templateInterpreter_x86_64.cpp 60.2 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_interpreter_x86_64.cpp.incl"

#define __ _masm->

const int method_offset = frame::interpreter_frame_method_offset * wordSize;
const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;

//-----------------------------------------------------------------------------

address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  address entry = __ pc();

#ifdef ASSERT
  {
    Label L;
    __ leaq(rax, Address(rbp,
                         frame::interpreter_frame_monitor_block_top_offset *
                         wordSize));
    __ cmpq(rax, rsp); // rax = maximal rsp for current rbp (stack
                       // grows negative)
    __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    __ stop ("interpreter frame not set up");
    __ bind(L);
  }
#endif // ASSERT
  // Restore bcp under the assumption that the current frame is still
  // interpreted
  __ restore_bcp();

  // expression stack must be empty before entering the VM if an
  // exception happened
  __ empty_expression_stack();
  // throw exception
  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address,
                              InterpreterRuntime::throw_StackOverflowError));
  return entry;
}

address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
        const char* name) {
  address entry = __ pc();
  // expression stack must be empty before entering the VM if an
  // exception happened
  __ empty_expression_stack();
  // setup parameters
  // ??? convention: expect aberrant index in register ebx
  __ lea(c_rarg1, ExternalAddress((address)name));
  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address,
                              InterpreterRuntime::
                              throw_ArrayIndexOutOfBoundsException),
             c_rarg1, rbx);
  return entry;
}

address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
  address entry = __ pc();

  // object is at TOS
  __ popq(c_rarg1);

  // expression stack must be empty before entering the VM if an
  // exception happened
  __ empty_expression_stack();

  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address,
                              InterpreterRuntime::
                              throw_ClassCastException),
             c_rarg1);
  return entry;
}

address TemplateInterpreterGenerator::generate_exception_handler_common(
        const char* name, const char* message, bool pass_oop) {
  assert(!pass_oop || message == NULL, "either oop or message but not both");
  address entry = __ pc();
  if (pass_oop) {
    // object is at TOS
    __ popq(c_rarg2);
  }
  // expression stack must be empty before entering the VM if an
  // exception happened
  __ empty_expression_stack();
  // setup parameters
  __ lea(c_rarg1, ExternalAddress((address)name));
  if (pass_oop) {
    __ call_VM(rax, CAST_FROM_FN_PTR(address,
                                     InterpreterRuntime::
                                     create_klass_exception),
               c_rarg1, c_rarg2);
  } else {
    // kind of lame ExternalAddress can't take NULL because
    // external_word_Relocation will assert.
    if (message != NULL) {
      __ lea(c_rarg2, ExternalAddress((address)message));
    } else {
      __ movptr(c_rarg2, NULL_WORD);
    }
    __ call_VM(rax,
               CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
               c_rarg1, c_rarg2);
  }
  // throw exception
  __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  return entry;
}


address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
  address entry = __ pc();
  // NULL last_sp until next java call
  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  __ dispatch_next(state);
  return entry;
}


address TemplateInterpreterGenerator::generate_return_entry_for(TosState state,
                                                                int step) {

  // amd64 doesn't need to do anything special about compiled returns
  // to the interpreter so the code that exists on x86 to place a sentinel
  // here and the specialized cleanup code is not needed here.

  address entry = __ pc();

  // Restore stack bottom in case i2c adjusted stack
  __ movq(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  // and NULL it as marker that esp is now tos until next java call
  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);

  __ restore_bcp();
  __ restore_locals();
  __ get_cache_and_index_at_bcp(rbx, rcx, 1);
  __ movl(rbx, Address(rbx, rcx,
                       Address::times_8,
                       in_bytes(constantPoolCacheOopDesc::base_offset()) +
                       3 * wordSize));
  __ andl(rbx, 0xFF);
  if (TaggedStackInterpreter) __ shll(rbx, 1); // 2 slots per parameter.
  __ leaq(rsp, Address(rsp, rbx, Address::times_8));
  __ dispatch_next(state, step);
  return entry;
}


address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
                                                               int step) {
  address entry = __ pc();
  // NULL last_sp until next java call
  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  __ restore_bcp();
  __ restore_locals();
  // handle exceptions
  {
    Label L;
    __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
    __ jcc(Assembler::zero, L);
    __ call_VM(noreg,
               CAST_FROM_FN_PTR(address,
                                InterpreterRuntime::throw_pending_exception));
    __ should_not_reach_here();
    __ bind(L);
  }
  __ dispatch_next(state, step);
  return entry;
}

int AbstractInterpreter::BasicType_as_index(BasicType type) {
  int i = 0;
  switch (type) {
    case T_BOOLEAN: i = 0; break;
    case T_CHAR   : i = 1; break;
    case T_BYTE   : i = 2; break;
    case T_SHORT  : i = 3; break;
    case T_INT    : i = 4; break;
    case T_LONG   : i = 5; break;
    case T_VOID   : i = 6; break;
    case T_FLOAT  : i = 7; break;
    case T_DOUBLE : i = 8; break;
    case T_OBJECT : i = 9; break;
    case T_ARRAY  : i = 9; break;
    default       : ShouldNotReachHere();
  }
  assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
         "index out of bounds");
  return i;
}


address TemplateInterpreterGenerator::generate_result_handler_for(
        BasicType type) {
  address entry = __ pc();
  switch (type) {
  case T_BOOLEAN: __ c2bool(rax);            break;
  case T_CHAR   : __ movzwl(rax, rax);       break;
  case T_BYTE   : __ sign_extend_byte(rax);  break;
  case T_SHORT  : __ sign_extend_short(rax); break;
  case T_INT    : /* nothing to do */        break;
  case T_LONG   : /* nothing to do */        break;
  case T_VOID   : /* nothing to do */        break;
  case T_FLOAT  : /* nothing to do */        break;
  case T_DOUBLE : /* nothing to do */        break;
  case T_OBJECT :
    // retrieve result from frame
    __ movq(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
    // and verify it
    __ verify_oop(rax);
    break;
  default       : ShouldNotReachHere();
  }
  __ ret(0);                                   // return from result handler
  return entry;
}

address TemplateInterpreterGenerator::generate_safept_entry_for(
        TosState state,
        address runtime_entry) {
  address entry = __ pc();
  __ push(state);
  __ call_VM(noreg, runtime_entry);
  __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
  return entry;
}



// Helpers for commoning out cases in the various type of method entries.
//


// increment invocation count & check for overflow
//
// Note: checking for negative value instead of overflow
//       so we have a 'sticky' overflow test
//
// rbx: method
// ecx: invocation counter
//
void InterpreterGenerator::generate_counter_incr(
        Label* overflow,
        Label* profile_method,
        Label* profile_method_continue) {

  const Address invocation_counter(rbx,
                                   methodOopDesc::invocation_counter_offset() +
                                   InvocationCounter::counter_offset());
  const Address backedge_counter(rbx,
                                 methodOopDesc::backedge_counter_offset() +
                                 InvocationCounter::counter_offset());

  if (ProfileInterpreter) { // %%% Merge this into methodDataOop
    __ incrementl(Address(rbx,
                    methodOopDesc::interpreter_invocation_counter_offset()));
  }
  // Update standard invocation counters
  __ movl(rax, backedge_counter); // load backedge counter

  __ incrementl(rcx, InvocationCounter::count_increment);
  __ andl(rax, InvocationCounter::count_mask_value); // mask out the
                                                     // status bits

  __ movl(invocation_counter, rcx); // save invocation count
  __ addl(rcx, rax); // add both counters

  // profile_method is non-null only for interpreted method so
  // profile_method != NULL == !native_call

  if (ProfileInterpreter && profile_method != NULL) {
    // Test to see if we should create a method data oop
    __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
    __ jcc(Assembler::less, *profile_method_continue);

    // if no method data exists, go to profile_method
    __ test_method_data_pointer(rax, *profile_method);
  }

  __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
  __ jcc(Assembler::aboveEqual, *overflow);
}

void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {

  // Asm interpreter on entry
  // r14 - locals
  // r13 - bcp
  // rbx - method
  // edx - cpool --- DOES NOT APPEAR TO BE TRUE
  // rbp - interpreter frame

  // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
  // Everything as it was on entry
  // rdx is not restored. Doesn't appear to really be set.

  const Address size_of_parameters(rbx,
                                   methodOopDesc::size_of_parameters_offset());

  // InterpreterRuntime::frequency_counter_overflow takes two
  // arguments, the first (thread) is passed by call_VM, the second
  // indicates if the counter overflow occurs at a backwards branch
  // (NULL bcp).  We pass zero for it.  The call returns the address
  // of the verified entry point for the method or NULL if the
  // compilation did not complete (either went background or bailed
  // out).
  __ movl(c_rarg1, 0);
  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address,
                              InterpreterRuntime::frequency_counter_overflow),
             c_rarg1);

  __ movq(rbx, Address(rbp, method_offset));   // restore methodOop
  // Preserve invariant that r13/r14 contain bcp/locals of sender frame
  // and jump to the interpreted entry.
  __ jmp(*do_continue, relocInfo::none);
}

// See if we've got enough room on the stack for locals plus overhead.
// The expression stack grows down incrementally, so the normal guard
// page mechanism will work for that.
//
// NOTE: Since the additional locals are also always pushed (wasn't
// obvious in generate_method_entry) so the guard should work for them
// too.
//
// Args:
//      rdx: number of additional locals this frame needs (what we must check)
//      rbx: methodOop
//
// Kills:
//      rax
void InterpreterGenerator::generate_stack_overflow_check(void) {

  // monitor entry size: see picture of stack set
  // (generate_method_entry) and frame_amd64.hpp
  const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;

  // total overhead size: entry_size + (saved rbp through expr stack
  // bottom).  be sure to change this if you add/subtract anything
  // to/from the overhead area
  const int overhead_size =
    -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;

  const int page_size = os::vm_page_size();

  Label after_frame_check;

  // see if the frame is greater than one page in size. If so,
  // then we need to verify there is enough stack space remaining
  // for the additional locals.
  __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize());
  __ jcc(Assembler::belowEqual, after_frame_check);

  // compute rsp as if this were going to be the last frame on
  // the stack before the red zone

  const Address stack_base(r15_thread, Thread::stack_base_offset());
  const Address stack_size(r15_thread, Thread::stack_size_offset());

  // locals + overhead, in bytes
  __ movq(rax, rdx);
  __ shll(rax, Interpreter::logStackElementSize()); // 2 slots per parameter.
  __ addq(rax, overhead_size);

#ifdef ASSERT
  Label stack_base_okay, stack_size_okay;
  // verify that thread stack base is non-zero
  __ cmpq(stack_base, 0);
  __ jcc(Assembler::notEqual, stack_base_okay);
  __ stop("stack base is zero");
  __ bind(stack_base_okay);
  // verify that thread stack size is non-zero
  __ cmpq(stack_size, 0);
  __ jcc(Assembler::notEqual, stack_size_okay);
  __ stop("stack size is zero");
  __ bind(stack_size_okay);
#endif

  // Add stack base to locals and subtract stack size
  __ addq(rax, stack_base);
  __ subq(rax, stack_size);

  // add in the red and yellow zone sizes
  __ addq(rax, (StackRedPages + StackYellowPages) * page_size);

  // check against the current stack bottom
  __ cmpq(rsp, rax);
  __ jcc(Assembler::above, after_frame_check);

  __ popq(rax); // get return address
  __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));

  // all done with frame size check
  __ bind(after_frame_check);
}

// Allocate monitor and lock method (asm interpreter)
//
// Args:
//      rbx: methodOop
//      r14: locals
//
// Kills:
//      rax
//      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
//      rscratch1, rscratch2 (scratch regs)
void InterpreterGenerator::lock_method(void) {
  // synchronize method
  const Address access_flags(rbx, methodOopDesc::access_flags_offset());
  const Address monitor_block_top(
        rbp,
        frame::interpreter_frame_monitor_block_top_offset * wordSize);
  const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;

#ifdef ASSERT
  {
    Label L;
    __ movl(rax, access_flags);
    __ testl(rax, JVM_ACC_SYNCHRONIZED);
    __ jcc(Assembler::notZero, L);
    __ stop("method doesn't need synchronization");
    __ bind(L);
  }
#endif // ASSERT

  // get synchronization object
  {
    const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() +
                              Klass::java_mirror_offset_in_bytes();
    Label done;
    __ movl(rax, access_flags);
    __ testl(rax, JVM_ACC_STATIC);
    // get receiver (assume this is frequent case)
    __ movq(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
    __ jcc(Assembler::zero, done);
    __ movq(rax, Address(rbx, methodOopDesc::constants_offset()));
    __ movq(rax, Address(rax,
                         constantPoolOopDesc::pool_holder_offset_in_bytes()));
    __ movq(rax, Address(rax, mirror_offset));

#ifdef ASSERT
    {
      Label L;
      __ testq(rax, rax);
      __ jcc(Assembler::notZero, L);
      __ stop("synchronization object is NULL");
      __ bind(L);
    }
#endif // ASSERT

    __ bind(done);
  }

  // add space for monitor & lock
  __ subq(rsp, entry_size); // add space for a monitor entry
  __ movq(monitor_block_top, rsp);  // set new monitor block top
  // store object
  __ movq(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
  __ movq(c_rarg1, rsp); // object address
  __ lock_object(c_rarg1);
}

// Generate a fixed interpreter frame. This is identical setup for
// interpreted methods and for native methods hence the shared code.
//
// Args:
//      rax: return address
//      rbx: methodOop
//      r14: pointer to locals
//      r13: sender sp
//      rdx: cp cache
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
  // initialize fixed part of activation frame
  __ pushq(rax);       // save return address
  __ enter();          // save old & set new rbp
  __ pushq(r13);       // set sender sp
  __ pushq((int)NULL_WORD); // leave last_sp as null
  __ movq(r13, Address(rbx, methodOopDesc::const_offset()));      // get constMethodOop
  __ leaq(r13, Address(r13, constMethodOopDesc::codes_offset())); // get codebase
  __ pushq(rbx);       // save methodOop
  if (ProfileInterpreter) {
    Label method_data_continue;
    __ movq(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
    __ testq(rdx, rdx);
    __ jcc(Assembler::zero, method_data_continue);
    __ addq(rdx, in_bytes(methodDataOopDesc::data_offset()));
    __ bind(method_data_continue);
    __ pushq(rdx);     // set the mdp (method data pointer)
  } else {
    __ pushq(0);
  }

  __ movq(rdx, Address(rbx, methodOopDesc::constants_offset()));
  __ movq(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
  __ pushq(rdx); // set constant pool cache
  __ pushq(r14); // set locals pointer
  if (native_call) {
    __ pushq(0); // no bcp
  } else {
    __ pushq(r13); // set bcp
  }
  __ pushq(0); // reserve word for pointer to expression stack bottom
  __ movq(Address(rsp, 0), rsp); // set expression stack bottom
}

// End of helpers

// Interpreter stub for calling a native method. (asm interpreter)
// This sets up a somewhat different looking stack for calling the
// native method than the typical interpreter frame setup.
address InterpreterGenerator::generate_native_entry(bool synchronized) {
  // determine code generation flags
  bool inc_counter  = UseCompiler || CountCompiledCalls;

  // rbx: methodOop
  // r13: sender sp

  address entry_point = __ pc();

  const Address size_of_parameters(rbx, methodOopDesc::
                                        size_of_parameters_offset());
  const Address invocation_counter(rbx, methodOopDesc::
                                        invocation_counter_offset() +
                                        InvocationCounter::counter_offset());
  const Address access_flags      (rbx, methodOopDesc::access_flags_offset());

  // get parameter size (always needed)
  __ load_unsigned_word(rcx, size_of_parameters);

  // native calls don't need the stack size check since they have no
  // expression stack and the arguments are already on the stack and
  // we only add a handful of words to the stack

  // rbx: methodOop
  // rcx: size of parameters
  // r13: sender sp
  __ popq(rax);                                       // get return address

  // for natives the size of locals is zero

  // compute beginning of parameters (r14)
  if (TaggedStackInterpreter) __ shll(rcx, 1); // 2 slots per parameter.
  __ leaq(r14, Address(rsp, rcx, Address::times_8, -wordSize));

  // add 2 zero-initialized slots for native calls
  // initialize result_handler slot
  __ pushq((int) NULL);
  // slot for oop temp
  // (static native method holder mirror/jni oop result)
  __ pushq((int) NULL);

  if (inc_counter) {
    __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
  }

  // initialize fixed part of activation frame
  generate_fixed_frame(true);

  // make sure method is native & not abstract
#ifdef ASSERT
  __ movl(rax, access_flags);
  {
    Label L;
    __ testl(rax, JVM_ACC_NATIVE);
    __ jcc(Assembler::notZero, L);
    __ stop("tried to execute non-native method as native");
    __ bind(L);
  }
  {
    Label L;
    __ testl(rax, JVM_ACC_ABSTRACT);
    __ jcc(Assembler::zero, L);
    __ stop("tried to execute abstract method in interpreter");
    __ bind(L);
  }
#endif

  // Since at this point in the method invocation the exception handler
  // would try to exit the monitor of synchronized methods which hasn't
  // been entered yet, we set the thread local variable
  // _do_not_unlock_if_synchronized to true. The remove_activation will
  // check this flag.

  const Address do_not_unlock_if_synchronized(r15_thread,
        in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  __ movbool(do_not_unlock_if_synchronized, true);

  // increment invocation count & check for overflow
  Label invocation_counter_overflow;
  if (inc_counter) {
    generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  }

  Label continue_after_compile;
  __ bind(continue_after_compile);

  bang_stack_shadow_pages(true);

  // reset the _do_not_unlock_if_synchronized flag
  __ movbool(do_not_unlock_if_synchronized, false);

  // check for synchronized methods
  // Must happen AFTER invocation_counter check and stack overflow check,
  // so method is not locked if overflows.
  if (synchronized) {
    lock_method();
  } else {
    // no synchronization necessary
#ifdef ASSERT
    {
      Label L;
      __ movl(rax, access_flags);
      __ testl(rax, JVM_ACC_SYNCHRONIZED);
      __ jcc(Assembler::zero, L);
      __ stop("method needs synchronization");
      __ bind(L);
    }
#endif
  }

  // start execution
#ifdef ASSERT
  {
    Label L;
    const Address monitor_block_top(rbp,
                 frame::interpreter_frame_monitor_block_top_offset * wordSize);
    __ movq(rax, monitor_block_top);
    __ cmpq(rax, rsp);
    __ jcc(Assembler::equal, L);
    __ stop("broken stack frame setup in interpreter");
    __ bind(L);
  }
#endif

  // jvmti support
  __ notify_method_entry();

  // work registers
  const Register method = rbx;
667
  const Register t      = r11;
D
duke 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

  // allocate space for parameters
  __ get_method(method);
  __ verify_oop(method);
  __ load_unsigned_word(t,
                        Address(method,
                                methodOopDesc::size_of_parameters_offset()));
  __ shll(t, Interpreter::logStackElementSize());

  __ subq(rsp, t);
  __ subq(rsp, frame::arg_reg_save_area_bytes); // windows
  __ andq(rsp, -16); // must be 16 byte boundry (see amd64 ABI)

  // get signature handler
  {
    Label L;
    __ movq(t, Address(method, methodOopDesc::signature_handler_offset()));
    __ testq(t, t);
    __ jcc(Assembler::notZero, L);
    __ call_VM(noreg,
               CAST_FROM_FN_PTR(address,
                                InterpreterRuntime::prepare_native_call),
               method);
    __ get_method(method);
    __ movq(t, Address(method, methodOopDesc::signature_handler_offset()));
    __ bind(L);
  }

  // call signature handler
  assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
         "adjust this code");
  assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
         "adjust this code");
  assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
          "adjust this code");

  // The generated handlers do not touch RBX (the method oop).
  // However, large signatures cannot be cached and are generated
  // each time here.  The slow-path generator can do a GC on return,
  // so we must reload it after the call.
  __ call(t);
  __ get_method(method);        // slow path can do a GC, reload RBX


  // result handler is in rax
  // set result handler
  __ movq(Address(rbp,
                  (frame::interpreter_frame_result_handler_offset) * wordSize),
          rax);

  // pass mirror handle if static call
  {
    Label L;
    const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() +
                              Klass::java_mirror_offset_in_bytes();
    __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
    __ testl(t, JVM_ACC_STATIC);
    __ jcc(Assembler::zero, L);
    // get mirror
    __ movq(t, Address(method, methodOopDesc::constants_offset()));
    __ movq(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
    __ movq(t, Address(t, mirror_offset));
    // copy mirror into activation frame
    __ movq(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
            t);
    // pass handle to mirror
    __ leaq(c_rarg1,
            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
    __ bind(L);
  }

  // get native function entry point
  {
    Label L;
    __ movq(rax, Address(method, methodOopDesc::native_function_offset()));
    ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
    __ movptr(rscratch2, unsatisfied.addr());
    __ cmpq(rax, rscratch2);
    __ jcc(Assembler::notEqual, L);
    __ call_VM(noreg,
               CAST_FROM_FN_PTR(address,
                                InterpreterRuntime::prepare_native_call),
               method);
    __ get_method(method);
    __ verify_oop(method);
    __ movq(rax, Address(method, methodOopDesc::native_function_offset()));
    __ bind(L);
  }

  // pass JNIEnv
  __ leaq(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));

  // It is enough that the pc() points into the right code
  // segment. It does not have to be the correct return pc.
  __ set_last_Java_frame(rsp, rbp, (address) __ pc());

  // change thread state
#ifdef ASSERT
  {
    Label L;
    __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
    __ cmpl(t, _thread_in_Java);
    __ jcc(Assembler::equal, L);
    __ stop("Wrong thread state in native stub");
    __ bind(L);
  }
#endif

  // Change state to native

  __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
          _thread_in_native);

  // Call the native method.
  __ call(rax);
  // result potentially in rax or xmm0

  // Depending on runtime options, either restore the MXCSR
  // register after returning from the JNI Call or verify that
  // it wasn't changed during -Xcheck:jni.
  if (RestoreMXCSROnJNICalls) {
    __ ldmxcsr(ExternalAddress(StubRoutines::amd64::mxcsr_std()));
  }
  else if (CheckJNICalls) {
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::amd64::verify_mxcsr_entry())));
  }

  // NOTE: The order of these pushes is known to frame::interpreter_frame_result
  // in order to extract the result of a method call. If the order of these
  // pushes change or anything else is added to the stack then the code in
  // interpreter_frame_result must also change.

  __ push(dtos);
  __ push(ltos);

  // change thread state
  __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
          _thread_in_native_trans);

  if (os::is_MP()) {
    if (UseMembar) {
      // Force this write out before the read below
      __ membar(Assembler::Membar_mask_bits(
           Assembler::LoadLoad | Assembler::LoadStore |
           Assembler::StoreLoad | Assembler::StoreStore));
    } else {
      // Write serialization page so VM thread can do a pseudo remote membar.
      // We use the current thread pointer to calculate a thread specific
      // offset to write to within the page. This minimizes bus traffic
      // due to cache line collision.
      __ serialize_memory(r15_thread, rscratch2);
    }
  }

  // check for safepoint operation in progress and/or pending suspend requests
  {
    Label Continue;
    __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
             SafepointSynchronize::_not_synchronized);

    Label L;
    __ jcc(Assembler::notEqual, L);
    __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
    __ jcc(Assembler::equal, Continue);
    __ bind(L);

    // Don't use call_VM as it will see a possible pending exception
    // and forward it and never return here preventing us from
    // clearing _last_native_pc down below.  Also can't use
    // call_VM_leaf either as it will check to see if r13 & r14 are
    // preserved and correspond to the bcp/locals pointers. So we do a
    // runtime call by hand.
    //
    __ movq(c_rarg0, r15_thread);
    __ movq(r12, rsp); // remember sp
    __ subq(rsp, frame::arg_reg_save_area_bytes); // windows
    __ andq(rsp, -16); // align stack as required by ABI
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
    __ movq(rsp, r12); // restore sp
847
    __ reinit_heapbase();
D
duke 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    __ bind(Continue);
  }

  // change thread state
  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);

  // reset_last_Java_frame
  __ reset_last_Java_frame(true, true);

  // reset handle block
  __ movq(t, Address(r15_thread, JavaThread::active_handles_offset()));
  __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);

  // If result is an oop unbox and store it in frame where gc will see it
  // and result handler will pick it up

  {
    Label no_oop, store_result;
    __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
    __ cmpq(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
    __ jcc(Assembler::notEqual, no_oop);
    // retrieve result
    __ pop(ltos);
    __ testq(rax, rax);
    __ jcc(Assembler::zero, store_result);
    __ movq(rax, Address(rax, 0));
    __ bind(store_result);
    __ movq(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
    // keep stack depth as expected by pushing oop which will eventually be discarde
    __ push(ltos);
    __ bind(no_oop);
  }


  {
    Label no_reguard;
    __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
            JavaThread::stack_guard_yellow_disabled);
    __ jcc(Assembler::notEqual, no_reguard);

    __ pushaq(); // XXX only save smashed registers
    __ movq(r12, rsp); // remember sp
    __ subq(rsp, frame::arg_reg_save_area_bytes); // windows
    __ andq(rsp, -16); // align stack as required by ABI
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
    __ movq(rsp, r12); // restore sp
    __ popaq(); // XXX only restore smashed registers
895
    __ reinit_heapbase();
D
duke 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

    __ bind(no_reguard);
  }


  // The method register is junk from after the thread_in_native transition
  // until here.  Also can't call_VM until the bcp has been
  // restored.  Need bcp for throwing exception below so get it now.
  __ get_method(method);
  __ verify_oop(method);

  // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
  // r13 == code_base()
  __ movq(r13, Address(method, methodOopDesc::const_offset()));   // get constMethodOop
  __ leaq(r13, Address(r13, constMethodOopDesc::codes_offset())); // get codebase
  // handle exceptions (exception handling will handle unlocking!)
  {
    Label L;
    __ cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
    __ jcc(Assembler::zero, L);
    // Note: At some point we may want to unify this with the code
    // used in call_VM_base(); i.e., we should use the
    // StubRoutines::forward_exception code. For now this doesn't work
    // here because the rsp is not correctly set at this point.
    __ MacroAssembler::call_VM(noreg,
                               CAST_FROM_FN_PTR(address,
                               InterpreterRuntime::throw_pending_exception));
    __ should_not_reach_here();
    __ bind(L);
  }

  // do unlocking if necessary
  {
    Label L;
    __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
    __ testl(t, JVM_ACC_SYNCHRONIZED);
    __ jcc(Assembler::zero, L);
    // the code below should be shared with interpreter macro
    // assembler implementation
    {
      Label unlock;
      // BasicObjectLock will be first in list, since this is a
      // synchronized method. However, need to check that the object
      // has not been unlocked by an explicit monitorexit bytecode.
      const Address monitor(rbp,
                            (intptr_t)(frame::interpreter_frame_initial_sp_offset *
                                       wordSize - sizeof(BasicObjectLock)));

      // monitor expect in c_rarg1 for slow unlock path
      __ leaq(c_rarg1, monitor); // address of first monitor

      __ movq(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
      __ testq(t, t);
      __ jcc(Assembler::notZero, unlock);

      // Entry already unlocked, need to throw exception
      __ MacroAssembler::call_VM(noreg,
                                 CAST_FROM_FN_PTR(address,
                   InterpreterRuntime::throw_illegal_monitor_state_exception));
      __ should_not_reach_here();

      __ bind(unlock);
      __ unlock_object(c_rarg1);
    }
    __ bind(L);
  }

  // jvmti support
  // Note: This must happen _after_ handling/throwing any exceptions since
  //       the exception handler code notifies the runtime of method exits
  //       too. If this happens before, method entry/exit notifications are
  //       not properly paired (was bug - gri 11/22/99).
  __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);

  // restore potential result in edx:eax, call result handler to
  // restore potential result in ST0 & handle result

  __ pop(ltos);
  __ pop(dtos);

  __ movq(t, Address(rbp,
                     (frame::interpreter_frame_result_handler_offset) * wordSize));
  __ call(t);

  // remove activation
  __ movq(t, Address(rbp,
                     frame::interpreter_frame_sender_sp_offset *
                     wordSize)); // get sender sp
  __ leave();                                // remove frame anchor
  __ popq(rdi);                              // get return address
  __ movq(rsp, t);                           // set sp to sender sp
  __ jmp(rdi);

  if (inc_counter) {
    // Handle overflow of counter and compile method
    __ bind(invocation_counter_overflow);
    generate_counter_overflow(&continue_after_compile);
  }

  return entry_point;
}

//
// Generic interpreted method entry to (asm) interpreter
//
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  // determine code generation flags
  bool inc_counter  = UseCompiler || CountCompiledCalls;

  // ebx: methodOop
  // r13: sender sp
  address entry_point = __ pc();

  const Address size_of_parameters(rbx,
                                   methodOopDesc::size_of_parameters_offset());
  const Address size_of_locals(rbx, methodOopDesc::size_of_locals_offset());
  const Address invocation_counter(rbx,
                                   methodOopDesc::invocation_counter_offset() +
                                   InvocationCounter::counter_offset());
  const Address access_flags(rbx, methodOopDesc::access_flags_offset());

  // get parameter size (always needed)
  __ load_unsigned_word(rcx, size_of_parameters);

  // rbx: methodOop
  // rcx: size of parameters
  // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )

  __ load_unsigned_word(rdx, size_of_locals); // get size of locals in words
  __ subl(rdx, rcx); // rdx = no. of additional locals

  // YYY
//   __ incrementl(rdx);
//   __ andl(rdx, -2);

  // see if we've got enough room on the stack for locals plus overhead.
  generate_stack_overflow_check();

  // get return address
  __ popq(rax);

  // compute beginning of parameters (r14)
  if (TaggedStackInterpreter) __ shll(rcx, 1); // 2 slots per parameter.
  __ leaq(r14, Address(rsp, rcx, Address::times_8, -wordSize));

  // rdx - # of additional locals
  // allocate space for locals
  // explicitly initialize locals
  {
    Label exit, loop;
    __ testl(rdx, rdx);
    __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
    __ bind(loop);
    if (TaggedStackInterpreter) __ pushq((int) NULL);  // push tag
    __ pushq((int) NULL); // initialize local variables
    __ decrementl(rdx); // until everything initialized
    __ jcc(Assembler::greater, loop);
    __ bind(exit);
  }

  // (pre-)fetch invocation count
  if (inc_counter) {
    __ movl(rcx, invocation_counter);
  }
  // initialize fixed part of activation frame
  generate_fixed_frame(false);

  // make sure method is not native & not abstract
#ifdef ASSERT
  __ movl(rax, access_flags);
  {
    Label L;
    __ testl(rax, JVM_ACC_NATIVE);
    __ jcc(Assembler::zero, L);
    __ stop("tried to execute native method as non-native");
    __ bind(L);
  }
  {
    Label L;
    __ testl(rax, JVM_ACC_ABSTRACT);
    __ jcc(Assembler::zero, L);
    __ stop("tried to execute abstract method in interpreter");
    __ bind(L);
  }
#endif

  // Since at this point in the method invocation the exception
  // handler would try to exit the monitor of synchronized methods
  // which hasn't been entered yet, we set the thread local variable
  // _do_not_unlock_if_synchronized to true. The remove_activation
  // will check this flag.

  const Address do_not_unlock_if_synchronized(r15_thread,
        in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  __ movbool(do_not_unlock_if_synchronized, true);

  // increment invocation count & check for overflow
  Label invocation_counter_overflow;
  Label profile_method;
  Label profile_method_continue;
  if (inc_counter) {
    generate_counter_incr(&invocation_counter_overflow,
                          &profile_method,
                          &profile_method_continue);
    if (ProfileInterpreter) {
      __ bind(profile_method_continue);
    }
  }

  Label continue_after_compile;
  __ bind(continue_after_compile);

  // check for synchronized interpreted methods
  bang_stack_shadow_pages(false);

  // reset the _do_not_unlock_if_synchronized flag
  __ movbool(do_not_unlock_if_synchronized, false);

  // check for synchronized methods
  // Must happen AFTER invocation_counter check and stack overflow check,
  // so method is not locked if overflows.
  if (synchronized) {
    // Allocate monitor and lock method
    lock_method();
  } else {
    // no synchronization necessary
#ifdef ASSERT
    {
      Label L;
      __ movl(rax, access_flags);
      __ testl(rax, JVM_ACC_SYNCHRONIZED);
      __ jcc(Assembler::zero, L);
      __ stop("method needs synchronization");
      __ bind(L);
    }
#endif
  }

  // start execution
#ifdef ASSERT
  {
    Label L;
     const Address monitor_block_top (rbp,
                 frame::interpreter_frame_monitor_block_top_offset * wordSize);
    __ movq(rax, monitor_block_top);
    __ cmpq(rax, rsp);
    __ jcc(Assembler::equal, L);
    __ stop("broken stack frame setup in interpreter");
    __ bind(L);
  }
#endif

  // jvmti support
  __ notify_method_entry();

  __ dispatch_next(vtos);

  // invocation counter overflow
  if (inc_counter) {
    if (ProfileInterpreter) {
      // We have decided to profile this method in the interpreter
      __ bind(profile_method);

      __ call_VM(noreg,
                 CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method),
                 r13, true);

      __ movq(rbx, Address(rbp, method_offset)); // restore methodOop
      __ movq(rax, Address(rbx,
                           in_bytes(methodOopDesc::method_data_offset())));
      __ movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
              rax);
      __ test_method_data_pointer(rax, profile_method_continue);
      __ addq(rax, in_bytes(methodDataOopDesc::data_offset()));
      __ movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
              rax);
      __ jmp(profile_method_continue);
    }
    // Handle overflow of counter and compile method
    __ bind(invocation_counter_overflow);
    generate_counter_overflow(&continue_after_compile);
  }

  return entry_point;
}

// Entry points
//
// Here we generate the various kind of entries into the interpreter.
// The two main entry type are generic bytecode methods and native
// call method.  These both come in synchronized and non-synchronized
// versions but the frame layout they create is very similar. The
// other method entry types are really just special purpose entries
// that are really entry and interpretation all in one. These are for
// trivial methods like accessor, empty, or special math methods.
//
// When control flow reaches any of the entry types for the interpreter
// the following holds ->
//
// Arguments:
//
// rbx: methodOop
//
// Stack layout immediately at entry
//
// [ return address     ] <--- rsp
// [ parameter n        ]
//   ...
// [ parameter 1        ]
// [ expression stack   ] (caller's java expression stack)

// Assuming that we don't go to one of the trivial specialized entries
// the stack will look like below when we are ready to execute the
// first bytecode (or call the native routine). The register usage
// will be as the template based interpreter expects (see
// interpreter_amd64.hpp).
//
// local variables follow incoming parameters immediately; i.e.
// the return address is moved to the end of the locals).
//
// [ monitor entry      ] <--- rsp
//   ...
// [ monitor entry      ]
// [ expr. stack bottom ]
// [ saved r13          ]
// [ current r14        ]
// [ methodOop          ]
// [ saved ebp          ] <--- rbp
// [ return address     ]
// [ local variable m   ]
//   ...
// [ local variable 1   ]
// [ parameter n        ]
//   ...
// [ parameter 1        ] <--- r14

address AbstractInterpreterGenerator::generate_method_entry(
                                        AbstractInterpreter::MethodKind kind) {
  // determine code generation flags
  bool synchronized = false;
  address entry_point = NULL;

  switch (kind) {
  case Interpreter::zerolocals             :                                                                             break;
  case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  case Interpreter::native                 : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break;
  case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true);  break;
  case Interpreter::empty                  : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();       break;
  case Interpreter::accessor               : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();    break;
  case Interpreter::abstract               : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();    break;
  case Interpreter::java_lang_math_sin     :                                                                             break;
  case Interpreter::java_lang_math_cos     :                                                                             break;
  case Interpreter::java_lang_math_tan     :                                                                             break;
  case Interpreter::java_lang_math_abs     :                                                                             break;
  case Interpreter::java_lang_math_log     :                                                                             break;
  case Interpreter::java_lang_math_log10   :                                                                             break;
  case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);    break;
  default                                  : ShouldNotReachHere();                                                       break;
  }

  if (entry_point) {
    return entry_point;
  }

  return ((InterpreterGenerator*) this)->
                                generate_normal_entry(synchronized);
}

// How much stack a method activation needs in words.
int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  const int entry_size = frame::interpreter_frame_monitor_size();

  // total overhead size: entry_size + (saved rbp thru expr stack
  // bottom).  be sure to change this if you add/subtract anything
  // to/from the overhead area
  const int overhead_size =
    -(frame::interpreter_frame_initial_sp_offset) + entry_size;

  const int stub_code = frame::entry_frame_after_call_words;
  const int method_stack = (method->max_locals() + method->max_stack()) *
                           Interpreter::stackElementWords();
  return (overhead_size + method_stack + stub_code);
}

int AbstractInterpreter::layout_activation(methodOop method,
                                           int tempcount,
                                           int popframe_extra_args,
                                           int moncount,
                                           int callee_param_count,
                                           int callee_locals,
                                           frame* caller,
                                           frame* interpreter_frame,
                                           bool is_top_frame) {
  // Note: This calculation must exactly parallel the frame setup
  // in AbstractInterpreterGenerator::generate_method_entry.
  // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  // The frame interpreter_frame, if not NULL, is guaranteed to be the
  // right size, as determined by a previous call to this method.
  // It is also guaranteed to be walkable even though it is in a skeletal state

  // fixed size of an interpreter frame:
  int max_locals = method->max_locals() * Interpreter::stackElementWords();
  int extra_locals = (method->max_locals() - method->size_of_parameters()) *
                     Interpreter::stackElementWords();

  int overhead = frame::sender_sp_offset -
                 frame::interpreter_frame_initial_sp_offset;
  // Our locals were accounted for by the caller (or last_frame_adjust
  // on the transistion) Since the callee parameters already account
  // for the callee's params we only need to account for the extra
  // locals.
  int size = overhead +
         (callee_locals - callee_param_count)*Interpreter::stackElementWords() +
         moncount * frame::interpreter_frame_monitor_size() +
         tempcount* Interpreter::stackElementWords() + popframe_extra_args;
  if (interpreter_frame != NULL) {
#ifdef ASSERT
    assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(),
           "Frame not properly walkable");
    assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
#endif

    interpreter_frame->interpreter_frame_set_method(method);
    // NOTE the difference in using sender_sp and
    // interpreter_frame_sender_sp interpreter_frame_sender_sp is
    // the original sp of the caller (the unextended_sp) and
    // sender_sp is fp+16 XXX
    intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;

    interpreter_frame->interpreter_frame_set_locals(locals);
    BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
    BasicObjectLock* monbot = montop - moncount;
    interpreter_frame->interpreter_frame_set_monitor_end(monbot);

    // Set last_sp
    intptr_t*  esp = (intptr_t*) monbot -
                     tempcount*Interpreter::stackElementWords() -
                     popframe_extra_args;
    interpreter_frame->interpreter_frame_set_last_sp(esp);

    // All frames but the initial (oldest) interpreter frame we fill in have
    // a value for sender_sp that allows walking the stack but isn't
    // truly correct. Correct the value here.
    if (extra_locals != 0 &&
        interpreter_frame->sender_sp() ==
        interpreter_frame->interpreter_frame_sender_sp()) {
      interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
                                                         extra_locals);
    }
    *interpreter_frame->interpreter_frame_cache_addr() =
      method->constants()->cache();
  }
  return size;
}

//-----------------------------------------------------------------------------
// Exceptions

void TemplateInterpreterGenerator::generate_throw_exception() {
  // Entry point in previous activation (i.e., if the caller was
  // interpreted)
  Interpreter::_rethrow_exception_entry = __ pc();
  // Restore sp to interpreter_frame_last_sp even though we are going
  // to empty the expression stack for the exception processing.
  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  // rax: exception
  // rdx: return address/pc that threw exception
  __ restore_bcp();    // r13 points to call/send
  __ restore_locals();
1365
  __ reinit_heapbase();  // restore r12 as heapbase.
D
duke 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
  // Entry point for exceptions thrown within interpreter code
  Interpreter::_throw_exception_entry = __ pc();
  // expression stack is undefined here
  // rax: exception
  // r13: exception bcp
  __ verify_oop(rax);
  __ movq(c_rarg1, rax);

  // expression stack must be empty before entering the VM in case of
  // an exception
  __ empty_expression_stack();
  // find exception handler address and preserve exception oop
  __ call_VM(rdx,
             CAST_FROM_FN_PTR(address,
                          InterpreterRuntime::exception_handler_for_exception),
             c_rarg1);
  // rax: exception handler entry point
  // rdx: preserved exception oop
  // r13: bcp for exception handler
  __ push_ptr(rdx); // push exception which is now the only value on the stack
  __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)

  // If the exception is not handled in the current frame the frame is
  // removed and the exception is rethrown (i.e. exception
  // continuation is _rethrow_exception).
  //
  // Note: At this point the bci is still the bxi for the instruction
  // which caused the exception and the expression stack is
  // empty. Thus, for any VM calls at this point, GC will find a legal
  // oop map (with empty expression stack).

  // In current activation
  // tos: exception
  // esi: exception bcp

  //
  // JVMTI PopFrame support
  //

  Interpreter::_remove_activation_preserving_args_entry = __ pc();
  __ empty_expression_stack();
  // Set the popframe_processing bit in pending_popframe_condition
  // indicating that we are currently handling popframe, so that
  // call_VMs that may happen later do not trigger new popframe
  // handling cycles.
  __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
  __ orl(rdx, JavaThread::popframe_processing_bit);
  __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);

  {
    // Check to see whether we are returning to a deoptimized frame.
    // (The PopFrame call ensures that the caller of the popped frame is
    // either interpreted or compiled and deoptimizes it if compiled.)
    // In this case, we can't call dispatch_next() after the frame is
    // popped, but instead must save the incoming arguments and restore
    // them after deoptimization has occurred.
    //
    // Note that we don't compare the return PC against the
    // deoptimization blob's unpack entry because of the presence of
    // adapter frames in C2.
    Label caller_not_deoptimized;
    __ movq(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
    __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
                               InterpreterRuntime::interpreter_contains), c_rarg1);
    __ testl(rax, rax);
    __ jcc(Assembler::notZero, caller_not_deoptimized);

    // Compute size of arguments for saving when returning to
    // deoptimized caller
    __ get_method(rax);
    __ load_unsigned_word(rax, Address(rax, in_bytes(methodOopDesc::
                                                size_of_parameters_offset())));
    __ shll(rax, Interpreter::logStackElementSize());
    __ restore_locals(); // XXX do we need this?
    __ subq(r14, rax);
    __ addq(r14, wordSize);
    // Save these arguments
    __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
                                           Deoptimization::
                                           popframe_preserve_args),
                          r15_thread, rax, r14);

    __ remove_activation(vtos, rdx,
                         /* throw_monitor_exception */ false,
                         /* install_monitor_exception */ false,
                         /* notify_jvmdi */ false);

    // Inform deoptimization that it is responsible for restoring
    // these arguments
    __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
            JavaThread::popframe_force_deopt_reexecution_bit);

    // Continue in deoptimization handler
    __ jmp(rdx);

    __ bind(caller_not_deoptimized);
  }

  __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
                       /* throw_monitor_exception */ false,
                       /* install_monitor_exception */ false,
                       /* notify_jvmdi */ false);

  // Finish with popframe handling
  // A previous I2C followed by a deoptimization might have moved the
  // outgoing arguments further up the stack. PopFrame expects the
  // mutations to those outgoing arguments to be preserved and other
  // constraints basically require this frame to look exactly as
  // though it had previously invoked an interpreted activation with
  // no space between the top of the expression stack (current
  // last_sp) and the top of stack. Rather than force deopt to
  // maintain this kind of invariant all the time we call a small
  // fixup routine to move the mutated arguments onto the top of our
  // expression stack if necessary.
  __ movq(c_rarg1, rsp);
  __ movq(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  // PC must point into interpreter here
  __ set_last_Java_frame(noreg, rbp, __ pc());
  __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
  __ reset_last_Java_frame(true, true);
  // Restore the last_sp and null it out
  __ movq(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);

  __ restore_bcp();  // XXX do we need this?
  __ restore_locals(); // XXX do we need this?
  // The method data pointer was incremented already during
  // call profiling. We have to restore the mdp for the current bcp.
  if (ProfileInterpreter) {
    __ set_method_data_pointer_for_bcp();
  }

  // Clear the popframe condition flag
  __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
          JavaThread::popframe_inactive);

  __ dispatch_next(vtos);
  // end of PopFrame support

  Interpreter::_remove_activation_entry = __ pc();

  // preserve exception over this code sequence
  __ pop_ptr(rax);
  __ movq(Address(r15_thread, JavaThread::vm_result_offset()), rax);
  // remove the activation (without doing throws on illegalMonitorExceptions)
  __ remove_activation(vtos, rdx, false, true, false);
  // restore exception
  __ movq(rax, Address(r15_thread, JavaThread::vm_result_offset()));
  __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
  __ verify_oop(rax);

  // In between activations - previous activation type unknown yet
  // compute continuation point - the continuation point expects the
  // following registers set up:
  //
  // rax: exception
  // rdx: return address/pc that threw exception
  // rsp: expression stack of caller
  // rbp: ebp of caller
  __ pushq(rax);                                 // save exception
  __ pushq(rdx);                                 // save return address
  __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
                          SharedRuntime::exception_handler_for_return_address),
                        rdx);
  __ movq(rbx, rax);                             // save exception handler
  __ popq(rdx);                                  // restore return address
  __ popq(rax);                                  // restore exception
  // Note that an "issuing PC" is actually the next PC after the call
  __ jmp(rbx);                                   // jump to exception
                                                 // handler of caller
}


//
// JVMTI ForceEarlyReturn support
//
address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  address entry = __ pc();

  __ restore_bcp();
  __ restore_locals();
  __ empty_expression_stack();
  __ load_earlyret_value(state);

  __ movq(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
  Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());

  // Clear the earlyret state
  __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);

  __ remove_activation(state, rsi,
                       false, /* throw_monitor_exception */
                       false, /* install_monitor_exception */
                       true); /* notify_jvmdi */
  __ jmp(rsi);

  return entry;
} // end of ForceEarlyReturn support


//-----------------------------------------------------------------------------
// Helper for vtos entry point generation

void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
                                                         address& bep,
                                                         address& cep,
                                                         address& sep,
                                                         address& aep,
                                                         address& iep,
                                                         address& lep,
                                                         address& fep,
                                                         address& dep,
                                                         address& vep) {
  assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  Label L;
  aep = __ pc();  __ push_ptr();  __ jmp(L);
  fep = __ pc();  __ push_f();    __ jmp(L);
  dep = __ pc();  __ push_d();    __ jmp(L);
  lep = __ pc();  __ push_l();    __ jmp(L);
  bep = cep = sep =
  iep = __ pc();  __ push_i();
  vep = __ pc();
  __ bind(L);
  generate_and_dispatch(t);
}


//-----------------------------------------------------------------------------
// Generation of individual instructions

// helpers for generate_and_dispatch


InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  : TemplateInterpreterGenerator(code) {
   generate_all(); // down here so it can be "virtual"
}

//-----------------------------------------------------------------------------

// Non-product code
#ifndef PRODUCT
address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  address entry = __ pc();

  __ push(state);
  __ pushq(c_rarg0);
  __ pushq(c_rarg1);
  __ pushq(c_rarg2);
  __ pushq(c_rarg3);
  __ movq(c_rarg2, rax);  // Pass itos
#ifdef _WIN64
  __ movflt(xmm3, xmm0); // Pass ftos
#endif
  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
             c_rarg1, c_rarg2, c_rarg3);
  __ popq(c_rarg3);
  __ popq(c_rarg2);
  __ popq(c_rarg1);
  __ popq(c_rarg0);
  __ pop(state);
  __ ret(0);                                   // return from result handler

  return entry;
}

void TemplateInterpreterGenerator::count_bytecode() {
  __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
}

void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
}

void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
  __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  __ orl(rbx,
         ((int) t->bytecode()) <<
         BytecodePairHistogram::log2_number_of_codes);
  __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
  __ incrementl(Address(rscratch1, rbx, Address::times_4));
}


void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  // Call a little run-time stub to avoid blow-up for each bytecode.
  // The run-time runtime saves the right registers, depending on
  // the tosca in-state for the given template.

  assert(Interpreter::trace_code(t->tos_in()) != NULL,
         "entry must have been generated");
  __ movq(r12, rsp); // remember sp
  __ andq(rsp, -16); // align stack as required by ABI
  __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  __ movq(rsp, r12); // restore sp
1664
  __ reinit_heapbase();
D
duke 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
}


void TemplateInterpreterGenerator::stop_interpreter_at() {
  Label L;
  __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
           StopInterpreterAt);
  __ jcc(Assembler::notEqual, L);
  __ int3();
  __ bind(L);
}
#endif // !PRODUCT