g1CollectedHeap.inline.hpp 12.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP

#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
30
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
31
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
32
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
33
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
34
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
35
#include "runtime/orderAccess.inline.hpp"
36 37
#include "utilities/taskqueue.hpp"

38 39
// Inline functions for G1CollectedHeap

40 41 42
// Return the region with the given index. It assumes the index is valid.
inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrs.at(index); }

43 44 45 46 47 48 49
inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const {
  assert(is_in_reserved(addr),
         err_msg("Cannot calculate region index for address "PTR_FORMAT" that is outside of the heap ["PTR_FORMAT", "PTR_FORMAT")",
                 p2i(addr), p2i(_reserved.start()), p2i(_reserved.end())));
  return (uint)(pointer_delta(addr, _reserved.start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes);
}

50
template <class T>
51
inline HeapRegion*
52 53
G1CollectedHeap::heap_region_containing(const T addr) const {
  HeapRegion* hr = _hrs.addr_to_region((HeapWord*) addr);
54 55 56 57 58 59 60
  // hr can be null if addr in perm_gen
  if (hr != NULL && hr->continuesHumongous()) {
    hr = hr->humongous_start_region();
  }
  return hr;
}

61
template <class T>
62
inline HeapRegion*
63 64 65
G1CollectedHeap::heap_region_containing_raw(const T addr) const {
  assert(_g1_reserved.contains((const void*) addr), "invariant");
  HeapRegion* res = _hrs.addr_to_region_unsafe((HeapWord*) addr);
66 67 68
  return res;
}

69 70 71 72 73 74 75 76 77 78 79 80 81
inline void G1CollectedHeap::reset_gc_time_stamp() {
  _gc_time_stamp = 0;
  OrderAccess::fence();
  // Clear the cached CSet starting regions and time stamps.
  // Their validity is dependent on the GC timestamp.
  clear_cset_start_regions();
}

inline void G1CollectedHeap::increment_gc_time_stamp() {
  ++_gc_time_stamp;
  OrderAccess::fence();
}

82 83 84 85
inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
  _old_set.remove(hr);
}

86
inline bool G1CollectedHeap::obj_in_cs(oop obj) {
87
  HeapRegion* r = _hrs.addr_to_region((HeapWord*) obj);
88 89 90
  return r != NULL && r->in_collection_set();
}

91
inline HeapWord*
92
G1CollectedHeap::attempt_allocation(size_t word_size,
93 94
                                    unsigned int* gc_count_before_ret,
                                    int* gclocker_retry_count_ret) {
95
  assert_heap_not_locked_and_not_at_safepoint();
96 97
  assert(!isHumongous(word_size), "attempt_allocation() should not "
         "be called for humongous allocation requests");
98

99 100 101
  HeapWord* result = _mutator_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
  if (result == NULL) {
102 103 104
    result = attempt_allocation_slow(word_size,
                                     gc_count_before_ret,
                                     gclocker_retry_count_ret);
105
  }
106
  assert_heap_not_locked();
107
  if (result != NULL) {
108
    dirty_young_block(result, word_size);
109
  }
110
  return result;
111 112
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t
                                                              word_size) {
  assert(!isHumongous(word_size),
         "we should not be seeing humongous-size allocations in this path");

  HeapWord* result = _survivor_gc_alloc_region.attempt_allocation(word_size,
                                                      false /* bot_updates */);
  if (result == NULL) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
    result = _survivor_gc_alloc_region.attempt_allocation_locked(word_size,
                                                      false /* bot_updates */);
  }
  if (result != NULL) {
    dirty_young_block(result, word_size);
  }
  return result;
}

inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size) {
  assert(!isHumongous(word_size),
         "we should not be seeing humongous-size allocations in this path");

  HeapWord* result = _old_gc_alloc_region.attempt_allocation(word_size,
                                                       true /* bot_updates */);
  if (result == NULL) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
    result = _old_gc_alloc_region.attempt_allocation_locked(word_size,
                                                       true /* bot_updates */);
  }
  return result;
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// It dirties the cards that cover the block so that so that the post
// write barrier never queues anything when updating objects on this
// block. It is assumed (and in fact we assert) that the block
// belongs to a young region.
inline void
G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
  assert_heap_not_locked();

  // Assign the containing region to containing_hr so that we don't
  // have to keep calling heap_region_containing_raw() in the
  // asserts below.
  DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
  assert(containing_hr != NULL && start != NULL && word_size > 0,
         "pre-condition");
  assert(containing_hr->is_in(start), "it should contain start");
  assert(containing_hr->is_young(), "it should be young");
  assert(!containing_hr->isHumongous(), "it should not be humongous");

  HeapWord* end = start + word_size;
  assert(containing_hr->is_in(end - 1), "it should also contain end - 1");

  MemRegion mr(start, end);
167
  g1_barrier_set()->g1_mark_as_young(mr);
168 169
}

170
inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
171 172 173
  return _task_queues->queue(i);
}

174
inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
175 176 177 178 179 180
  return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
}

inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
  return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
}
181

182 183 184
// This is a fast test on whether a reference points into the
// collection set or not. Assume that the reference
// points into the heap.
185 186
inline bool G1CollectedHeap::is_in_cset(oop obj) {
  bool ret = _in_cset_fast_test.is_in_cset((HeapWord*)obj);
187 188 189 190 191 192 193
  // let's make sure the result is consistent with what the slower
  // test returns
  assert( ret || !obj_in_cs(obj), "sanity");
  assert(!ret ||  obj_in_cs(obj), "sanity");
  return ret;
}

194 195 196 197 198 199 200 201 202 203 204 205
bool G1CollectedHeap::is_in_cset_or_humongous(const oop obj) {
  return _in_cset_fast_test.is_in_cset_or_humongous((HeapWord*)obj);
}

G1CollectedHeap::in_cset_state_t G1CollectedHeap::in_cset_state(const oop obj) {
  return _in_cset_fast_test.at((HeapWord*)obj);
}

void G1CollectedHeap::register_humongous_region_with_in_cset_fast_test(uint index) {
  _in_cset_fast_test.set_humongous(index);
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
#ifndef PRODUCT
// Support for G1EvacuationFailureALot

inline bool
G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
                                                     bool during_initial_mark,
                                                     bool during_marking) {
  bool res = false;
  if (during_marking) {
    res |= G1EvacuationFailureALotDuringConcMark;
  }
  if (during_initial_mark) {
    res |= G1EvacuationFailureALotDuringInitialMark;
  }
  if (gcs_are_young) {
    res |= G1EvacuationFailureALotDuringYoungGC;
  } else {
    // GCs are mixed
    res |= G1EvacuationFailureALotDuringMixedGC;
  }
  return res;
}

inline void
G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
  if (G1EvacuationFailureALot) {
    // Note we can't assert that _evacuation_failure_alot_for_current_gc
    // is clear here. It may have been set during a previous GC but that GC
    // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
    // trigger an evacuation failure and clear the flags and and counts.

    // Check if we have gone over the interval.
    const size_t gc_num = total_collections();
    const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;

    _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);

    // Now check if G1EvacuationFailureALot is enabled for the current GC type.
    const bool gcs_are_young = g1_policy()->gcs_are_young();
    const bool during_im = g1_policy()->during_initial_mark_pause();
    const bool during_marking = mark_in_progress();

    _evacuation_failure_alot_for_current_gc &=
      evacuation_failure_alot_for_gc_type(gcs_are_young,
                                          during_im,
                                          during_marking);
  }
}

inline bool
G1CollectedHeap::evacuation_should_fail() {
  if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
    return false;
  }
  // G1EvacuationFailureALot is in effect for current GC
  // Access to _evacuation_failure_alot_count is not atomic;
  // the value does not have to be exact.
  if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
    return false;
  }
  _evacuation_failure_alot_count = 0;
  return true;
}

inline void G1CollectedHeap::reset_evacuation_should_fail() {
  if (G1EvacuationFailureALot) {
    _evacuation_failure_alot_gc_number = total_collections();
    _evacuation_failure_alot_count = 0;
    _evacuation_failure_alot_for_current_gc = false;
  }
}
#endif  // #ifndef PRODUCT

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
inline bool G1CollectedHeap::is_in_young(const oop obj) {
  HeapRegion* hr = heap_region_containing(obj);
  return hr != NULL && hr->is_young();
}

// We don't need barriers for initializing stores to objects
// in the young gen: for the SATB pre-barrier, there is no
// pre-value that needs to be remembered; for the remembered-set
// update logging post-barrier, we don't maintain remembered set
// information for young gen objects.
inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
  return is_in_young(new_obj);
}

inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
  const HeapRegion* hr = heap_region_containing(obj);
  if (hr == NULL) {
    if (obj == NULL) return false;
    else return true;
  }
  else return is_obj_dead(obj, hr);
}

inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
  const HeapRegion* hr = heap_region_containing(obj);
  if (hr == NULL) {
    if (obj == NULL) return false;
    else return true;
  }
  else return is_obj_ill(obj, hr);
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
inline void G1CollectedHeap::set_humongous_is_live(oop obj) {
  uint region = addr_to_region((HeapWord*)obj);
  // We not only set the "live" flag in the humongous_is_live table, but also
  // reset the entry in the _in_cset_fast_test table so that subsequent references
  // to the same humongous object do not go into the slow path again.
  // This is racy, as multiple threads may at the same time enter here, but this
  // is benign.
  // During collection we only ever set the "live" flag, and only ever clear the
  // entry in the in_cset_fast_table.
  // We only ever evaluate the contents of these tables (in the VM thread) after
  // having synchronized the worker threads with the VM thread, or in the same
  // thread (i.e. within the VM thread).
  if (!_humongous_is_live.is_live(region)) {
    _humongous_is_live.set_live(region);
    _in_cset_fast_test.clear_humongous(region);
  }
}

329
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP