp->depth() == (uint)d, "found the right one");
  return (JVMState*)jvmp;
}

//-----------------------------same_calls_as-----------------------------------
bool JVMState::same_calls_as(const JVMState* that) const {
  if (this == that)                    return true;
  if (this->depth() != that->depth())  return false;
  const JVMState* p = this;
  const JVMState* q = that;
  for (;;) {
    if (p->_method != q->_method)    return false;
    if (p->_method == NULL)          return true;   // bci is irrelevant
    if (p->_bci    != q->_bci)       return false;
    p = p->caller();
    q = q->caller();
    if (p == q)                      return true;
    assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
  }
}

//------------------------------debug_start------------------------------------
uint JVMState::debug_start()  const {
  debug_only(JVMState* jvmroot = of_depth(1));
  assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
  return of_depth(1)->locoff();
}

//-------------------------------debug_end-------------------------------------
uint JVMState::debug_end() const {
  debug_only(JVMState* jvmroot = of_depth(1));
  assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
  return endoff();
}

//------------------------------debug_depth------------------------------------
uint JVMState::debug_depth() const {
  uint total = 0;
  for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
    total += jvmp->debug_size();
  }
  return total;
}

//------------------------------format_helper----------------------------------
// Given an allocation (a Chaitin object) and a Node decide if the Node carries
// any defined value or not.  If it does, print out the register or constant.
#ifndef PRODUCT
static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i ) {
  if (n == NULL) { st->print(" NULL"); return; }
  if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
    char buf[50];
    regalloc->dump_register(n,buf);
    st->print(" %s%d]=%s",msg,i,buf);
  } else {                      // No register, but might be constant
    const Type *t = n->bottom_type();
    switch (t->base()) {
    case Type::Int:
      st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
      break;
    case Type::AnyPtr:
      assert( t == TypePtr::NULL_PTR, "" );
      st->print(" %s%d]=#NULL",msg,i);
      break;
    case Type::AryPtr:
    case Type::KlassPtr:
    case Type::InstPtr:
      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
      break;
    case Type::RawPtr:
      st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
      break;
    case Type::DoubleCon:
      st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
      break;
    case Type::FloatCon:
      st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
      break;
    case Type::Long:
      st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
      break;
    case Type::Half:
    case Type::Top:
      st->print(" %s%d]=_",msg,i);
      break;
    default: ShouldNotReachHere();
    }
  }
}
#endif

//------------------------------format-----------------------------------------
#ifndef PRODUCT
void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
  st->print("        #");
  if( _method ) {
    _method->print_short_name(st);
    st->print(" @ bci:%d ",_bci);
  } else {
    st->print_cr(" runtime stub ");
    return;
  }
  if (n->is_MachSafePoint()) {
    MachSafePointNode *mcall = n->as_MachSafePoint();
    uint i;
    // Print locals
    for( i = 0; i < (uint)loc_size(); i++ )
      format_helper( regalloc, st, mcall->local(this, i), "L[", i );
    // Print stack
    for (i = 0; i < (uint)stk_size(); i++) {
      if ((uint)(_stkoff + i) >= mcall->len())
        st->print(" oob ");
      else
       format_helper( regalloc, st, mcall->stack(this, i), "STK[", i );
    }
    for (i = 0; (int)i < nof_monitors(); i++) {
      Node *box = mcall->monitor_box(this, i);
      Node *obj = mcall->monitor_obj(this, i);
      if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
        while( !box->is_BoxLock() )  box = box->in(1);
        format_helper( regalloc, st, box, "MON-BOX[", i );
      } else {
        OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
        st->print(" MON-BOX%d=%s+%d",
                   i,
                   OptoReg::regname(OptoReg::c_frame_pointer),
                   regalloc->reg2offset(box_reg));
      }
      format_helper( regalloc, st, obj, "MON-OBJ[", i );
    }
  }
  st->print_cr("");
  if (caller() != NULL)  caller()->format(regalloc, n, st);
}
#endif

#ifndef PRODUCT
void JVMState::dump_spec(outputStream *st) const {
  if (_method != NULL) {
    bool printed = false;
    if (!Verbose) {
      // The JVMS dumps make really, really long lines.
      // Take out the most boring parts, which are the package prefixes.
      char buf[500];
      stringStream namest(buf, sizeof(buf));
      _method->print_short_name(&namest);
      if (namest.count() < sizeof(buf)) {
        const char* name = namest.base();
        if (name[0] == ' ')  ++name;
        const char* endcn = strchr(name, ':');  // end of class name
        if (endcn == NULL)  endcn = strchr(name, '(');
        if (endcn == NULL)  endcn = name + strlen(name);
        while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
          --endcn;
        st->print(" %s", endcn);
        printed = true;
      }
    }
    if (!printed)
      _method->print_short_name(st);
    st->print(" @ bci:%d",_bci);
  } else {
    st->print(" runtime stub");
  }
  if (caller() != NULL)  caller()->dump_spec(st);
}
#endif

#ifndef PRODUCT
void JVMState::dump_on(outputStream* st) const {
  if (_map && !((uintptr_t)_map & 1)) {
    if (_map->len() > _map->req()) {  // _map->has_exceptions()
      Node* ex = _map->in(_map->req());  // _map->next_exception()
      // skip the first one; it's already being printed
      while (ex != NULL && ex->len() > ex->req()) {
        ex = ex->in(ex->req());  // ex->next_exception()
        ex->dump(1);
      }
    }
    _map->dump(2);
  }
  st->print("JVMS depth=%d loc=%d stk=%d mon=%d end=%d mondepth=%d sp=%d bci=%d method=",
             depth(), locoff(), stkoff(), monoff(), endoff(), monitor_depth(), sp(), bci());
  if (_method == NULL) {
    st->print_cr("(none)");
  } else {
    _method->print_name(st);
    st->cr();
    if (bci() >= 0 && bci() < _method->code_size()) {
      st->print("    bc: ");
      _method->print_codes_on(bci(), bci()+1, st);
    }
  }
  if (caller() != NULL) {
    caller()->dump_on(st);
  }
}

// Extra way to dump a jvms from the debugger,
// to avoid a bug with C++ member function calls.
void dump_jvms(JVMState* jvms) {
  jvms->dump();
}
#endif

//--------------------------clone_shallow--------------------------------------
JVMState* JVMState::clone_shallow(Compile* C) const {
  JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
  n->set_bci(_bci);
  n->set_locoff(_locoff);
  n->set_stkoff(_stkoff);
  n->set_monoff(_monoff);
  n->set_endoff(_endoff);
  n->set_sp(_sp);
  n->set_map(_map);
  return n;
}

//---------------------------clone_deep----------------------------------------
JVMState* JVMState::clone_deep(Compile* C) const {
  JVMState* n = clone_shallow(C);
  for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
    p->_caller = p->_caller->clone_shallow(C);
  }
  assert(n->depth() == depth(), "sanity");
  assert(n->debug_depth() == debug_depth(), "sanity");
  return n;
}

//=============================================================================
uint CallNode::cmp( const Node &n ) const
{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
#ifndef PRODUCT
void CallNode::dump_req() const {
  // Dump the required inputs, enclosed in '(' and ')'
  uint i;                       // Exit value of loop
  for( i=0; i<req(); i++ ) {    // For all required inputs
    if( i == TypeFunc::Parms ) tty->print("(");
    if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
    else tty->print("_ ");
  }
  tty->print(")");
}

void CallNode::dump_spec(outputStream *st) const {
  st->print(" ");
  tf()->dump_on(st);
  if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
  if (jvms() != NULL)  jvms()->dump_spec(st);
}
#endif

const Type *CallNode::bottom_type() const { return tf()->range(); }
const Type *CallNode::Value(PhaseTransform *phase) const {
  if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
  return tf()->range();
}

//------------------------------calling_convention-----------------------------
void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  // Use the standard compiler calling convention
  Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
}


//------------------------------match------------------------------------------
// Construct projections for control, I/O, memory-fields, ..., and
// return result(s) along with their RegMask info
Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
  switch (proj->_con) {
  case TypeFunc::Control:
  case TypeFunc::I_O:
  case TypeFunc::Memory:
    return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);

  case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
    assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
    // 2nd half of doubles and longs
    return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);

  case TypeFunc::Parms: {       // Normal returns
    uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
    OptoRegPair regs = is_CallRuntime()
      ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
      : match->  return_value(ideal_reg,true); // Calls into compiled Java code
    RegMask rm = RegMask(regs.first());
    if( OptoReg::is_valid(regs.second()) )
      rm.Insert( regs.second() );
    return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
  }

  case TypeFunc::ReturnAdr:
  case TypeFunc::FramePtr:
  default:
    ShouldNotReachHere();
  }
  return NULL;
}

// Do we Match on this edge index or not?  Match no edges
uint CallNode::match_edge(uint idx) const {
  return 0;
}

//=============================================================================
uint CallJavaNode::size_of() const { return sizeof(*this); }
uint CallJavaNode::cmp( const Node &n ) const {
  CallJavaNode &call = (CallJavaNode&)n;
  return CallNode::cmp(call) && _method == call._method;
}
#ifndef PRODUCT
void CallJavaNode::dump_spec(outputStream *st) const {
  if( _method ) _method->print_short_name(st);
  CallNode::dump_spec(st);
}
#endif

//=============================================================================
uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
uint CallStaticJavaNode::cmp( const Node &n ) const {
  CallStaticJavaNode &call = (CallStaticJavaNode&)n;
  return CallJavaNode::cmp(call);
}

//----------------------------uncommon_trap_request----------------------------
// If this is an uncommon trap, return the request code, else zero.
int CallStaticJavaNode::uncommon_trap_request() const {
  if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
    return extract_uncommon_trap_request(this);
  }
  return 0;
}
int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
#ifndef PRODUCT
  if (!(call->req() > TypeFunc::Parms &&
        call->in(TypeFunc::Parms) != NULL &&
        call->in(TypeFunc::Parms)->is_Con())) {
    assert(_in_dump_cnt != 0, "OK if dumping");
    tty->print("[bad uncommon trap]");
    return 0;
  }
#endif
  return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
}

#ifndef PRODUCT
void CallStaticJavaNode::dump_spec(outputStream *st) const {
  st->print("# Static ");
  if (_name != NULL) {
    st->print("%s", _name);
    int trap_req = uncommon_trap_request();
    if (trap_req != 0) {
      char buf[100];
      st->print("(%s)",
                 Deoptimization::format_trap_request(buf, sizeof(buf),
                                                     trap_req));
    }
    st->print(" ");
  }
  CallJavaNode::dump_spec(st);
}
#endif

//=============================================================================
uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
uint CallDynamicJavaNode::cmp( const Node &n ) const {
  CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
  return CallJavaNode::cmp(call);
}
#ifndef PRODUCT
void CallDynamicJavaNode::dump_spec(outputStream *st) const {
  st->print("# Dynamic ");
  CallJavaNode::dump_spec(st);
}
#endif

//=============================================================================
uint CallRuntimeNode::size_of() const { return sizeof(*this); }
uint CallRuntimeNode::cmp( const Node &n ) const {
  CallRuntimeNode &call = (CallRuntimeNode&)n;
  return CallNode::cmp(call) && !strcmp(_name,call._name);
}
#ifndef PRODUCT
void CallRuntimeNode::dump_spec(outputStream *st) const {
  st->print("# ");
  st->print(_name);
  CallNode::dump_spec(st);
}
#endif

//------------------------------calling_convention-----------------------------
void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
}

//=============================================================================
//------------------------------calling_convention-----------------------------


//=============================================================================
#ifndef PRODUCT
void CallLeafNode::dump_spec(outputStream *st) const {
  st->print("# ");
  st->print(_name);
  CallNode::dump_spec(st);
}
#endif

//=============================================================================

void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
  assert(verify_jvms(jvms), "jvms must match");
  int loc = jvms->locoff() + idx;
  if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
    // If current local idx is top then local idx - 1 could
    // be a long/double that needs to be killed since top could
    // represent the 2nd half ofthe long/double.
    uint ideal = in(loc -1)->ideal_reg();
    if (ideal == Op_RegD || ideal == Op_RegL) {
      // set other (low index) half to top
      set_req(loc - 1, in(loc));
    }
  }
  set_req(loc, c);
}

uint SafePointNode::size_of() const { return sizeof(*this); }
uint SafePointNode::cmp( const Node &n ) const {
  return (&n == this);          // Always fail except on self
}

//-------------------------set_next_exception----------------------------------
void SafePointNode::set_next_exception(SafePointNode* n) {
  assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
  if (len() == req()) {
    if (n != NULL)  add_prec(n);
  } else {
    set_prec(req(), n);
  }
}


//----------------------------next_exception-----------------------------------
SafePointNode* SafePointNode::next_exception() const {
  if (len() == req()) {
    return NULL;
  } else {
    Node* n = in(req());
    assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
    return (SafePointNode*) n;
  }
}


//------------------------------Ideal------------------------------------------
// Skip over any collapsed Regions
Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (remove_dead_region(phase, can_reshape))  return this;

  return NULL;
}

//------------------------------Identity---------------------------------------
// Remove obviously duplicate safepoints
Node *SafePointNode::Identity( PhaseTransform *phase ) {

  // If you have back to back safepoints, remove one
  if( in(TypeFunc::Control)->is_SafePoint() )
    return in(TypeFunc::Control);

  if( in(0)->is_Proj() ) {
    Node *n0 = in(0)->in(0);
    // Check if he is a call projection (except Leaf Call)
    if( n0->is_Catch() ) {
      n0 = n0->in(0)->in(0);
      assert( n0->is_Call(), "expect a call here" );
    }
    if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
      // Useless Safepoint, so remove it
      return in(TypeFunc::Control);
    }
  }

  return this;
}

//------------------------------Value------------------------------------------
const Type *SafePointNode::Value( PhaseTransform *phase ) const {
  if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
  if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
  return Type::CONTROL;
}

#ifndef PRODUCT
void SafePointNode::dump_spec(outputStream *st) const {
  st->print(" SafePoint ");
}
#endif

const RegMask &SafePointNode::in_RegMask(uint idx) const {
  if( idx < TypeFunc::Parms ) return RegMask::Empty;
  // Values outside the domain represent debug info
  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
}
const RegMask &SafePointNode::out_RegMask() const {
  return RegMask::Empty;
}


void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
  assert((int)grow_by > 0, "sanity");
  int monoff = jvms->monoff();
  int endoff = jvms->endoff();
  assert(endoff == (int)req(), "no other states or debug info after me");
  Node* top = Compile::current()->top();
  for (uint i = 0; i < grow_by; i++) {
    ins_req(monoff, top);
  }
  jvms->set_monoff(monoff + grow_by);
  jvms->set_endoff(endoff + grow_by);
}

void SafePointNode::push_monitor(const FastLockNode *lock) {
  // Add a LockNode, which points to both the original BoxLockNode (the
  // stack space for the monitor) and the Object being locked.
  const int MonitorEdges = 2;
  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
  assert(req() == jvms()->endoff(), "correct sizing");
  if (GenerateSynchronizationCode) {
    add_req(lock->box_node());
    add_req(lock->obj_node());
  } else {
    add_req(NULL);
    add_req(NULL);
  }
  jvms()->set_endoff(req());
}

void SafePointNode::pop_monitor() {
  // Delete last monitor from debug info
  debug_only(int num_before_pop = jvms()->nof_monitors());
  const int MonitorEdges = (1<<JVMState::logMonitorEdges);
  int endoff = jvms()->endoff();
  int new_endoff = endoff - MonitorEdges;
  jvms()->set_endoff(new_endoff);
  while (endoff > new_endoff)  del_req(--endoff);
  assert(jvms()->nof_monitors() == num_before_pop-1, "");
}

Node *SafePointNode::peek_monitor_box() const {
  int mon = jvms()->nof_monitors() - 1;
  assert(mon >= 0, "most have a monitor");
  return monitor_box(jvms(), mon);
}

Node *SafePointNode::peek_monitor_obj() const {
  int mon = jvms()->nof_monitors() - 1;
  assert(mon >= 0, "most have a monitor");
  return monitor_obj(jvms(), mon);
}

// Do we Match on this edge index or not?  Match no edges
uint SafePointNode::match_edge(uint idx) const {
  if( !needs_polling_address_input() )
    return 0;

  return (TypeFunc::Parms == idx);
}

//=============================================================================
uint AllocateNode::size_of() const { return sizeof(*this); }

AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
                           Node *ctrl, Node *mem, Node *abio,
                           Node *size, Node *klass_node, Node *initial_test)
  : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
{
  init_class_id(Class_Allocate);
  init_flags(Flag_is_macro);
835
  _is_scalar_replaceable = false;
D
duke 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
  Node *topnode = C->top();

  init_req( TypeFunc::Control  , ctrl );
  init_req( TypeFunc::I_O      , abio );
  init_req( TypeFunc::Memory   , mem );
  init_req( TypeFunc::ReturnAdr, topnode );
  init_req( TypeFunc::FramePtr , topnode );
  init_req( AllocSize          , size);
  init_req( KlassNode          , klass_node);
  init_req( InitialTest        , initial_test);
  init_req( ALength            , topnode);
  C->add_macro_node(this);
}

//=============================================================================
uint AllocateArrayNode::size_of() const { return sizeof(*this); }

//=============================================================================
uint LockNode::size_of() const { return sizeof(*this); }

// Redundant lock elimination
//
// There are various patterns of locking where we release and
// immediately reacquire a lock in a piece of code where no operations
// occur in between that would be observable.  In those cases we can
// skip releasing and reacquiring the lock without violating any
// fairness requirements.  Doing this around a loop could cause a lock
// to be held for a very long time so we concentrate on non-looping
// control flow.  We also require that the operations are fully
// redundant meaning that we don't introduce new lock operations on
// some paths so to be able to eliminate it on others ala PRE.  This
// would probably require some more extensive graph manipulation to
// guarantee that the memory edges were all handled correctly.
//
// Assuming p is a simple predicate which can't trap in any way and s
// is a synchronized method consider this code:
//
//   s();
//   if (p)
//     s();
//   else
//     s();
//   s();
//
// 1. The unlocks of the first call to s can be eliminated if the
// locks inside the then and else branches are eliminated.
//
// 2. The unlocks of the then and else branches can be eliminated if
// the lock of the final call to s is eliminated.
//
// Either of these cases subsumes the simple case of sequential control flow
//
// Addtionally we can eliminate versions without the else case:
//
//   s();
//   if (p)
//     s();
//   s();
//
// 3. In this case we eliminate the unlock of the first s, the lock
// and unlock in the then case and the lock in the final s.
//
// Note also that in all these cases the then/else pieces don't have
// to be trivial as long as they begin and end with synchronization
// operations.
//
//   s();
//   if (p)
//     s();
//     f();
//     s();
//   s();
//
// The code will work properly for this case, leaving in the unlock
// before the call to f and the relock after it.
//
// A potentially interesting case which isn't handled here is when the
// locking is partially redundant.
//
//   s();
//   if (p)
//     s();
//
// This could be eliminated putting unlocking on the else case and
// eliminating the first unlock and the lock in the then side.
// Alternatively the unlock could be moved out of the then side so it
// was after the merge and the first unlock and second lock
// eliminated.  This might require less manipulation of the memory
// state to get correct.
//
// Additionally we might allow work between a unlock and lock before
// giving up eliminating the locks.  The current code disallows any
// conditional control flow between these operations.  A formulation
// similar to partial redundancy elimination computing the
// availability of unlocking and the anticipatability of locking at a
// program point would allow detection of fully redundant locking with
// some amount of work in between.  I'm not sure how often I really
// think that would occur though.  Most of the cases I've seen
// indicate it's likely non-trivial work would occur in between.
// There may be other more complicated constructs where we could
// eliminate locking but I haven't seen any others appear as hot or
// interesting.
//
// Locking and unlocking have a canonical form in ideal that looks
// roughly like this:
//
//              <obj>
//                | \\------+
//                |  \       \
//                | BoxLock   \
//                |  |   |     \
//                |  |    \     \
//                |  |   FastLock
//                |  |   /
//                |  |  /
//                |  |  |
//
//               Lock
//                |
//            Proj #0
//                |
//            MembarAcquire
//                |
//            Proj #0
//
//            MembarRelease
//                |
//            Proj #0
//                |
//              Unlock
//                |
//            Proj #0
//
//
// This code proceeds by processing Lock nodes during PhaseIterGVN
// and searching back through its control for the proper code
// patterns.  Once it finds a set of lock and unlock operations to
// eliminate they are marked as eliminatable which causes the
// expansion of the Lock and Unlock macro nodes to make the operation a NOP
//
//=============================================================================

//
// Utility function to skip over uninteresting control nodes.  Nodes skipped are:
//   - copy regions.  (These may not have been optimized away yet.)
//   - eliminated locking nodes
//
static Node *next_control(Node *ctrl) {
  if (ctrl == NULL)
    return NULL;
  while (1) {
    if (ctrl->is_Region()) {
      RegionNode *r = ctrl->as_Region();
      Node *n = r->is_copy();
      if (n == NULL)
        break;  // hit a region, return it
      else
        ctrl = n;
    } else if (ctrl->is_Proj()) {
      Node *in0 = ctrl->in(0);
      if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
        ctrl = in0->in(0);
      } else {
        break;
      }
    } else {
      break; // found an interesting control
    }
  }
  return ctrl;
}
//
// Given a control, see if it's the control projection of an Unlock which
// operating on the same object as lock.
//
bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
                                            GrowableArray<AbstractLockNode*> &lock_ops) {
  ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
  if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
    Node *n = ctrl_proj->in(0);
    if (n != NULL && n->is_Unlock()) {
      UnlockNode *unlock = n->as_Unlock();
      if ((lock->obj_node() == unlock->obj_node()) &&
          (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
        lock_ops.append(unlock);
        return true;
      }
    }
  }
  return false;
}

//
// Find the lock matching an unlock.  Returns null if a safepoint
// or complicated control is encountered first.
LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
  LockNode *lock_result = NULL;
  // find the matching lock, or an intervening safepoint
  Node *ctrl = next_control(unlock->in(0));
  while (1) {
    assert(ctrl != NULL, "invalid control graph");
    assert(!ctrl->is_Start(), "missing lock for unlock");
    if (ctrl->is_top()) break;  // dead control path
    if (ctrl->is_Proj()) ctrl = ctrl->in(0);
    if (ctrl->is_SafePoint()) {
        break;  // found a safepoint (may be the lock we are searching for)
    } else if (ctrl->is_Region()) {
      // Check for a simple diamond pattern.  Punt on anything more complicated
      if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
        Node *in1 = next_control(ctrl->in(1));
        Node *in2 = next_control(ctrl->in(2));
        if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
             (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
          ctrl = next_control(in1->in(0)->in(0));
        } else {
          break;
        }
      } else {
        break;
      }
    } else {
      ctrl = next_control(ctrl->in(0));  // keep searching
    }
  }
  if (ctrl->is_Lock()) {
    LockNode *lock = ctrl->as_Lock();
    if ((lock->obj_node() == unlock->obj_node()) &&
            (lock->box_node() == unlock->box_node())) {
      lock_result = lock;
    }
  }
  return lock_result;
}

// This code corresponds to case 3 above.

bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
                                                       GrowableArray<AbstractLockNode*> &lock_ops) {
  Node* if_node = node->in(0);
  bool  if_true = node->is_IfTrue();

  if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
    Node *lock_ctrl = next_control(if_node->in(0));
    if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
      Node* lock1_node = NULL;
      ProjNode* proj = if_node->as_If()->proj_out(!if_true);
      if (if_true) {
        if (proj->is_IfFalse() && proj->outcnt() == 1) {
          lock1_node = proj->unique_out();
        }
      } else {
        if (proj->is_IfTrue() && proj->outcnt() == 1) {
          lock1_node = proj->unique_out();
        }
      }
      if (lock1_node != NULL && lock1_node->is_Lock()) {
        LockNode *lock1 = lock1_node->as_Lock();
        if ((lock->obj_node() == lock1->obj_node()) &&
            (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
          lock_ops.append(lock1);
          return true;
        }
      }
    }
  }

  lock_ops.trunc_to(0);
  return false;
}

bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
                               GrowableArray<AbstractLockNode*> &lock_ops) {
  // check each control merging at this point for a matching unlock.
  // in(0) should be self edge so skip it.
  for (int i = 1; i < (int)region->req(); i++) {
    Node *in_node = next_control(region->in(i));
    if (in_node != NULL) {
      if (find_matching_unlock(in_node, lock, lock_ops)) {
        // found a match so keep on checking.
        continue;
      } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
        continue;
      }

      // If we fall through to here then it was some kind of node we
      // don't understand or there wasn't a matching unlock, so give
      // up trying to merge locks.
      lock_ops.trunc_to(0);
      return false;
    }
  }
  return true;

}

#ifndef PRODUCT
//
// Create a counter which counts the number of times this lock is acquired
//
void AbstractLockNode::create_lock_counter(JVMState* state) {
  _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
}
#endif

void AbstractLockNode::set_eliminated() {
  _eliminate = true;
#ifndef PRODUCT
  if (_counter) {
    // Update the counter to indicate that this lock was eliminated.
    // The counter update code will stay around even though the
    // optimizer will eliminate the lock operation itself.
    _counter->set_tag(NamedCounter::EliminatedLockCounter);
  }
#endif
}

//=============================================================================
Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {

  // perform any generic optimizations first
  Node *result = SafePointNode::Ideal(phase, can_reshape);

  // Now see if we can optimize away this lock.  We don't actually
  // remove the locking here, we simply set the _eliminate flag which
  // prevents macro expansion from expanding the lock.  Since we don't
  // modify the graph, the value returned from this function is the
  // one computed above.
  if (EliminateLocks && !is_eliminated()) {
    //
    // Try lock coarsening
    //
    PhaseIterGVN* iter = phase->is_IterGVN();
    if (iter != NULL) {

      GrowableArray<AbstractLockNode*>   lock_ops;

      Node *ctrl = next_control(in(0));

      // now search back for a matching Unlock
      if (find_matching_unlock(ctrl, this, lock_ops)) {
        // found an unlock directly preceding this lock.  This is the
        // case of single unlock directly control dependent on a
        // single lock which is the trivial version of case 1 or 2.
      } else if (ctrl->is_Region() ) {
        if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
        // found lock preceded by multiple unlocks along all paths
        // joining at this point which is case 3 in description above.
        }
      } else {
        // see if this lock comes from either half of an if and the
        // predecessors merges unlocks and the other half of the if
        // performs a lock.
        if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
          // found unlock splitting to an if with locks on both branches.
        }
      }

      if (lock_ops.length() > 0) {
        // add ourselves to the list of locks to be eliminated.
        lock_ops.append(this);

  #ifndef PRODUCT
        if (PrintEliminateLocks) {
          int locks = 0;
          int unlocks = 0;
          for (int i = 0; i < lock_ops.length(); i++) {
            AbstractLockNode* lock = lock_ops.at(i);
            if (lock->Opcode() == Op_Lock) locks++;
            else                               unlocks++;
            if (Verbose) {
              lock->dump(1);
            }
          }
          tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
        }
  #endif

        // for each of the identified locks, mark them
        // as eliminatable
        for (int i = 0; i < lock_ops.length(); i++) {
          AbstractLockNode* lock = lock_ops.at(i);

          // Mark it eliminated to update any counters
          lock->set_eliminated();
        }
      } else if (result != NULL && ctrl->is_Region() &&
                 iter->_worklist.member(ctrl)) {
        // We weren't able to find any opportunities but the region this
        // lock is control dependent on hasn't been processed yet so put
        // this lock back on the worklist so we can check again once any
        // region simplification has occurred.
        iter->_worklist.push(this);
      }
    }
  }

  return result;
}

//=============================================================================
uint UnlockNode::size_of() const { return sizeof(*this); }

//=============================================================================
Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {

  // perform any generic optimizations first
  Node * result = SafePointNode::Ideal(phase, can_reshape);

  // Now see if we can optimize away this unlock.  We don't actually
  // remove the unlocking here, we simply set the _eliminate flag which
  // prevents macro expansion from expanding the unlock.  Since we don't
  // modify the graph, the value returned from this function is the
  // one computed above.
  if (EliminateLocks && !is_eliminated()) {
    //
    // If we are unlocking an unescaped object, the lock/unlock is unnecessary
    // We can eliminate them if there are no safepoints in the locked region.
    //
    ConnectionGraph *cgr = Compile::current()->congraph();
    if (cgr != NULL && cgr->escape_state(obj_node(), phase) == PointsToNode::NoEscape) {
      GrowableArray<AbstractLockNode*>   lock_ops;
      LockNode *lock = find_matching_lock(this);
      if (lock != NULL) {
        lock_ops.append(this);
        lock_ops.append(lock);
        // find other unlocks which pair with the lock we found and add them
        // to the list
        Node * box = box_node();

        for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
          Node *use = box->fast_out(i);
          if (use->is_Unlock() && use != this) {
            UnlockNode *unlock1 = use->as_Unlock();
            if (!unlock1->is_eliminated()) {
              LockNode *lock1 = find_matching_lock(unlock1);
              if (lock == lock1)
                lock_ops.append(unlock1);
              else if (lock1 == NULL) {
               // we can't find a matching lock, we must assume the worst
                lock_ops.trunc_to(0);
                break;
              }
            }
          }
        }
        if (lock_ops.length() > 0) {

  #ifndef PRODUCT
          if (PrintEliminateLocks) {
            int locks = 0;
            int unlocks = 0;
            for (int i = 0; i < lock_ops.length(); i++) {
              AbstractLockNode* lock = lock_ops.at(i);
              if (lock->Opcode() == Op_Lock) locks++;
              else                               unlocks++;
              if (Verbose) {
                lock->dump(1);
              }
            }
            tty->print_cr("***Eliminated %d unescaped unlocks and %d unescaped locks", unlocks, locks);
          }
  #endif

          // for each of the identified locks, mark them
          // as eliminatable
          for (int i = 0; i < lock_ops.length(); i++) {
            AbstractLockNode* lock = lock_ops.at(i);

            // Mark it eliminated to update any counters
            lock->set_eliminated();
          }
        }
      }
    }
  }
  return result;
}