interp_masm_x86_32.cpp 54.0 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/*
 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_interp_masm_x86_32.cpp.incl"


// Implementation of InterpreterMacroAssembler
#ifdef CC_INTERP
void InterpreterMacroAssembler::get_method(Register reg) {
  movl(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
  movl(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
}
#endif // CC_INTERP


#ifndef CC_INTERP
void InterpreterMacroAssembler::call_VM_leaf_base(
  address entry_point,
  int     number_of_arguments
) {
  // interpreter specific
  //
  // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
  //       since these are callee saved registers and no blocking/
  //       GC can happen in leaf calls.
  // Further Note: DO NOT save/restore bcp/locals. If a caller has
  // already saved them so that it can use rsi/rdi as temporaries
  // then a save/restore here will DESTROY the copy the caller
  // saved! There used to be a save_bcp() that only happened in
  // the ASSERT path (no restore_bcp). Which caused bizarre failures
  // when jvm built with ASSERTs.
#ifdef ASSERT
  { Label L;
    cmpl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
    jcc(Assembler::equal, L);
    stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
    bind(L);
  }
#endif
  // super call
  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  // interpreter specific

  // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
  // but since they may not have been saved (and we don't want to
  // save them here (see note above) the assert is invalid.
}


void InterpreterMacroAssembler::call_VM_base(
  Register oop_result,
  Register java_thread,
  Register last_java_sp,
  address  entry_point,
  int      number_of_arguments,
  bool     check_exceptions
) {
#ifdef ASSERT
  { Label L;
    cmpl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
    jcc(Assembler::equal, L);
    stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
    bind(L);
  }
#endif /* ASSERT */
  // interpreter specific
  //
  // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
  //       really make a difference for these runtime calls, since they are
  //       slow anyway. Btw., bcp must be saved/restored since it may change
  //       due to GC.
  assert(java_thread == noreg , "not expecting a precomputed java thread");
  save_bcp();
  // super call
  MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  // interpreter specific
  restore_bcp();
  restore_locals();
}


void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  if (JvmtiExport::can_pop_frame()) {
    Label L;
    // Initiate popframe handling only if it is not already being processed.  If the flag
    // has the popframe_processing bit set, it means that this code is called *during* popframe
    // handling - we don't want to reenter.
    Register pop_cond = java_thread;  // Not clear if any other register is available...
    movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
    testl(pop_cond, JavaThread::popframe_pending_bit);
    jcc(Assembler::zero, L);
    testl(pop_cond, JavaThread::popframe_processing_bit);
    jcc(Assembler::notZero, L);
    // Call Interpreter::remove_activation_preserving_args_entry() to get the
    // address of the same-named entrypoint in the generated interpreter code.
    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
    jmp(rax);
    bind(L);
    get_thread(java_thread);
  }
}


void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
  get_thread(rcx);
  movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
  const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
  const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
  const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
  const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
                             + in_ByteSize(wordSize));
  switch (state) {
    case atos: movl(rax, oop_addr);
               movl(oop_addr, NULL_WORD);
               verify_oop(rax, state);                break;
    case ltos: movl(rdx, val_addr1);               // fall through
    case btos:                                     // fall through
    case ctos:                                     // fall through
    case stos:                                     // fall through
    case itos: movl(rax, val_addr);                   break;
    case ftos: fld_s(val_addr);                       break;
    case dtos: fld_d(val_addr);                       break;
    case vtos: /* nothing to do */                    break;
    default  : ShouldNotReachHere();
  }
  // Clean up tos value in the thread object
  movl(tos_addr,  (int) ilgl);
  movl(val_addr,  NULL_WORD);
  movl(val_addr1, NULL_WORD);
}


void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
  if (JvmtiExport::can_force_early_return()) {
    Label L;
    Register tmp = java_thread;
    movl(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
    testl(tmp, tmp);
    jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;

    // Initiate earlyret handling only if it is not already being processed.
    // If the flag has the earlyret_processing bit set, it means that this code
    // is called *during* earlyret handling - we don't want to reenter.
    movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
    cmpl(tmp, JvmtiThreadState::earlyret_pending);
    jcc(Assembler::notEqual, L);

    // Call Interpreter::remove_activation_early_entry() to get the address of the
    // same-named entrypoint in the generated interpreter code.
    get_thread(java_thread);
    movl(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
    pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
    jmp(rax);
    bind(L);
    get_thread(java_thread);
  }
}


void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
  assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
  movl(reg, Address(rsi, bcp_offset));
  bswap(reg);
  shrl(reg, 16);
}


void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset) {
  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
  assert(cache != index, "must use different registers");
  load_unsigned_word(index, Address(rsi, bcp_offset));
  movl(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
  assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
  shll(index, 2); // convert from field index to ConstantPoolCacheEntry index
}


void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
  assert(cache != tmp, "must use different register");
  load_unsigned_word(tmp, Address(rsi, bcp_offset));
  assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
                               // convert from field index to ConstantPoolCacheEntry index
                               // and from word offset to byte offset
  shll(tmp, 2 + LogBytesPerWord);
  movl(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
                               // skip past the header
  addl(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  addl(cache, tmp);            // construct pointer to cache entry
}


  // Generate a subtype check: branch to ok_is_subtype if sub_klass is
  // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
  // Resets EDI to locals.  Register sub_klass cannot be any of the above.
void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
  assert( Rsub_klass != rax, "rax, holds superklass" );
  assert( Rsub_klass != rcx, "rcx holds 2ndary super array length" );
  assert( Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr" );
  Label not_subtype, loop;

  // Profile the not-null value's klass.
  profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi

  // Load the super-klass's check offset into ECX
  movl( rcx, Address(rax, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() ) );
  // Load from the sub-klass's super-class display list, or a 1-word cache of
  // the secondary superclass list, or a failing value with a sentinel offset
  // if the super-klass is an interface or exceptionally deep in the Java
  // hierarchy and we have to scan the secondary superclass list the hard way.
  // See if we get an immediate positive hit
  cmpl( rax, Address(Rsub_klass,rcx,Address::times_1) );
  jcc( Assembler::equal,ok_is_subtype );

  // Check for immediate negative hit
  cmpl( rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
  jcc( Assembler::notEqual, not_subtype );
  // Check for self
  cmpl( Rsub_klass, rax );
  jcc( Assembler::equal, ok_is_subtype );

  // Now do a linear scan of the secondary super-klass chain.
  movl( rdi, Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()) );
  // EDI holds the objArrayOop of secondary supers.
  movl( rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));// Load the array length
  // Skip to start of data; also clear Z flag incase ECX is zero
  addl( rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT) );
  // Scan ECX words at [EDI] for occurance of EAX
  // Set NZ/Z based on last compare
  repne_scan();
  restore_locals();           // Restore EDI; Must not blow flags
  // Not equal?
  jcc( Assembler::notEqual, not_subtype );
  // Must be equal but missed in cache.  Update cache.
  movl( Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()), rax );
  jmp( ok_is_subtype );

  bind(not_subtype);
  profile_typecheck_failed(rcx); // blows rcx
}

void InterpreterMacroAssembler::f2ieee() {
  if (IEEEPrecision) {
    fstp_s(Address(rsp, 0));
    fld_s(Address(rsp, 0));
  }
}


void InterpreterMacroAssembler::d2ieee() {
  if (IEEEPrecision) {
    fstp_d(Address(rsp, 0));
    fld_d(Address(rsp, 0));
  }
}
#endif // CC_INTERP

// Java Expression Stack

#ifdef ASSERT
void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
  if (TaggedStackInterpreter) {
    Label okay;
    cmpl(Address(rsp, wordSize), (int)t);
    jcc(Assembler::equal, okay);
    // Also compare if the stack value is zero, then the tag might
    // not have been set coming from deopt.
    cmpl(Address(rsp, 0), 0);
    jcc(Assembler::equal, okay);
    stop("Java Expression stack tag value is bad");
    bind(okay);
  }
}
#endif // ASSERT

void InterpreterMacroAssembler::pop_ptr(Register r) {
  debug_only(verify_stack_tag(frame::TagReference));
  popl(r);
  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
}

void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
  popl(r);
  // Tag may not be reference for jsr, can be returnAddress
  if (TaggedStackInterpreter) popl(tag);
}

void InterpreterMacroAssembler::pop_i(Register r) {
  debug_only(verify_stack_tag(frame::TagValue));
  popl(r);
  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
}

void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
  debug_only(verify_stack_tag(frame::TagValue));
  popl(lo);
  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
  debug_only(verify_stack_tag(frame::TagValue));
  popl(hi);
  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
}

void InterpreterMacroAssembler::pop_f() {
  debug_only(verify_stack_tag(frame::TagValue));
  fld_s(Address(rsp, 0));
  addl(rsp, 1 * wordSize);
  if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
}

void InterpreterMacroAssembler::pop_d() {
  // Write double to stack contiguously and load into ST0
  pop_dtos_to_rsp();
  fld_d(Address(rsp, 0));
  addl(rsp, 2 * wordSize);
}


// Pop the top of the java expression stack to execution stack (which
// happens to be the same place).
void InterpreterMacroAssembler::pop_dtos_to_rsp() {
  if (TaggedStackInterpreter) {
    // Pop double value into scratch registers
    debug_only(verify_stack_tag(frame::TagValue));
    popl(rax);
    addl(rsp, 1* wordSize);
    debug_only(verify_stack_tag(frame::TagValue));
    popl(rdx);
    addl(rsp, 1* wordSize);
    pushl(rdx);
    pushl(rax);
  }
}

void InterpreterMacroAssembler::pop_ftos_to_rsp() {
  if (TaggedStackInterpreter) {
    debug_only(verify_stack_tag(frame::TagValue));
    popl(rax);
    addl(rsp, 1 * wordSize);
    pushl(rax);  // ftos is at rsp
  }
}

void InterpreterMacroAssembler::pop(TosState state) {
  switch (state) {
    case atos: pop_ptr(rax);                                 break;
    case btos:                                               // fall through
    case ctos:                                               // fall through
    case stos:                                               // fall through
    case itos: pop_i(rax);                                   break;
    case ltos: pop_l(rax, rdx);                              break;
    case ftos: pop_f();                                      break;
    case dtos: pop_d();                                      break;
    case vtos: /* nothing to do */                           break;
    default  : ShouldNotReachHere();
  }
  verify_oop(rax, state);
}

void InterpreterMacroAssembler::push_ptr(Register r) {
  if (TaggedStackInterpreter) pushl(frame::TagReference);
  pushl(r);
}

void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
  if (TaggedStackInterpreter) pushl(tag);  // tag first
  pushl(r);
}

void InterpreterMacroAssembler::push_i(Register r) {
  if (TaggedStackInterpreter) pushl(frame::TagValue);
  pushl(r);
}

void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
  if (TaggedStackInterpreter) pushl(frame::TagValue);
  pushl(hi);
  if (TaggedStackInterpreter) pushl(frame::TagValue);
  pushl(lo);
}

void InterpreterMacroAssembler::push_f() {
  if (TaggedStackInterpreter) pushl(frame::TagValue);
  // Do not schedule for no AGI! Never write beyond rsp!
  subl(rsp, 1 * wordSize);
  fstp_s(Address(rsp, 0));
}

void InterpreterMacroAssembler::push_d(Register r) {
  if (TaggedStackInterpreter) {
    // Double values are stored as:
    //   tag
    //   high
    //   tag
    //   low
    pushl(frame::TagValue);
    subl(rsp, 3 * wordSize);
    fstp_d(Address(rsp, 0));
    // move high word up to slot n-1
    movl(r, Address(rsp, 1*wordSize));
    movl(Address(rsp, 2*wordSize), r);
    // move tag
    movl(Address(rsp, 1*wordSize), frame::TagValue);
  } else {
    // Do not schedule for no AGI! Never write beyond rsp!
    subl(rsp, 2 * wordSize);
    fstp_d(Address(rsp, 0));
  }
}


void InterpreterMacroAssembler::push(TosState state) {
  verify_oop(rax, state);
  switch (state) {
    case atos: push_ptr(rax); break;
    case btos:                                               // fall through
    case ctos:                                               // fall through
    case stos:                                               // fall through
    case itos: push_i(rax);                                    break;
    case ltos: push_l(rax, rdx);                               break;
    case ftos: push_f();                                       break;
    case dtos: push_d(rax);                                    break;
    case vtos: /* nothing to do */                             break;
    default  : ShouldNotReachHere();
  }
}

#ifndef CC_INTERP

// Tagged stack helpers for swap and dup
void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
                                                 Register tag) {
  movl(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
  if (TaggedStackInterpreter) {
    movl(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
  }
}

void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
                                                  Register tag) {
  movl(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
  if (TaggedStackInterpreter) {
    movl(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
  }
}


// Tagged local support
void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
  if (TaggedStackInterpreter) {
    if (tag == frame::TagCategory2) {
      movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int)frame::TagValue);
      movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)frame::TagValue);
    } else {
      movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)tag);
    }
  }
}

void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
  if (TaggedStackInterpreter) {
    if (tag == frame::TagCategory2) {
      movl(Address(rdi, idx, Interpreter::stackElementScale(),
                  Interpreter::local_tag_offset_in_bytes(1)), (int)frame::TagValue);
      movl(Address(rdi, idx, Interpreter::stackElementScale(),
                  Interpreter::local_tag_offset_in_bytes(0)), (int)frame::TagValue);
    } else {
      movl(Address(rdi, idx, Interpreter::stackElementScale(),
                             Interpreter::local_tag_offset_in_bytes(0)), (int)tag);
    }
  }
}

void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
  if (TaggedStackInterpreter) {
    // can only be TagValue or TagReference
    movl(Address(rdi, idx, Interpreter::stackElementScale(),
                           Interpreter::local_tag_offset_in_bytes(0)), tag);
  }
}


void InterpreterMacroAssembler::tag_local(Register tag, int n) {
  if (TaggedStackInterpreter) {
    // can only be TagValue or TagReference
    movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), tag);
  }
}

#ifdef ASSERT
void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
  if (TaggedStackInterpreter) {
     frame::Tag t = tag;
    if (tag == frame::TagCategory2) {
      Label nbl;
      t = frame::TagValue;  // change to what is stored in locals
      cmpl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t);
      jcc(Assembler::equal, nbl);
      stop("Local tag is bad for long/double");
      bind(nbl);
    }
    Label notBad;
    cmpl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)t);
    jcc(Assembler::equal, notBad);
    // Also compare if the local value is zero, then the tag might
    // not have been set coming from deopt.
    cmpl(Address(rdi, Interpreter::local_offset_in_bytes(n)), 0);
    jcc(Assembler::equal, notBad);
    stop("Local tag is bad");
    bind(notBad);
  }
}

void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
  if (TaggedStackInterpreter) {
    frame::Tag t = tag;
    if (tag == frame::TagCategory2) {
      Label nbl;
      t = frame::TagValue;  // change to what is stored in locals
      cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
                  Interpreter::local_tag_offset_in_bytes(1)), (int)t);
      jcc(Assembler::equal, nbl);
      stop("Local tag is bad for long/double");
      bind(nbl);
    }
    Label notBad;
    cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
                  Interpreter::local_tag_offset_in_bytes(0)), (int)t);
    jcc(Assembler::equal, notBad);
    // Also compare if the local value is zero, then the tag might
    // not have been set coming from deopt.
    cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
                  Interpreter::local_offset_in_bytes(0)), 0);
    jcc(Assembler::equal, notBad);
    stop("Local tag is bad");
    bind(notBad);

  }
}
#endif // ASSERT

void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
  MacroAssembler::call_VM_leaf_base(entry_point, 0);
}


void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) {
  pushl(arg_1);
  MacroAssembler::call_VM_leaf_base(entry_point, 1);
}


void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
  pushl(arg_2);
  pushl(arg_1);
  MacroAssembler::call_VM_leaf_base(entry_point, 2);
}


void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  pushl(arg_3);
  pushl(arg_2);
  pushl(arg_1);
  MacroAssembler::call_VM_leaf_base(entry_point, 3);
}


// Jump to from_interpreted entry of a call unless single stepping is possible
// in this thread in which case we must call the i2i entry
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
  // set sender sp
  leal(rsi, Address(rsp, wordSize));
  // record last_sp
  movl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);

  if (JvmtiExport::can_post_interpreter_events()) {
    Label run_compiled_code;
    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
    // compiled code in threads for which the event is enabled.  Check here for
    // interp_only_mode if these events CAN be enabled.
    get_thread(temp);
    // interp_only is an int, on little endian it is sufficient to test the byte only
    // Is a cmpl faster (ce
    cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
    jcc(Assembler::zero, run_compiled_code);
    jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
    bind(run_compiled_code);
  }

  jmp(Address(method, methodOopDesc::from_interpreted_offset()));

}


// The following two routines provide a hook so that an implementation
// can schedule the dispatch in two parts.  Intel does not do this.
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
  // Nothing Intel-specific to be done here.
}

void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
  dispatch_next(state, step);
}

void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
                                              bool verifyoop) {
  verify_FPU(1, state);
  if (VerifyActivationFrameSize) {
    Label L;
    movl(rcx, rbp);
    subl(rcx, rsp);
    int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
    cmpl(rcx, min_frame_size);
    jcc(Assembler::greaterEqual, L);
    stop("broken stack frame");
    bind(L);
  }
  if (verifyoop) verify_oop(rax, state);
  Address index(noreg, rbx, Address::times_4);
  ExternalAddress tbl((address)table);
  ArrayAddress dispatch(tbl, index);
  jump(dispatch);
}


void InterpreterMacroAssembler::dispatch_only(TosState state) {
  dispatch_base(state, Interpreter::dispatch_table(state));
}


void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
  dispatch_base(state, Interpreter::normal_table(state));
}

void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
  dispatch_base(state, Interpreter::normal_table(state), false);
}


void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
  // load next bytecode (load before advancing rsi to prevent AGI)
  load_unsigned_byte(rbx, Address(rsi, step));
  // advance rsi
  increment(rsi, step);
  dispatch_base(state, Interpreter::dispatch_table(state));
}


void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
  // load current bytecode
  load_unsigned_byte(rbx, Address(rsi, 0));
  dispatch_base(state, table);
}

// remove activation
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
// Remove the activation from the stack.
//
// If there are locked Java monitors
//    If throw_monitor_exception
//       throws IllegalMonitorStateException
//    Else if install_monitor_exception
//       installs IllegalMonitorStateException
//    Else
//       no error processing
void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
                                                  bool throw_monitor_exception,
                                                  bool install_monitor_exception,
                                                  bool notify_jvmdi) {
  // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
  // check if synchronized method
  Label unlocked, unlock, no_unlock;

  get_thread(rcx);
  const Address do_not_unlock_if_synchronized(rcx,
    in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));

  movbool(rbx, do_not_unlock_if_synchronized);
  movl(rdi,rbx);
  movbool(do_not_unlock_if_synchronized, false); // reset the flag

  movl(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
  movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));

  testl(rcx, JVM_ACC_SYNCHRONIZED);
  jcc(Assembler::zero, unlocked);

  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
  // is set.
  movl(rcx,rdi);
  testbool(rcx);
  jcc(Assembler::notZero, no_unlock);

  // unlock monitor
  push(state);                                   // save result

  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  leal  (rdx, monitor);                          // address of first monitor

  movl  (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  testl (rax, rax);
  jcc   (Assembler::notZero, unlock);

  pop(state);
  if (throw_monitor_exception) {
    empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow

    // Entry already unlocked, need to throw exception
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
    should_not_reach_here();
  } else {
    // Monitor already unlocked during a stack unroll.
    // If requested, install an illegal_monitor_state_exception.
    // Continue with stack unrolling.
    if (install_monitor_exception) {
      empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
    }
    jmp(unlocked);
  }

  bind(unlock);
  unlock_object(rdx);
  pop(state);

  // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
  bind(unlocked);

  // rax, rdx: Might contain return value

  // Check that all monitors are unlocked
  {
    Label loop, exception, entry, restart;
    const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
    const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
    const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);

    bind(restart);
    movl(rcx, monitor_block_top);             // points to current entry, starting with top-most entry
    leal(rbx, monitor_block_bot);             // points to word before bottom of monitor block
    jmp(entry);

    // Entry already locked, need to throw exception
    bind(exception);

    if (throw_monitor_exception) {
      empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow

      // Throw exception
      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
      should_not_reach_here();
    } else {
      // Stack unrolling. Unlock object and install illegal_monitor_exception
      // Unlock does not block, so don't have to worry about the frame

      push(state);
      movl(rdx, rcx);
      unlock_object(rdx);
      pop(state);

      if (install_monitor_exception) {
        empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
        call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
      }

      jmp(restart);
    }

    bind(loop);
    cmpl(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);  // check if current entry is used
    jcc(Assembler::notEqual, exception);

    addl(rcx, entry_size);                       // otherwise advance to next entry
    bind(entry);
    cmpl(rcx, rbx);                              // check if bottom reached
    jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
  }

  bind(no_unlock);

  // jvmti support
  if (notify_jvmdi) {
    notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
  } else {
    notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
  }

  // remove activation
  movl(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  leave();                                     // remove frame anchor
  popl(ret_addr);                              // get return address
  movl(rsp, rbx);                              // set sp to sender sp
  if (UseSSE) {
    // float and double are returned in xmm register in SSE-mode
    if (state == ftos && UseSSE >= 1) {
      subl(rsp, wordSize);
      fstp_s(Address(rsp, 0));
      movflt(xmm0, Address(rsp, 0));
      addl(rsp, wordSize);
    } else if (state == dtos && UseSSE >= 2) {
      subl(rsp, 2*wordSize);
      fstp_d(Address(rsp, 0));
      movdbl(xmm0, Address(rsp, 0));
      addl(rsp, 2*wordSize);
    }
  }
}

#endif /* !CC_INTERP */


// Lock object
//
// Argument: rdx : Points to BasicObjectLock to be used for locking. Must
// be initialized with object to lock
void InterpreterMacroAssembler::lock_object(Register lock_reg) {
  assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");

  if (UseHeavyMonitors) {
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  } else {

    Label done;

    const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
    const Register obj_reg  = rcx;  // Will contain the oop

    const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
    const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
    const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();

    Label slow_case;

    // Load object pointer into obj_reg %rcx
    movl(obj_reg, Address(lock_reg, obj_offset));

    if (UseBiasedLocking) {
      // Note: we use noreg for the temporary register since it's hard
      // to come up with a free register on all incoming code paths
      biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
    }

    // Load immediate 1 into swap_reg %rax,
    movl(swap_reg, 1);

    // Load (object->mark() | 1) into swap_reg %rax,
    orl(swap_reg, Address(obj_reg, 0));

    // Save (object->mark() | 1) into BasicLock's displaced header
    movl(Address(lock_reg, mark_offset), swap_reg);

    assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
    if (os::is_MP()) {
      lock();
    }
    cmpxchg(lock_reg, Address(obj_reg, 0));
    if (PrintBiasedLockingStatistics) {
      cond_inc32(Assembler::zero,
                 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
    }
    jcc(Assembler::zero, done);

    // Test if the oopMark is an obvious stack pointer, i.e.,
    //  1) (mark & 3) == 0, and
    //  2) rsp <= mark < mark + os::pagesize()
    //
    // These 3 tests can be done by evaluating the following
    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
    // assuming both stack pointer and pagesize have their
    // least significant 2 bits clear.
    // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
    subl(swap_reg, rsp);
    andl(swap_reg, 3 - os::vm_page_size());

    // Save the test result, for recursive case, the result is zero
    movl(Address(lock_reg, mark_offset), swap_reg);

    if (PrintBiasedLockingStatistics) {
      cond_inc32(Assembler::zero,
                 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
    }
    jcc(Assembler::zero, done);

    bind(slow_case);

    // Call the runtime routine for slow case
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);

    bind(done);
  }
}


// Unlocks an object. Used in monitorexit bytecode and remove_activation.
//
// Argument: rdx : Points to BasicObjectLock structure for lock
// Throw an IllegalMonitorException if object is not locked by current thread
//
// Uses: rax, rbx, rcx, rdx
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");

  if (UseHeavyMonitors) {
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  } else {
    Label done;

    const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
    const Register header_reg = rbx;  // Will contain the old oopMark
    const Register obj_reg    = rcx;  // Will contain the oop

    save_bcp(); // Save in case of exception

    // Convert from BasicObjectLock structure to object and BasicLock structure
    // Store the BasicLock address into %rax,
    leal(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));

    // Load oop into obj_reg(%rcx)
    movl(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));

    // Free entry
    movl(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);

    if (UseBiasedLocking) {
      biased_locking_exit(obj_reg, header_reg, done);
    }

    // Load the old header from BasicLock structure
    movl(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));

    // Test for recursion
    testl(header_reg, header_reg);

    // zero for recursive case
    jcc(Assembler::zero, done);

    // Atomic swap back the old header
    if (os::is_MP()) lock();
    cmpxchg(header_reg, Address(obj_reg, 0));

    // zero for recursive case
    jcc(Assembler::zero, done);

    // Call the runtime routine for slow case.
    movl(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);

    bind(done);

    restore_bcp();
  }
}


#ifndef CC_INTERP

// Test ImethodDataPtr.  If it is null, continue at the specified label
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  movl(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
  testl(mdp, mdp);
  jcc(Assembler::zero, zero_continue);
}


// Set the method data pointer for the current bcp.
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  assert(ProfileInterpreter, "must be profiling interpreter");
  Label zero_continue;
  pushl(rax);
  pushl(rbx);

  get_method(rbx);
  // Test MDO to avoid the call if it is NULL.
  movl(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  testl(rax, rax);
  jcc(Assembler::zero, zero_continue);

  // rbx,: method
  // rsi: bcp
  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
  // rax,: mdi

  movl(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  testl(rbx, rbx);
  jcc(Assembler::zero, zero_continue);
  addl(rbx, in_bytes(methodDataOopDesc::data_offset()));
  addl(rbx, rax);
  movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);

  bind(zero_continue);
  popl(rbx);
  popl(rax);
}

void InterpreterMacroAssembler::verify_method_data_pointer() {
  assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef ASSERT
  Label verify_continue;
  pushl(rax);
  pushl(rbx);
  pushl(rcx);
  pushl(rdx);
  test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
  get_method(rbx);

  // If the mdp is valid, it will point to a DataLayout header which is
  // consistent with the bcp.  The converse is highly probable also.
  load_unsigned_word(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
  addl(rdx, Address(rbx, methodOopDesc::const_offset()));
  leal(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
  cmpl(rdx, rsi);
  jcc(Assembler::equal, verify_continue);
  // rbx,: method
  // rsi: bcp
  // rcx: mdp
  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
  bind(verify_continue);
  popl(rdx);
  popl(rcx);
  popl(rbx);
  popl(rax);
#endif // ASSERT
}


void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  Address data(mdp_in, constant);
  movl(data, value);
}


void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
                                                      int constant,
                                                      bool decrement) {
  // Counter address
  Address data(mdp_in, constant);

  increment_mdp_data_at(data, decrement);
}


void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
                                                      bool decrement) {

  assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  assert(ProfileInterpreter, "must be profiling interpreter");

  if (decrement) {
    // Decrement the register.  Set condition codes.
    addl(data, -DataLayout::counter_increment);
    // If the decrement causes the counter to overflow, stay negative
    Label L;
    jcc(Assembler::negative, L);
    addl(data, DataLayout::counter_increment);
    bind(L);
  } else {
    assert(DataLayout::counter_increment == 1,
           "flow-free idiom only works with 1");
    // Increment the register.  Set carry flag.
    addl(data, DataLayout::counter_increment);
    // If the increment causes the counter to overflow, pull back by 1.
    sbbl(data, 0);
  }
}


void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
                                                      Register reg,
                                                      int constant,
                                                      bool decrement) {
  Address data(mdp_in, reg, Address::times_1, constant);

  increment_mdp_data_at(data, decrement);
}


void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  int header_offset = in_bytes(DataLayout::header_offset());
  int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
  // Set the flag
  orl(Address(mdp_in, header_offset), header_bits);
}



void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
                                                 int offset,
                                                 Register value,
                                                 Register test_value_out,
                                                 Label& not_equal_continue) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  if (test_value_out == noreg) {
    cmpl(value, Address(mdp_in, offset));
  } else {
    // Put the test value into a register, so caller can use it:
    movl(test_value_out, Address(mdp_in, offset));
    cmpl(test_value_out, value);
  }
  jcc(Assembler::notEqual, not_equal_continue);
}


void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  Address disp_address(mdp_in, offset_of_disp);
  addl(mdp_in,disp_address);
  movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
}


void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
  addl(mdp_in, disp_address);
  movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
}


void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  addl(mdp_in, constant);
  movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
}


void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  pushl(return_bci);             // save/restore across call_VM
  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  popl(return_bci);
}


void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    // Otherwise, assign to mdp
    test_method_data_pointer(mdp, profile_continue);

    // We are taking a branch.  Increment the taken count.
    // We inline increment_mdp_data_at to return bumped_count in a register
    //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
    Address data(mdp, in_bytes(JumpData::taken_offset()));
    movl(bumped_count,data);
    assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
    addl(bumped_count, DataLayout::counter_increment);
    sbbl(bumped_count, 0);
    movl(data,bumped_count);    // Store back out

    // The method data pointer needs to be updated to reflect the new target.
    update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
    bind (profile_continue);
  }
}


void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    // We are taking a branch.  Increment the not taken count.
    increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));

    // The method data pointer needs to be updated to correspond to the next bytecode
    update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
    bind (profile_continue);
  }
}


void InterpreterMacroAssembler::profile_call(Register mdp) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    // We are making a call.  Increment the count.
    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));

    // The method data pointer needs to be updated to reflect the new target.
    update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
    bind (profile_continue);
  }
}


void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    // We are making a call.  Increment the count.
    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));

    // The method data pointer needs to be updated to reflect the new target.
    update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
    bind (profile_continue);
  }
}


void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    // We are making a call.  Increment the count.
    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));

    // Record the receiver type.
    record_klass_in_profile(receiver, mdp, reg2);

    // The method data pointer needs to be updated to reflect the new target.
    update_mdp_by_constant(mdp,
                           in_bytes(VirtualCallData::
                                    virtual_call_data_size()));
    bind(profile_continue);
  }
}


void InterpreterMacroAssembler::record_klass_in_profile_helper(
                                        Register receiver, Register mdp,
                                        Register reg2,
                                        int start_row, Label& done) {
  int last_row = VirtualCallData::row_limit() - 1;
  assert(start_row <= last_row, "must be work left to do");
  // Test this row for both the receiver and for null.
  // Take any of three different outcomes:
  //   1. found receiver => increment count and goto done
  //   2. found null => keep looking for case 1, maybe allocate this cell
  //   3. found something else => keep looking for cases 1 and 2
  // Case 3 is handled by a recursive call.
  for (int row = start_row; row <= last_row; row++) {
    Label next_test;
    bool test_for_null_also = (row == start_row);

    // See if the receiver is receiver[n].
    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
    test_mdp_data_at(mdp, recvr_offset, receiver,
                     (test_for_null_also ? reg2 : noreg),
                     next_test);
    // (Reg2 now contains the receiver from the CallData.)

    // The receiver is receiver[n].  Increment count[n].
    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
    increment_mdp_data_at(mdp, count_offset);
    jmp(done);
    bind(next_test);

    if (row == start_row) {
      // Failed the equality check on receiver[n]...  Test for null.
      testl(reg2, reg2);
      if (start_row == last_row) {
        // The only thing left to do is handle the null case.
        jcc(Assembler::notZero, done);
        break;
      }
      // Since null is rare, make it be the branch-taken case.
      Label found_null;
      jcc(Assembler::zero, found_null);

      // Put all the "Case 3" tests here.
      record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);

      // Found a null.  Keep searching for a matching receiver,
      // but remember that this is an empty (unused) slot.
      bind(found_null);
    }
  }

  // In the fall-through case, we found no matching receiver, but we
  // observed the receiver[start_row] is NULL.

  // Fill in the receiver field and increment the count.
  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  set_mdp_data_at(mdp, recvr_offset, receiver);
  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  movl(reg2, DataLayout::counter_increment);
  set_mdp_data_at(mdp, count_offset, reg2);
  jmp(done);
}

void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
                                                        Register mdp,
                                                        Register reg2) {
  assert(ProfileInterpreter, "must be profiling");
  Label done;

  record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);

  bind (done);
}

void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
  if (ProfileInterpreter) {
    Label profile_continue;
    uint row;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    // Update the total ret count.
    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));

    for (row = 0; row < RetData::row_limit(); row++) {
      Label next_test;

      // See if return_bci is equal to bci[n]:
      test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
                       noreg, next_test);

      // return_bci is equal to bci[n].  Increment the count.
      increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));

      // The method data pointer needs to be updated to reflect the new target.
      update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
      jmp(profile_continue);
      bind(next_test);
    }

    update_mdp_for_ret(return_bci);

    bind (profile_continue);
  }
}


void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    // The method data pointer needs to be updated.
    int mdp_delta = in_bytes(BitData::bit_data_size());
    if (TypeProfileCasts) {
      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
    }
    update_mdp_by_constant(mdp, mdp_delta);

    bind (profile_continue);
  }
}


void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  if (ProfileInterpreter && TypeProfileCasts) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    int count_offset = in_bytes(CounterData::count_offset());
    // Back up the address, since we have already bumped the mdp.
    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());

    // *Decrement* the counter.  We expect to see zero or small negatives.
    increment_mdp_data_at(mdp, count_offset, true);

    bind (profile_continue);
  }
}


void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
{
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    // The method data pointer needs to be updated.
    int mdp_delta = in_bytes(BitData::bit_data_size());
    if (TypeProfileCasts) {
      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());

      // Record the object type.
      record_klass_in_profile(klass, mdp, reg2);
      assert(reg2 == rdi, "we know how to fix this blown reg");
      restore_locals();         // Restore EDI
    }
    update_mdp_by_constant(mdp, mdp_delta);

    bind(profile_continue);
  }
}


void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    // Update the default case count
    increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));

    // The method data pointer needs to be updated.
    update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));

    bind (profile_continue);
  }
}


void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(mdp, profile_continue);

    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
    movl(reg2, in_bytes(MultiBranchData::per_case_size()));
    imull(index, reg2);
    addl(index, in_bytes(MultiBranchData::case_array_offset()));

    // Update the case count
    increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));

    // The method data pointer needs to be updated.
    update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));

    bind (profile_continue);
  }
}

#endif // !CC_INTERP



void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  if (state == atos) MacroAssembler::verify_oop(reg);
}


#ifndef CC_INTERP
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
}

#endif /* CC_INTERP */


void InterpreterMacroAssembler::notify_method_entry() {
  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  // track stack depth.  If it is possible to enter interp_only_mode we add
  // the code to check if the event should be sent.
  if (JvmtiExport::can_post_interpreter_events()) {
    Label L;
    get_thread(rcx);
    movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
    testl(rcx,rcx);
    jcc(Assembler::zero, L);
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
    bind(L);
  }

  {
    SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
    get_thread(rcx);
    get_method(rbx);
    call_VM_leaf(
      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
  }
}


void InterpreterMacroAssembler::notify_method_exit(
    TosState state, NotifyMethodExitMode mode) {
  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  // track stack depth.  If it is possible to enter interp_only_mode we add
  // the code to check if the event should be sent.
  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
    Label L;
    // Note: frame::interpreter_frame_result has a dependency on how the
    // method result is saved across the call to post_method_exit. If this
    // is changed then the interpreter_frame_result implementation will
    // need to be updated too.

    // For c++ interpreter the result is always stored at a known location in the frame
    // template interpreter will leave it on the top of the stack.
    NOT_CC_INTERP(push(state);)
    get_thread(rcx);
    movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
    testl(rcx,rcx);
    jcc(Assembler::zero, L);
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
    bind(L);
    NOT_CC_INTERP(pop(state);)
  }

  {
    SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
    push(state);
    get_thread(rbx);
    get_method(rcx);
    call_VM_leaf(
      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
      rbx, rcx);
    pop(state);
  }
}