perfMemory_bsd.cpp 31.9 KB
Newer Older
N
never 已提交
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
N
never 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/vmSymbols.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
#include "os_bsd.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/perfMemory.hpp"
33
#include "services/memTracker.hpp"
N
never 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include "utilities/exceptions.hpp"

// put OS-includes here
# include <sys/types.h>
# include <sys/mman.h>
# include <errno.h>
# include <stdio.h>
# include <unistd.h>
# include <sys/stat.h>
# include <signal.h>
# include <pwd.h>

static char* backing_store_file_name = NULL;  // name of the backing store
                                              // file, if successfully created.

// Standard Memory Implementation Details

// create the PerfData memory region in standard memory.
//
static char* create_standard_memory(size_t size) {

  // allocate an aligned chuck of memory
  char* mapAddress = os::reserve_memory(size);

  if (mapAddress == NULL) {
    return NULL;
  }

  // commit memory
63
  if (!os::commit_memory(mapAddress, size, !ExecMem)) {
N
never 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    if (PrintMiscellaneous && Verbose) {
      warning("Could not commit PerfData memory\n");
    }
    os::release_memory(mapAddress, size);
    return NULL;
  }

  return mapAddress;
}

// delete the PerfData memory region
//
static void delete_standard_memory(char* addr, size_t size) {

  // there are no persistent external resources to cleanup for standard
  // memory. since DestroyJavaVM does not support unloading of the JVM,
  // cleanup of the memory resource is not performed. The memory will be
  // reclaimed by the OS upon termination of the process.
  //
  return;
}

// save the specified memory region to the given file
//
// Note: this function might be called from signal handler (by os::abort()),
// don't allocate heap memory.
//
static void save_memory_to_file(char* addr, size_t size) {

 const char* destfile = PerfMemory::get_perfdata_file_path();
 assert(destfile[0] != '\0', "invalid PerfData file path");

  int result;

  RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
              result);;
  if (result == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("Could not create Perfdata save file: %s: %s\n",
              destfile, strerror(errno));
    }
  } else {
    int fd = result;

    for (size_t remaining = size; remaining > 0;) {

      RESTARTABLE(::write(fd, addr, remaining), result);
      if (result == OS_ERR) {
        if (PrintMiscellaneous && Verbose) {
          warning("Could not write Perfdata save file: %s: %s\n",
                  destfile, strerror(errno));
        }
        break;
      }

      remaining -= (size_t)result;
      addr += result;
    }

123
    result = ::close(fd);
N
never 已提交
124 125 126 127 128 129
    if (PrintMiscellaneous && Verbose) {
      if (result == OS_ERR) {
        warning("Could not close %s: %s\n", destfile, strerror(errno));
      }
    }
  }
Z
zgu 已提交
130
  FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
N
never 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
}


// Shared Memory Implementation Details

// Note: the solaris and bsd shared memory implementation uses the mmap
// interface with a backing store file to implement named shared memory.
// Using the file system as the name space for shared memory allows a
// common name space to be supported across a variety of platforms. It
// also provides a name space that Java applications can deal with through
// simple file apis.
//
// The solaris and bsd implementations store the backing store file in
// a user specific temporary directory located in the /tmp file system,
// which is always a local file system and is sometimes a RAM based file
// system.

// return the user specific temporary directory name.
//
// the caller is expected to free the allocated memory.
//
static char* get_user_tmp_dir(const char* user) {

  const char* tmpdir = os::get_temp_directory();
  const char* perfdir = PERFDATA_NAME;
  size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
Z
zgu 已提交
157
  char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
N
never 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

  // construct the path name to user specific tmp directory
  snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);

  return dirname;
}

// convert the given file name into a process id. if the file
// does not meet the file naming constraints, return 0.
//
static pid_t filename_to_pid(const char* filename) {

  // a filename that doesn't begin with a digit is not a
  // candidate for conversion.
  //
  if (!isdigit(*filename)) {
    return 0;
  }

  // check if file name can be converted to an integer without
  // any leftover characters.
  //
  char* remainder = NULL;
  errno = 0;
  pid_t pid = (pid_t)strtol(filename, &remainder, 10);

  if (errno != 0) {
    return 0;
  }

  // check for left over characters. If any, then the filename is
  // not a candidate for conversion.
  //
  if (remainder != NULL && *remainder != '\0') {
    return 0;
  }

  // successful conversion, return the pid
  return pid;
}


// check if the given path is considered a secure directory for
// the backing store files. Returns true if the directory exists
// and is considered a secure location. Returns false if the path
// is a symbolic link or if an error occurred.
//
static bool is_directory_secure(const char* path) {
  struct stat statbuf;
  int result = 0;

  RESTARTABLE(::lstat(path, &statbuf), result);
  if (result == OS_ERR) {
    return false;
  }

  // the path exists, now check it's mode
  if (S_ISLNK(statbuf.st_mode) || !S_ISDIR(statbuf.st_mode)) {
    // the path represents a link or some non-directory file type,
    // which is not what we expected. declare it insecure.
    //
    return false;
  }
  else {
    // we have an existing directory, check if the permissions are safe.
    //
    if ((statbuf.st_mode & (S_IWGRP|S_IWOTH)) != 0) {
      // the directory is open for writing and could be subjected
      // to a symlnk attack. declare it insecure.
      //
      return false;
    }
  }
  return true;
}


// return the user name for the given user id
//
// the caller is expected to free the allocated memory.
//
static char* get_user_name(uid_t uid) {

  struct passwd pwent;

  // determine the max pwbuf size from sysconf, and hardcode
  // a default if this not available through sysconf.
  //
  long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
  if (bufsize == -1)
    bufsize = 1024;

Z
zgu 已提交
250
  char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
N
never 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

  // POSIX interface to getpwuid_r is used on LINUX
  struct passwd* p;
  int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);

  if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
    if (PrintMiscellaneous && Verbose) {
      if (result != 0) {
        warning("Could not retrieve passwd entry: %s\n",
                strerror(result));
      }
      else if (p == NULL) {
        // this check is added to protect against an observed problem
        // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
        // indicating success, but has p == NULL. This was observed when
        // inserting a file descriptor exhaustion fault prior to the call
        // getpwuid_r() call. In this case, error is set to the appropriate
        // error condition, but this is undocumented behavior. This check
        // is safe under any condition, but the use of errno in the output
        // message may result in an erroneous message.
        // Bug Id 89052 was opened with RedHat.
        //
        warning("Could not retrieve passwd entry: %s\n",
                strerror(errno));
      }
      else {
        warning("Could not determine user name: %s\n",
                p->pw_name == NULL ? "pw_name = NULL" :
                                     "pw_name zero length");
      }
    }
Z
zgu 已提交
282
    FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
N
never 已提交
283 284 285
    return NULL;
  }

Z
zgu 已提交
286
  char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
N
never 已提交
287 288
  strcpy(user_name, p->pw_name);

Z
zgu 已提交
289
  FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
N
never 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  return user_name;
}

// return the name of the user that owns the process identified by vmid.
//
// This method uses a slow directory search algorithm to find the backing
// store file for the specified vmid and returns the user name, as determined
// by the user name suffix of the hsperfdata_<username> directory name.
//
// the caller is expected to free the allocated memory.
//
static char* get_user_name_slow(int vmid, TRAPS) {

  // short circuit the directory search if the process doesn't even exist.
  if (kill(vmid, 0) == OS_ERR) {
    if (errno == ESRCH) {
      THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
                  "Process not found");
    }
    else /* EPERM */ {
      THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
    }
  }

  // directory search
  char* oldest_user = NULL;
  time_t oldest_ctime = 0;

  const char* tmpdirname = os::get_temp_directory();

  DIR* tmpdirp = os::opendir(tmpdirname);

  if (tmpdirp == NULL) {
    return NULL;
  }

  // for each entry in the directory that matches the pattern hsperfdata_*,
  // open the directory and check if the file for the given vmid exists.
  // The file with the expected name and the latest creation date is used
  // to determine the user name for the process id.
  //
  struct dirent* dentry;
Z
zgu 已提交
332
  char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
N
never 已提交
333 334 335 336 337 338 339 340 341
  errno = 0;
  while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {

    // check if the directory entry is a hsperfdata file
    if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
      continue;
    }

    char* usrdir_name = NEW_C_HEAP_ARRAY(char,
Z
zgu 已提交
342
                 strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
N
never 已提交
343 344 345 346 347 348 349
    strcpy(usrdir_name, tmpdirname);
    strcat(usrdir_name, "/");
    strcat(usrdir_name, dentry->d_name);

    DIR* subdirp = os::opendir(usrdir_name);

    if (subdirp == NULL) {
Z
zgu 已提交
350
      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
N
never 已提交
351 352 353 354 355 356 357 358 359 360
      continue;
    }

    // Since we don't create the backing store files in directories
    // pointed to by symbolic links, we also don't follow them when
    // looking for the files. We check for a symbolic link after the
    // call to opendir in order to eliminate a small window where the
    // symlink can be exploited.
    //
    if (!is_directory_secure(usrdir_name)) {
Z
zgu 已提交
361
      FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
N
never 已提交
362 363 364 365 366
      os::closedir(subdirp);
      continue;
    }

    struct dirent* udentry;
Z
zgu 已提交
367
    char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
N
never 已提交
368 369 370 371 372 373 374 375
    errno = 0;
    while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {

      if (filename_to_pid(udentry->d_name) == vmid) {
        struct stat statbuf;
        int result;

        char* filename = NEW_C_HEAP_ARRAY(char,
Z
zgu 已提交
376
                 strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
N
never 已提交
377 378 379 380 381 382 383 384

        strcpy(filename, usrdir_name);
        strcat(filename, "/");
        strcat(filename, udentry->d_name);

        // don't follow symbolic links for the file
        RESTARTABLE(::lstat(filename, &statbuf), result);
        if (result == OS_ERR) {
Z
zgu 已提交
385
           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
N
never 已提交
386 387 388 389 390
           continue;
        }

        // skip over files that are not regular files.
        if (!S_ISREG(statbuf.st_mode)) {
Z
zgu 已提交
391
          FREE_C_HEAP_ARRAY(char, filename, mtInternal);
N
never 已提交
392 393 394 395 396 397 398 399 400
          continue;
        }

        // compare and save filename with latest creation time
        if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {

          if (statbuf.st_ctime > oldest_ctime) {
            char* user = strchr(dentry->d_name, '_') + 1;

Z
zgu 已提交
401 402
            if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
            oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
N
never 已提交
403 404 405 406 407 408

            strcpy(oldest_user, user);
            oldest_ctime = statbuf.st_ctime;
          }
        }

Z
zgu 已提交
409
        FREE_C_HEAP_ARRAY(char, filename, mtInternal);
N
never 已提交
410 411 412
      }
    }
    os::closedir(subdirp);
Z
zgu 已提交
413 414
    FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
    FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
N
never 已提交
415 416
  }
  os::closedir(tmpdirp);
Z
zgu 已提交
417
  FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
N
never 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

  return(oldest_user);
}

// return the name of the user that owns the JVM indicated by the given vmid.
//
static char* get_user_name(int vmid, TRAPS) {
  return get_user_name_slow(vmid, CHECK_NULL);
}

// return the file name of the backing store file for the named
// shared memory region for the given user name and vmid.
//
// the caller is expected to free the allocated memory.
//
static char* get_sharedmem_filename(const char* dirname, int vmid) {

  // add 2 for the file separator and a null terminator.
  size_t nbytes = strlen(dirname) + UINT_CHARS + 2;

Z
zgu 已提交
438
  char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
N
never 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  snprintf(name, nbytes, "%s/%d", dirname, vmid);

  return name;
}


// remove file
//
// this method removes the file specified by the given path
//
static void remove_file(const char* path) {

  int result;

  // if the file is a directory, the following unlink will fail. since
  // we don't expect to find directories in the user temp directory, we
  // won't try to handle this situation. even if accidentially or
  // maliciously planted, the directory's presence won't hurt anything.
  //
  RESTARTABLE(::unlink(path), result);
  if (PrintMiscellaneous && Verbose && result == OS_ERR) {
    if (errno != ENOENT) {
      warning("Could not unlink shared memory backing"
              " store file %s : %s\n", path, strerror(errno));
    }
  }
}


// remove file
//
// this method removes the file with the given file name in the
// named directory.
//
static void remove_file(const char* dirname, const char* filename) {

  size_t nbytes = strlen(dirname) + strlen(filename) + 2;
Z
zgu 已提交
476
  char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
N
never 已提交
477 478 479 480 481 482 483

  strcpy(path, dirname);
  strcat(path, "/");
  strcat(path, filename);

  remove_file(path);

Z
zgu 已提交
484
  FREE_C_HEAP_ARRAY(char, path, mtInternal);
N
never 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
}


// cleanup stale shared memory resources
//
// This method attempts to remove all stale shared memory files in
// the named user temporary directory. It scans the named directory
// for files matching the pattern ^$[0-9]*$. For each file found, the
// process id is extracted from the file name and a test is run to
// determine if the process is alive. If the process is not alive,
// any stale file resources are removed.
//
static void cleanup_sharedmem_resources(const char* dirname) {

  // open the user temp directory
  DIR* dirp = os::opendir(dirname);

  if (dirp == NULL) {
    // directory doesn't exist, so there is nothing to cleanup
    return;
  }

  if (!is_directory_secure(dirname)) {
    // the directory is not a secure directory
    return;
  }

  // for each entry in the directory that matches the expected file
  // name pattern, determine if the file resources are stale and if
  // so, remove the file resources. Note, instrumented HotSpot processes
  // for this user may start and/or terminate during this search and
  // remove or create new files in this directory. The behavior of this
  // loop under these conditions is dependent upon the implementation of
  // opendir/readdir.
  //
  struct dirent* entry;
Z
zgu 已提交
521
  char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
N
never 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
  errno = 0;
  while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {

    pid_t pid = filename_to_pid(entry->d_name);

    if (pid == 0) {

      if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {

        // attempt to remove all unexpected files, except "." and ".."
        remove_file(dirname, entry->d_name);
      }

      errno = 0;
      continue;
    }

    // we now have a file name that converts to a valid integer
    // that could represent a process id . if this process id
    // matches the current process id or the process is not running,
    // then remove the stale file resources.
    //
    // process liveness is detected by sending signal number 0 to
    // the process id (see kill(2)). if kill determines that the
    // process does not exist, then the file resources are removed.
    // if kill determines that that we don't have permission to
    // signal the process, then the file resources are assumed to
    // be stale and are removed because the resources for such a
    // process should be in a different user specific directory.
    //
    if ((pid == os::current_process_id()) ||
        (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {

        remove_file(dirname, entry->d_name);
    }
    errno = 0;
  }
  os::closedir(dirp);
Z
zgu 已提交
560
  FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
N
never 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
}

// make the user specific temporary directory. Returns true if
// the directory exists and is secure upon return. Returns false
// if the directory exists but is either a symlink, is otherwise
// insecure, or if an error occurred.
//
static bool make_user_tmp_dir(const char* dirname) {

  // create the directory with 0755 permissions. note that the directory
  // will be owned by euid::egid, which may not be the same as uid::gid.
  //
  if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
    if (errno == EEXIST) {
      // The directory already exists and was probably created by another
      // JVM instance. However, this could also be the result of a
      // deliberate symlink. Verify that the existing directory is safe.
      //
      if (!is_directory_secure(dirname)) {
        // directory is not secure
        if (PrintMiscellaneous && Verbose) {
          warning("%s directory is insecure\n", dirname);
        }
        return false;
      }
    }
    else {
      // we encountered some other failure while attempting
      // to create the directory
      //
      if (PrintMiscellaneous && Verbose) {
        warning("could not create directory %s: %s\n",
                dirname, strerror(errno));
      }
      return false;
    }
  }
  return true;
}

// create the shared memory file resources
//
// This method creates the shared memory file with the given size
// This method also creates the user specific temporary directory, if
// it does not yet exist.
//
static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {

  // make the user temporary directory
  if (!make_user_tmp_dir(dirname)) {
    // could not make/find the directory or the found directory
    // was not secure
    return -1;
  }

  int result;

  RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_TRUNC, S_IREAD|S_IWRITE), result);
  if (result == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("could not create file %s: %s\n", filename, strerror(errno));
    }
    return -1;
  }

  // save the file descriptor
  int fd = result;

  // set the file size
  RESTARTABLE(::ftruncate(fd, (off_t)size), result);
  if (result == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("could not set shared memory file size: %s\n", strerror(errno));
    }
635
    ::close(fd);
N
never 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    return -1;
  }

  // Verify that we have enough disk space for this file.
  // We'll get random SIGBUS crashes on memory accesses if
  // we don't.

  for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
    int zero_int = 0;
    result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
    if (result == -1 ) break;
    RESTARTABLE(::write(fd, &zero_int, 1), result);
    if (result != 1) {
      if (errno == ENOSPC) {
        warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
      }
      break;
    }
  }

  if (result != -1) {
    return fd;
  } else {
659
    ::close(fd);
N
never 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
    return -1;
  }
}

// open the shared memory file for the given user and vmid. returns
// the file descriptor for the open file or -1 if the file could not
// be opened.
//
static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {

  // open the file
  int result;
  RESTARTABLE(::open(filename, oflags), result);
  if (result == OS_ERR) {
    if (errno == ENOENT) {
675 676
      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
                  "Process not found", OS_ERR);
N
never 已提交
677 678
    }
    else if (errno == EACCES) {
679 680
      THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
                  "Permission denied", OS_ERR);
N
never 已提交
681 682
    }
    else {
683
      THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
N
never 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    }
  }

  return result;
}

// create a named shared memory region. returns the address of the
// memory region on success or NULL on failure. A return value of
// NULL will ultimately disable the shared memory feature.
//
// On Solaris and Bsd, the name space for shared memory objects
// is the file system name space.
//
// A monitoring application attaching to a JVM does not need to know
// the file system name of the shared memory object. However, it may
// be convenient for applications to discover the existence of newly
// created and terminating JVMs by watching the file system name space
// for files being created or removed.
//
static char* mmap_create_shared(size_t size) {

  int result;
  int fd;
  char* mapAddress;

  int vmid = os::current_process_id();

  char* user_name = get_user_name(geteuid());

  if (user_name == NULL)
    return NULL;

  char* dirname = get_user_tmp_dir(user_name);
  char* filename = get_sharedmem_filename(dirname, vmid);

  // cleanup any stale shared memory files
  cleanup_sharedmem_resources(dirname);

  assert(((size > 0) && (size % os::vm_page_size() == 0)),
         "unexpected PerfMemory region size");

  fd = create_sharedmem_resources(dirname, filename, size);

Z
zgu 已提交
727 728
  FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
N
never 已提交
729 730

  if (fd == -1) {
Z
zgu 已提交
731
    FREE_C_HEAP_ARRAY(char, filename, mtInternal);
N
never 已提交
732 733 734 735 736
    return NULL;
  }

  mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

737
  result = ::close(fd);
N
never 已提交
738 739 740 741 742 743 744
  assert(result != OS_ERR, "could not close file");

  if (mapAddress == MAP_FAILED) {
    if (PrintMiscellaneous && Verbose) {
      warning("mmap failed -  %s\n", strerror(errno));
    }
    remove_file(filename);
Z
zgu 已提交
745
    FREE_C_HEAP_ARRAY(char, filename, mtInternal);
N
never 已提交
746 747 748 749 750 751 752 753 754
    return NULL;
  }

  // save the file name for use in delete_shared_memory()
  backing_store_file_name = filename;

  // clear the shared memory region
  (void)::memset((void*) mapAddress, 0, size);

755
  // it does not go through os api, the operation has to record from here
756
  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);
757

N
never 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
  return mapAddress;
}

// release a named shared memory region
//
static void unmap_shared(char* addr, size_t bytes) {
  os::release_memory(addr, bytes);
}

// create the PerfData memory region in shared memory.
//
static char* create_shared_memory(size_t size) {

  // create the shared memory region.
  return mmap_create_shared(size);
}

// delete the shared PerfData memory region
//
static void delete_shared_memory(char* addr, size_t size) {

  // cleanup the persistent shared memory resources. since DestroyJavaVM does
  // not support unloading of the JVM, unmapping of the memory resource is
  // not performed. The memory will be reclaimed by the OS upon termination of
  // the process. The backing store file is deleted from the file system.

  assert(!PerfDisableSharedMem, "shouldn't be here");

  if (backing_store_file_name != NULL) {
    remove_file(backing_store_file_name);
    // Don't.. Free heap memory could deadlock os::abort() if it is called
    // from signal handler. OS will reclaim the heap memory.
    // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
    backing_store_file_name = NULL;
  }
}

// return the size of the file for the given file descriptor
// or 0 if it is not a valid size for a shared memory file
//
static size_t sharedmem_filesize(int fd, TRAPS) {

  struct stat statbuf;
  int result;

  RESTARTABLE(::fstat(fd, &statbuf), result);
  if (result == OS_ERR) {
    if (PrintMiscellaneous && Verbose) {
      warning("fstat failed: %s\n", strerror(errno));
    }
    THROW_MSG_0(vmSymbols::java_io_IOException(),
                "Could not determine PerfMemory size");
  }

  if ((statbuf.st_size == 0) ||
     ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
    THROW_MSG_0(vmSymbols::java_lang_Exception(),
                "Invalid PerfMemory size");
  }

  return (size_t)statbuf.st_size;
}

// attach to a named shared memory region.
//
static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {

  char* mapAddress;
  int result;
  int fd;
828
  size_t size = 0;
N
never 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
  const char* luser = NULL;

  int mmap_prot;
  int file_flags;

  ResourceMark rm;

  // map the high level access mode to the appropriate permission
  // constructs for the file and the shared memory mapping.
  if (mode == PerfMemory::PERF_MODE_RO) {
    mmap_prot = PROT_READ;
    file_flags = O_RDONLY;
  }
  else if (mode == PerfMemory::PERF_MODE_RW) {
#ifdef LATER
    mmap_prot = PROT_READ | PROT_WRITE;
    file_flags = O_RDWR;
#else
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Unsupported access mode");
#endif
  }
  else {
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Illegal access mode");
  }

  if (user == NULL || strlen(user) == 0) {
    luser = get_user_name(vmid, CHECK);
  }
  else {
    luser = user;
  }

  if (luser == NULL) {
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Could not map vmid to user Name");
  }

  char* dirname = get_user_tmp_dir(luser);

  // since we don't follow symbolic links when creating the backing
  // store file, we don't follow them when attaching either.
  //
  if (!is_directory_secure(dirname)) {
Z
zgu 已提交
874
    FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
N
never 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
              "Process not found");
  }

  char* filename = get_sharedmem_filename(dirname, vmid);

  // copy heap memory to resource memory. the open_sharedmem_file
  // method below need to use the filename, but could throw an
  // exception. using a resource array prevents the leak that
  // would otherwise occur.
  char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  strcpy(rfilename, filename);

  // free the c heap resources that are no longer needed
Z
zgu 已提交
889 890 891
  if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
  FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
  FREE_C_HEAP_ARRAY(char, filename, mtInternal);
N
never 已提交
892 893 894 895 896 897 898

  // open the shared memory file for the give vmid
  fd = open_sharedmem_file(rfilename, file_flags, CHECK);
  assert(fd != OS_ERR, "unexpected value");

  if (*sizep == 0) {
    size = sharedmem_filesize(fd, CHECK);
899 900
  } else {
    size = *sizep;
N
never 已提交
901 902
  }

903 904
  assert(size > 0, "unexpected size <= 0");

N
never 已提交
905 906 907 908
  mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);

  // attempt to close the file - restart if it gets interrupted,
  // but ignore other failures
909
  result = ::close(fd);
N
never 已提交
910 911 912 913 914 915 916 917 918 919
  assert(result != OS_ERR, "could not close file");

  if (mapAddress == MAP_FAILED) {
    if (PrintMiscellaneous && Verbose) {
      warning("mmap failed: %s\n", strerror(errno));
    }
    THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
              "Could not map PerfMemory");
  }

920
  // it does not go through os api, the operation has to record from here
921
  MemTracker::record_virtual_memory_reserve((address)mapAddress, size, mtInternal, CURRENT_PC);
922

N
never 已提交
923 924 925 926 927
  *addr = mapAddress;
  *sizep = size;

  if (PerfTraceMemOps) {
    tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
928
               INTPTR_FORMAT "\n", size, vmid, p2i((void*)mapAddress));
N
never 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
  }
}




// create the PerfData memory region
//
// This method creates the memory region used to store performance
// data for the JVM. The memory may be created in standard or
// shared memory.
//
void PerfMemory::create_memory_region(size_t size) {

  if (PerfDisableSharedMem) {
    // do not share the memory for the performance data.
    _start = create_standard_memory(size);
  }
  else {
    _start = create_shared_memory(size);
    if (_start == NULL) {

      // creation of the shared memory region failed, attempt
      // to create a contiguous, non-shared memory region instead.
      //
      if (PrintMiscellaneous && Verbose) {
        warning("Reverting to non-shared PerfMemory region.\n");
      }
      PerfDisableSharedMem = true;
      _start = create_standard_memory(size);
    }
  }

  if (_start != NULL) _capacity = size;

}

// delete the PerfData memory region
//
// This method deletes the memory region used to store performance
// data for the JVM. The memory region indicated by the <address, size>
// tuple will be inaccessible after a call to this method.
//
void PerfMemory::delete_memory_region() {

  assert((start() != NULL && capacity() > 0), "verify proper state");

  // If user specifies PerfDataSaveFile, it will save the performance data
  // to the specified file name no matter whether PerfDataSaveToFile is specified
  // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  // -XX:+PerfDataSaveToFile.
  if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
    save_memory_to_file(start(), capacity());
  }

  if (PerfDisableSharedMem) {
    delete_standard_memory(start(), capacity());
  }
  else {
    delete_shared_memory(start(), capacity());
  }
}

// attach to the PerfData memory region for another JVM
//
// This method returns an <address, size> tuple that points to
// a memory buffer that is kept reasonably synchronized with
// the PerfData memory region for the indicated JVM. This
// buffer may be kept in synchronization via shared memory
// or some other mechanism that keeps the buffer updated.
//
// If the JVM chooses not to support the attachability feature,
// this method should throw an UnsupportedOperation exception.
//
// This implementation utilizes named shared memory to map
// the indicated process's PerfData memory region into this JVMs
// address space.
//
void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {

  if (vmid == 0 || vmid == os::current_process_id()) {
     *addrp = start();
     *sizep = capacity();
     return;
  }

  mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
}

// detach from the PerfData memory region of another JVM
//
// This method detaches the PerfData memory region of another
// JVM, specified as an <address, size> tuple of a buffer
// in this process's address space. This method may perform
// arbitrary actions to accomplish the detachment. The memory
// region specified by <address, size> will be inaccessible after
// a call to this method.
//
// If the JVM chooses not to support the attachability feature,
// this method should throw an UnsupportedOperation exception.
//
// This implementation utilizes named shared memory to detach
// the indicated process's PerfData memory region from this
// process's address space.
//
void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {

  assert(addr != 0, "address sanity check");
  assert(bytes > 0, "capacity sanity check");

  if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
    // prevent accidental detachment of this process's PerfMemory region
    return;
  }

  unmap_shared(addr, bytes);
}

char* PerfMemory::backing_store_filename() {
  return backing_store_file_name;
}